
MyShake Seismic Data Classification

Siqi Qin
s7qin@eng.ucsd.edu

Jinhan Zhang
jiz530@eng.ucsd.edu

Xiaoye Liu
lxiaoye@eng.ucsd.edu

Abstract

Early Earthquake Warning has become an important is-
sue as the active earth activities increase. MyShake from
UC Berkeley is one of the most famous earthquake predic-
tion App in nowadays smart phone. This paper attempts to
improve the classification accuracy of the human and earth-
quake based on the previous works on MyShake dataset.
Both time and frequency domain features are used for the
model training. Four classification methods are tried and
models are evaluated with accuracy, balanced error rate
and precision&recall. Boosting gives the best accuracy of
99.28 % and balanced error rate of 0.95 %.

1. Introduction
1.1. Background

Earthquake is a kind of natural catastrophe that can kill
or hurt a large number of people, and cause huge and unre-
coverable destruction to constructions, and results in huge
financial losses. Earthquake Early Warning(EEW) system
is able to detect magnitude and location of an earthquake a
few seconds ahead of its damaging waves arrive [1]. It can
issue the warning to the affected area which allows peo-
ple to react and do some preparation to avoid further hurt
such as finding a safe place, opening the emergency exit and
many other things. Since smart phones are very prevalent
and have its own built-in sensors and communications mod-
ules, the development of EEW application in smart phone
becomes very useful. Myshake from UC Berkeley [2] is
an well-known earthquake prediction app nowadays. Be-
sides earthquake, shake can also be produced by human mo-
tions when the phone is put inside the pocket. Based on the
dataset given by Myshake, the objective of this project is to
try different classification models and improve the classifi-
cation performance between these two classes.

1.2. Previews Works

Many people have tried to improve classification ac-
curacy using different models and classification method.
Some of the final projects from STATS 215 in UC Berke-
ley give good results. One of them used SuperLearner for

classification task and found that it gives excellent predic-
tive performance. Another group proposes two ways, incor-
porating class weights into the RF classifier and combining
the sampling technique and the ensemble idea respectively,
both of which are based on the Random Forest algorithm.
In this project, different model and classifier are tried refer-
enced to these methods.

2. Data Engineering
To better select useful features from the dataset for the

classification task, an insight into the raw data is necessary
and some preprocessing is required. This section attempts
to explain the characteristics of the raw dataset and the pre-
processing methods used to solve the potential problems
and cast it into more useful features for the classification
task.

2.1. Dataset Overview and Preprocessing

The MyShake dataset is kindly provided by Peter. The
dataset includes 192 trials for the table experiments, 992
trials for the earthquake simulation and 26343 trials for the
human activity. In each trial, the raw data are the x, y and z
components of acceleration with unit in g. Also, the sample
rate and related time information is given. In the classifi-
cation problem, the trials from table experiment and earth-
quake simulation will be used to represent the earthquake
class and the trials from the human activity are used to rep-
resent the human class. The statistics of the dataset for this
classification problem is shown in Table 1.

Table 1. Statistics of Dataset
Class Data Size
Earthquake 1184
Human 26343

One potential problem here is that the size of data in x,
y, z may be different, so the first thing to do here is to cast
them into the same length so that it will be more convenient
for the future combination of these 3 dimensions. Next, the
features will be extracted from these 3 dimension accelera-
tions.

1



2.2. Feature Extraction

Most of the previous works from UC Berkeley are classi-
fying earthquake and human based on the time domain fea-
tures. In this project, both the time domain and frequency
domain features are used.

In the time domain, only some statistical features are
used. These features in x, y and z dimension are combined
as the features in time domain. Time domain features for
each dimension are listed in Table 2.

Table 2. Time domain features

Feature Significance
Max, Min peak values
Entropy information contained
Mean Average Energy of the signal
Variance 2nd order value of vibration
Range Count distribution of energy
Mean Absolute Change 1st order value of vibration
Mean 2nd order derivative Specific value of vibration

Overall, there are 24 features extracted in the time do-
main.

In the frequency domain, the features extracted are the
band power of the raw data. To fix the number of features
in all dimension, a 512 point Fast Fourier Transform(FFT)
is performed in both x, y and z dimension raw data. Consid-
ering that all of these 3 raw data are real, the FFT result will
be symmetrical with the DC axis. Thus, only the second
half of the FFT result will be extracted(point 256 to 512).
Then, these 256 points are binned with a size of 16, and
the normalized energy in each bin are used as the features
in frequency domain. Normalization is performed by being
divided by the overall energy of these 256 points. Figure 1
gives a more direct visualization of this process.

Figure 1. Feature Extraction in Frequency Domain

For each of the dimension, there will be 16 features in
the frequency domain. Thus, in total, there are 72 features
for the classification task.

2.3. Feature Selection

Combining the 16 features in frequency domain and the
8 features in time domain for each of x, y and z direction,
there are 72 features in total for training the model. How-
ever, some of these features should be redundant. To select
the most useful features for the model, KBest methods and
Tree Based features selection methods are used here.

2.3.1 KBest Feature Selection

Univariate feature selection works by selecting the best
features based on univariate statistical tests [3]. Chi-squared
statistics between each non-negative feature and class are
computed and the scores are used to select the top 10 fea-
tures with highest values for the test chi-squared statistic
from the input features.

The top 10 features selected overall and their corre-
sponding scores are shown in Table 3.

Table 3. KBest Top 10 Features
Feature Score
X Range Count 248.19747915794642
Y Range Count 240.42413597998859
Z Entropy 57.931555342198919
X Entropy 52.214238430489537
Y Mean 43.117537869501476
X Mean 41.700174402145997
Y Entropy 40.866437388414006
Z Max 28.621408062615217
Y Mean Absolute Change 19.442295887542997
X Mean Absolute Change 17.739705664715959

It can be found that the best features selected with KBest
are all in time domain. It seems that the features extracted in
frequency domain are not preferred in this feature selection
method.

2.3.2 Tree Based Feature Selection

Another feature selection method used in this project is
tree based feature selection. Methods that use ensembles of
decision trees in python, such as random forest and extra
tree classifier can also be used to compute the importances
of each attribute, which in turn can be used to discard irrele-
vant features [4]. This can be realized by setting importance
threshold for all the features.

The top 10 features selected overall and their corre-
sponding importance are shown in Table 4.

Compared with KBest method, the tree based feature se-
lections methods seems to be more preferable to the fre-
quency domain features. Thus, both of these selected fea-
tures will be used for the model training to compare the
performance of two pairs of 10 features.

2



Table 4. Tree Based Top 10 Features
Feature Importance
Y Bin6 0.069951000858849588
X Bin3 0.056770193478084797
Z Bin8 0.043527418795959581
Y Bin1 0.042234899021278527
Z Bin1 0.039207346146501287
X Bin7 0.035142537352107338
X Bin1 0.033746800624808879
X Range Count 0.033255561121663127
Y Range Count 0.032437465139782469
Y Mean Absolute Change 0.030606836865436842

3. Method
In this section, several kinds of classifiers are introduced

and explored. There are mainly 4 kinds of classifiers used to
do the classification: Fisher’s Linear Discrimination, Sup-
port Vector Machine, Random Forest and Gradient Boost-
ing. They will be explained in detail during this part.

3.1. Fisher’s Linear Discrimination

Fisher’s Linear Discrimination, also called as Linear
Discriminant Analysis(LDA), is a widely-used method for
supervised learning [5]. It tries to find a linear combina-
tion of features which can best represent each class or sep-
arate multiple classes. This combination of features can be
further used to do dimensionality reduction or as a classi-
fier [6].

The main idea for LDA is to separate points from dif-
ferent classes most while make points with the same label
close. Thus LDA aims to maximize the objective function
below:

J(w) =
wTSBw

wTSWw

where SB is the between-class scatter matrix, SW is the
within-class scatter matrix and w is the projection matrix.
The mathematic definition of the scatter matrices are as be-
low:

SB =
∑
c

(µc − x)(µc − x)T

SW =
∑
c

∑
i∈c

(xi − µc)(xi − µc)T

where c is the number of different classes. The visualiza-
tion of Fisher’s Linear Discrimination is shown as Figure 2.
From the objective function above, the optimal projection
matrix in the problem of two class can be obtained by:

w = S−1W (µ1 − µ2)

where µ1 and µ2 are the mean of two classes repectively.

Figure 2. Fisher’s linear discrimination for 3 classes

In summary, Fisher’s Linear Discrimination attempts to
express dependent variable as a linear combination of other
features [7][8], by explicitly trying to model the difference
between the classes of data. LDA works with the case that
measurements made on independent variables for each ob-
servation are continuous quantities. However, if the prob-
lem contains categorical independent variables, discrimi-
nant correspondence analysis [9] [10] may be used to help
with this case.

3.2. Support Vector Machine

Support vector machine [11] is a supervised learning
model with associated learning algorithms that analyze data
used for classification and regression analysis [12]. Sup-
port vector machine constructs a hyperplane in a high-
dimensional space which has the largest distance to the
nearest training-data point of any class. Generally, its idea
is to construct a classifier which focuses on points close
to other classes by minimizing the misclassification error.
Thus a classifier of the following form is desirable:

yi =

{
1 if Xiθ − α > 0

−1 otherwise

Then the objective function which aims to minimize the
number of misclassifications would be:

argminθ
∑
i

δ(yi(Xiθ − α) 6 0)

If the data to train is linearly separable, the classifier can
simply choose two parallel hyperplanes that separate the
two classes of data, and the distance between these hyper-
planes is the largest. This is called SVM with hard margin,
and the optimization problem would become:

argminθ,α‖θ‖22 with ∀iyi(Xiθ − α) > 1

However, this idea is not alway good since we may set the
boundary of classes as shown in Fig 3.

3



Figure 3. SVM with hard-margin

In order to make SVM compatible for the case that the
data is not linearly separable, we use the hinge loss function
which has the form as below:

max(0, 1− yi(xiθ − α))

This function is zero if the output matches the label (i.e.
the point lies on the correct side of the margin). While for
the other case, the hinge loss would be proportional to the
distance from the margin. Apply the hinge loss into our op-
timization process, we then wish to minimize the objective
function below:

argminθ,α[
1

n

n∑
i=1

max(0, 1− yi(Xiθ − α))] + λ‖θ‖2

where λ determines the tradeoff between increasing the
margin-size and minimizing the error number. The result
of SVM with soft-margin is shown as Fig 4.

Figure 4. SVM with soft-margin

All discussed above is about performing linear classifi-
cation, however, SVM can also perform non-linear classifi-
cation using the kernel trick. The main idea for kernel trick
is to implicitly map inputs into higher-dimensional feature
spaces[13].

3.3. Random Forest

Bagging is the basis of random forest, so we will in-
troduce bagging first here. Bagging (Breiman, 1996), also
called bootstrap aggregating, is a type of ensemble meta-
estimator that fits base classifiers. It fits many trees to

bootstrap-resampled versions of the training data, and clas-
sify by majority vote. Suppose C(S, x) is a classifier, such
as a tree, based on our training data S, producing a predicted
class label at input x. To bag the classifier, we bootstrap
(randomly select) samples to sets S1, ...SM to replace the
training data.

Cbag(x) = argmax
m

{C(Sm, x)}Mm=1

Bagging introduces randomness to the training samples, re-
duces the variance of unstable classifiers and improves the
performance [14]. The random forest (Breiman 2001) clas-
sifier is a substantial modification of bagging that builds a
big collection of de-correlated trees and then averages them.
It introduces more randomness to the model. At each tree
split, it randomly selects m features from all the features
and only considers those features for splitting [15].

Each tree in bagging is identically distributed so the ex-
pectation of an average of M trees is equal to the expectation
of any one tree in the sets. This means the bias of bagging
is equal to individual trees which means it only reduces the
variance and cannot reduce the bias. Consider an average of
M i.d. random variables with positive pairwise correlation
ρ, each with σ2 variance, then the variance of the average
is ρσ2 + 1−ρ

M σ2. For bagging, the M increases, the second
term disappears, but the first term still remains. However,
for random forest, it also reduces the correlation between
the trees to improve the variance reduction.

3.4. Gradient Boosting

Gradient boosting is an ensemble learning method,
which produces a classifier in the form of an ensemble of
weak prediction models. The details of this algorithm are
introduced as followed [16].

Initialize model with a constant value:
F0(x) = argminγ

∑n
i=1 L(yi, γ)

For m = 1 to M:
compute pseudo residuals:
rim = −[∂L(yi,F (xi))

∂F (xi)
]F (x)=Fm−1(x)

Fit a base learner hm(x) with (xi, rim)
n
i=1

Computer multiplier γm:
γm = argminγ

∑n
i=1 L(yi, Fm−1(xi) + γhm(xi))

Update the model:
Fm(x) = Fm−1(x) + γmhm(x)

Output FM (x)
Algorithm 1: Pseudo code for Gradient Boost

The gradient boosting is similar to the gradient descent
method in model optimization. For the update of parame-
ter γ, all data points have the same weight at the beginning.
But as the procedure goes on, the misclassified points are
given more and more weights(if we want to get the mini-
mum sum of the loss functions, we should try our best to

4



modify the one that have bigger residuals. Thus, the mis-
classified points will dominate in the parameter selection of
γ) [17]. Finally, the parameters for the model we train will
give us less misclassified labels, which enhances the perfor-
mance.

4. Result Analysis
Those 4 models introduced in Section 3 are tested for the

classification task with only time domain features, only fre-
quency domain features and the combination of them two.
Both the training set and test set have 500 data for earth-
quake class and 10000 data for human class. Due to the
length limitation of this paper, only the results for the one
combining time and frequency domain features will be dis-
cussed here. The results for the other two can be found
in the provided code. Here, three evaluation methods are
used, which includes Accuracy, Balanced Error Rate and
Precision & Recall.

4.1. Accuracy

In this part, models are assessed primarily with accuracy.
The result for the classification performance of these 4 mod-
els are shown in Table 5. Trivially, accuracy can reflect the
percentage of correctly classified data versa overall dataset.
But for this specific dataset, it may not work well. Take
SVM as an example, it will give 95.2381% correct rate with
tree based features and 95.4095% correct rate with KBest
features, which are pretty good results for accuracy. But
when insight into the distribution of the misclassified data,
the problem reflects out. For the Tree based features, there
are 500 false human, which means that 500 earthquakes are
classified as human. But remember that there are only 500
data for the earthquake here! In this way, SVM just classi-
fied all the earthquake data into human. This is disastrous
because it is much costly to mis-classify earthquake into
human. It is earthquake prediction!

Table 5. Performance Summary, Unbalanced Dataset
Method

Tree Based KBest
Accu F EQ F Man Accu F EQ F Man

LDA 0.980571 82 122 0.951429 95 415
SVM 0.952381 0 500 0.954095 5 477

Random Forest 0.992762 12 64 0.998762 4 9
Boosting 0.992762 19 57 0.998952 9 2

This results from the unbalance of the dataset. Consider-
ing the size of earthquake is too small compared to the hu-
man class (500 vs 10000), the earthquake data in the model
training have much less dominance, thus misclassifying the
minority is less costly for the model as it is always easy to
follow the majority. To fix this problem, the earthquake data
are given 20 times weight compared to the human ones in
the training to balance their dominance in the model. The
performance of the models trained with weighted data are
shown in Table 6. It is easy to find that after given higher

weight, the number of false human gets smaller, even based
on the accuracy, the models get ”worse”.

Table 6. Performance Summary, Weighted Model
Method

Tree Based KBest
Accu F EQ F Man Accu F EQ F Man

LDA 0.97 230 85 0.898952 1053 8
SVM 0.773143 2380 2 0.94181 606 5

Random Forest 0.991714 14 73 0.998952 4 7
Boosting 0.985619 149 2 0.998381 16 1

Based on the performance summary of the weighted
models, boosting gives the best classification result as it
gives a relatively high accuracy and has small number of
false human. Random forest also performs well compared
with simple models like LDA and SVM.

4.2. Balanced Error Rate

For the unbalanced dataset, balanced error rate is a
more reasonable parameter to assess the performance of the
model [18]. Balanced Error Rate is based on the number of
the true positive, true negative, false positive and false neg-
ative, which are shown in Figure 5 (Cited from UCSD CSE
258 material).

Figure 5. Classification result definition

Based on these definitions, the accuracy as introduced
in last section should be Accuracy = TP+TN

TP+TN+FP+FN .
From the equation, the problem of unbalance between
different data points becomes clear. Here, true positive
rate(TPR), true negative rate(TNR) and Balanced Error
Rate(BER) are defined as followed.

TPR =
TP

TP + FN

TNR =
TN

TN + FP

BER = 1− TPR+ TNR

2

From the equation, we can find that the TNR and TPR
represents the ”accuracy” in both class and then they are
averaged with the same weight. Thus, the unbalance can
be canceled with this assessment and the evaluation will

5



become more reasonable. The result for the classification
performance of these 4 models are shown in Table 7. The
problem of SVM in misclassifying all earthquake into hu-
man becomes more evidently as the TPR are 0 and the BER
is 0.5 high.

Table 7. Performance Summary, Unbalanced Dataset
Method

Tree Based KBest
TPR TNR BER TPR TNR BER

LDA 0.756 0.9918 0.1261 0.17 0.9905 0.41975
SVM 0.0 1.0 0.5 0.046 0.9995 0.47725

Random Forest 0.872 0.9988 0.0646 0.982 0.9996 0.0092
Boosting 0.886 0.9981 0.05795 0.996 0.9991 0.00245

Giving weights to the models, the performance becomes
better as shown in Table 8.

Table 8. Performance Summary, Weighted Model
Method

Tree Based KBest
TPR TNR BER TPR TNR BER

LDA 0.83 0.977 0.0965 0.984 0.8947 0.06065
SVM 0.996 0.762 0.121 0.99 0.9394 0.0353

Random Forest 0.854 0.9986 0.0737 0.986 0.9996 0.0072
Boosting 0.996 0.9851 0.00945 0.998 0.9984 0.0018

Based on the performance summary of the weighted
models, boosting is still the best one among these 4 mod-
els as it give a BER less than 0.01. Random forest also
performs well compared with those simple models.

4.3. Precision & Recall

The last method to assess these models is precision & re
all. After classification, each data will have a score given by
the model. For example in SVM, the score is the distance
to the boundary. Assuming the distance in the positive class
is positive, then the higher the score, the more confident
it is for the classification result. Precision and recall are
based on these scores. Given these scores, true class labels
are sorted with the score as key. And in the sorted version
of labels, precision represents the accuracy of how many
true positives are returned in a certain length of dataset and
recall shows how many true positives are returned within
all the true positives [19]. Assuming that 6 true positive are
returned in the top 10 scored data and there are only 8 true
positives overall. Here, the precision is 6

10 and the recall is
6
8 .

Based on the definition above, it is desirable that both the
precision and the recall are high. But as a result, they two
can not always maintain in a high level. Thus, maximiz-
ing the product of precision and recall can be a reasonable
way to evaluate the models. Figure 6, Figure 7 and Figure 8
shows the precision-recall curve of the models(random for-
est has no scores, thus it will not appear in this section).

As the figures shows, Boosting is also the best one
among these three models as it gives the max product of
precision and recall, which is represented with the area en-
veloped by the curve.

Figure 6. Precision-Recall Curve of SVM

Figure 7. Precision-Recall Curve of LDA

Figure 8. Precision-Recall Curve of Boosting

5. Conclusion and Future Directions

In this project, a complete data analysis procedure is per-
formed from data preprocessing and feature extraction to
the classification and analysis. Two machine learning meth-
ods covered in class(LDA and SVM) and two extra methods
random forest and boosting are used to realize the classifi-
cation task. Based on the result analysis, boosting gives the
best performance among these 3 evaluation methods.

In the future, there are 3 directions to go. Firstly, ex-
cept for earthquake signal and human activity, there are still
many kinds of signals that may introduce ’noise’ into the
model [20]. Thus, the models need to be modified for multi-
class classification problem(for example, the third class can
be added to represent the noise). Secondly, the frequency
feature extraction method can be improved to realize bet-
ter performance. Finally, the prediction of the earthquake
magnitude will be tried with regression methods.

6



References
[1] Richard M Allen and Hiroo Kanamori. The potential for

earthquake early warning in southern california. Science,
300(5620):786–789, 2003.

[2] Qingkai Kong, Richard M Allen, Louis Schreier, and Young-
Woo Kwon. Myshake: A smartphone seismic network for
earthquake early warning and beyond. Science advances,
2(2):e1501055, 2016.

[3] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature
selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy. IEEE
Transactions on pattern analysis and machine intelligence,
27(8):1226–1238, 2005.

[4] V Sugumaran, V Muralidharan, and KI Ramachandran. Fea-
ture selection using decision tree and classification through
proximal support vector machine for fault diagnostics of
roller bearing. Mechanical systems and signal processing,
21(2):930–942, 2007.

[5] H. Yu and J. Yang. A direct lda algorithm for high-
dimensional data with application to face recognition. Pat-
tern Recognition, 34(10):2067–2069, 2001.

[6] P. Tahmasebi and M. Mortazavi A. Hezarkhani and. Ap-
plication of discriminant analysis for alteration separation.
Australian Journal of Basic and Applied Sciences, 6(4):564–
576, 2010.

[7] R. A. Fisher. The use of multiple measurements in taxonomic
problems. Annals of Eugenics, 7(2):197–188, 1936.

[8] G. J. McLachlan. Discriminant analysis and statistical pat-
tern recognition. Wiley Interscience, 2004.

[9] H. Abdi. Discriminant correspondence analysis. N.J. Salkind
(Ed.): Encyclopedia of Measurement and Statistic, pages
270–275, 2007.

[10] G. Perriere and J. Thioulouse. Use of correspondence
discriminant analysis to predict the subcellular location of
bacterial proteins. Computer Methods and Programs in
Biomedicine, 70:99–105, 2003.

[11] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algo-
rithm for optimal margin classifiers. Proceedings of the fifth
annual workshop on computational learning theory, page
144, 1992.

[12] C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

[13] B. Yekkehkhany, A. Safari1, S. Homayouni, and M. Hasan-
lou. A comparison study of different kernel functions for
svm-based classification of multi-temporal polarimetry sar
data. The 1st ISPRS International Conference on Geospatial
Information Research, pages 15–17, 2014.

[14] Eric Bauer and Ron Kohavi. An empirical comparison
of voting classification algorithms: Bagging, boosting, and
variants. Machine learning, 36(1):105–139, 1999.

[15] Mahesh Pal. Random forest classifier for remote sensing
classification. International Journal of Remote Sensing,
26(1):217–222, 2005.

[16] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The
elements of statistical learning, volume 1. Springer series in
statistics Springer, Berlin, 2001.

[17] Jerome H Friedman. Greedy function approximation: a gra-
dient boosting machine. Annals of statistics, pages 1189–
1232, 2001.

[18] Dario Strbenac, Graham J Mann, Jean YH Yang, and John T
Ormerod. Differential distribution improves gene selection
stability and has competitive classification performance for
patient survival. Nucleic acids research, 44(13):e119–e119,
2016.

[19] Jake Lever, Martin Krzywinski, and Naomi Altman. Points
of significance: Classification evaluation. Nature Methods,
13(8):603–604, 2016.

[20] Stefan Bosse. Distributed machine learning with self-
organizing mobile agents for earthquake monitoring. pages
126–132, 2016.

7


