
A Survey of Convolutional Neural Networks:

Motivation, Modern Architectures, and Current

Applications in the Earth and Ocean Sciences

Nima Mirzaee

Department of Electrical Engineering

Univeristy of California San Diego

Christopher Hirlinger

Department of Mechanical and Aerospace Engineering
Univeristy of California San Diego

 Convolutional neural networks have recently gained traction

as a deep learning method for a variety of multidimensional,

spatial processing problems. A myriad of architectures and

applications exist and it can be daunting for the uninitiated to

approach the subject. This survey paper seeks to provide a

primer on Convolutional neural networks particularly within the

fields of Earth and Ocean Sciences. We begin with a brief

discussion motivating the development and structure of

Convolutional Networks, followed by a presentation of several

prominent modern architectures. We then present several

canonical and novel applications within these fields to provide

the reader with a better understanding of how these networks are

being used to address complex processing problems.

I. MOTIVATION AND BASIC STRUCTURE

We begin our discussion by considering why convolutional
neural networks (CNNs) exist. One might ask: “why not plug
image data into standard neural networks (NNs)”? NNs fail to
address two key idiosyncrasies of image data. These
shortcomings makes analysis of image data with traditional
networks an ill-posed problem. CNNs were developed as
adaptations to standard NNs specifically for image analysis.

The first characteristic of images that NNs fail to address is
that the pixels of an image are not i.i.d. Image pixels have a
correlation with neighboring and nearby pixels as a function of
distance (really number of pixels away as distance is discrete
here). It is a must for NNs that the data they are supplied with
be i.i.d. CNNs address this issue by reading in blocks of pixels
instead of one pixel at a time and assume that these blocks of
pixels are i.i.d. This block of pixels that are read in is called a
receptive field and neurons in the convolution layers are
associated with these instead of individual pixels.

The second characteristic of images that needed to be
addressed by NNs is that image data is naturally three-
dimensional. Image data has a width and a height that
correspond to spatial dimensions and a depth that corresponds
to the spectral bands read in by each pixel (for standard images
each pixel has red, green, and blue input channels).

Each neuron of a feature layer can then be seen as a
discrete three dimensional filter over the pixels in a receptive
field and the colors for each pixel. This filter is then applied to
the entire image by running it over a patch of the image (of size
equal to receptive field size) and then moving the filter a

predetermined amount and applying it over a new patch until
the entire image has been covered. One can see why these
special networks have been dubbed “convolutional neural
networks,” as each feature layer created is a convolution of a
filter with the image (or previous convolution layer if at higher
layers). Each neuron of a layer then creates a two-dimensional
feature layer which is stacked up on top of feature layers
formed by the other neurons in the layer to form a convolution
layer. Neurons in subsequent layers then have filter dimensions
of depth corresponding to the depth (number of feature layers)
of the previous convolution layer.

The filters in each layer (i.e. the weights) are learned
through backpropagation just like standard neural networks. In
this fashion the networks learn to identify the most salient
features of the image for classification.

CNNs are set up with a number of subsequent convolution
layers that image data is processed through followed by a few
fully connected layers akin to the layers of a standard NN in
which neurons in a given layer are connected to every neuron
of neighboring layers. One can think of the convolution layers
as the layers that identify objects in an image, with the first
layer identifying simple abstract features such as edges with
different orientations or blotches of colors and subsequent
layers identify more complex, higher order patterns that are
composed of the features of previous layers. The fully
connected layers then take the patterns deemed important by
the convolution layers and classify them.

An immediate challenge to using CNNs is that their sheer
size makes them very burdensome to train. They contain more
layers than most typical NNs not to mention that each
convolution layer is a three-dimensional structure. It should be
noted here that a corollary of establishing receptive field sizes
for each layer is that each neuron has only as many weights
assigned to it as pixels in the receptive field times the depth of
the previous layer. This cuts down on the number of weights
that need to be adjusted during training significantly. There are
a couple of other tricks that are typically implemented in CNNs
in order to avoid prohibitively long training times. Another
challenge is that the size of CNNs needed to pick out
distinguishing features from images will easily lead to
overfitting of the data without massive amounts of training
images. Large amounts of training images are usually not

available for most applications as they require experts to label
data manually which is both time consuming and costly.

Instead of using neurons with saturating, nonlinear
activation functions typically found in standard NNs, such as
the tanh or sigmoid functions, CNNs commonly employ
ReLUs (Rectified Linear Units). ReLUs refer to neurons with
the activation function: f(x) = max(0,x). These neurons will be
active if their convolution with a patch of the previous layer
results in a value of x greater than zero or completely inactive
otherwise. ReLUs exhibit behavior similar to real neurons in
this sense. CNNs with ReLUs train several times faster than
their equivalent networks with tanh activation functions [1].
This also prevents many of the neurons from being activated at
all, which reduces the effective size of the network and reduces
the potential for overfitting.

Another trick commonly employed is the use of pooling
layers in between the convolution layers. These layers will take
small patches of the previous convolution layer and apply a
max function to them. The neuron with the largest activation
will be kept will the rest will be discarded. This significantly
cuts down on the size of the network in terms of connections to
the subsequent layer, thus reducing training time and helping to
prevent overfitting [2].

II. A DISCUSSION OF MODERN ARCHITECTURES

The first modern CNN architecture discussed in this paper
is AlexNet. AlexNet was first introduced to the world in 2012.
Its architecture, as shown in fig 1, consists of five convolution
layers, three pooling layers, and three fully connected layers.
When AlexNet was first introduced to the CNN community is
was one of the deeper networks out there. Additionally, it was
one of the first networks to do away with pooling layers after
each of its convolution layers and instead implemented only a
few. These two modifications to previous CNN architectures
radically increased the number of tunable parameters in the
network and reintroduced the problems of long training times
and overfitting that were previously ameliorated by ReLUs and
pooling layers.

In the interest of reducing long training times a dual GPU
architecture had to be designed to speed up training. In order to
mitigate the problem of overfitting data the creators of AlexNet
had to use a technique called dropout. Dropout is the major

innovation of Alexnet and it was motivated by noticing that
combining the predictions of multiple different network models
resulted in lower test errors. The dropout method aims to
replicate these results using a single network. It achieves this
by randomly setting the activations of half the neurons in the
first two fully connected layers to zero for each training image.
Each image is then trained with different sets of neurons, and
thus slightly different networks (using the qualifier “slightly”
here because neuron weights are shared between these random
subsets). During testing all the neurons in these two layers are
present with neuron activations averaged. The creators of
AlexNet speculate that this method prevents complex co-
adaptations of neurons and forces the network to learn more
robust features. By training each image on a slightly different
network of significantly reduced size from the original
architecture they managed to reduce the number of parameters
in their system during training and solve the problem of
overfitting and reduce the test error by averaging out all of the
(quasi-independent) reduced size models.

Next we consider ResNet, a newer architecture that is
considered state of the art. This architecture was introduced in
2015 and uses 34 convolution layers, two pooling layers, and
only one fully connected layer [3]. ResNet introduced two new
innovations to CNNs: the first being shortcut connections
between convolution layers and the second being batch
normalization.

ResNet was born from the question that had started to
consume the CNN community a few years ago: Is creating
better networks as easy as stacking more layers? When
additional layers were piled on to existing networks the
network’s classification error would eventually plateau with
additional layers and then begin to degrade. The obvious
explanation for this was that overfitting was causing the
accuracy degradation , however to the surprise of everyone this
was not found to be the case. This was tested by constructing a
reasonably sized network with known accuracy and stacking
on layers that were simply identity mappings. This deep
network should in theory perform with as much accuracy as the
shallow network it was built from, but it ended up performing
worse. It is conjectured by the authors that very deep networks
have exponentially low convergence rates which cause the
training error (i.e. the solvers at hand cannot handle the
optimization of these networks). The inventors of ResNet then

 Figure 1: AlexNet network architecture. The architecture is shown as two parallel CNNs that share information between certain layers

 (but between all fully connected layers) because the network was trained in parallel on two different GPUs

Figure 2: A shortcut mapping over a couple layers in ResNet

Figure 3: The winning architectures of the ImageNet

competition by year, depicting the staggering rate improvement

of CNNs through the years (Vieira, 2016)

came up with idea of creating shortcut identity mappings of a
given layer to a couple layers above it as seen in Fig 2. The
idea behind this being that this would provide a reference for
the solver when attempting to tune the parameters of the higher
layer. This simple, but elegant solution to the new problem of
running into the limits of current optimization methods allowed
the creators of residual networks to build networks with over a
hundred layers capable of superhuman object identification.

The creators of ResNet didn’t exactly come up with batch
normalization, nor were they really the first to use it. ResNet
was the first highly successful CNN architecture to implement
batch normalization however, and it’s worth mentioning in this
survey as it has since been widely adopted by CNNs in place
of, or in conjunction with ReLUs. The motivation for batch
normalization is that it has been known for a long time that
training a network is much faster when the inputs to the
network are decorrelated and whitened (i.e. linearly
transformed to have zero means and unit variances) (Ioffe,
2015). This is a preprocessing trick that aims to decorrelate the
data with PCA and subsequently rescale each dimension of the
data matrix to a uniform scaling, giving the data a proper
gaussian distribution. This works to speed up training times by
preventing disparate scaling of inputs which during the forward
pass can saturate activations (or in the case of ReLUs cause
divergence). During backpropagation the network can then get
stuck dealing with what is referred to as vanishing gradients.
This is when it becomes exceedingly difficult to tune
parameters due to the small gradients provided by the saturated
activations. The creators of the batch normalization method
posit that in the new age of deep networks this trick can be
expanded upon. Each layer of the network receives as inputs
the activations from the previous layer. One can view each
layer as its own subnetwork and use the whitening trick on the
activations of the previous layer, thus providing each layer
with nicely behaved inputs. This method introduces two new
tunable parameters per neuron that can linearly transform the
whitened input back (i.e. provide an identity mapping from the
previous activation) so that the network can tune activations to
whatever extent the normalization is optimal in subsequent
training steps. Covariances and mean values for activation
normalization are obtained from small batches of data (hence
the name) and are later used to form unbiased statistics for the
training set. Finally, after the long setup, the punchline is that
batch normalization is able to reduce training times by over an
order of magnitude. Amazingly, it is at the same time able to
mitigate overfitting in the network such that it can make the
use of dropout unnecessary. The authors of the paper state that

the regularization properties emerge because each image is
presented to the network together with other images in the
batch so the network no longer produces deterministic values
for a given training image. It is thus an incredibly versatile and
useful tool that helped Resnet achieve the success it has.

III. APPLICATIONS

Having introduced the theory behind CNNs and common
architectures the discussion now turns towards major
applications of CNNs in atmospheric and ocean science. It
should come as no surprise that many of these applications are
image processing problems. The remainder of this section will
address three major application fields for CNNs: Specifies
Identification, Sonar Imaging, and Meteorological prediction.
A brief discussion of trends and future research directions
concludes the section.

A. Organism Identification

Perhaps the most common and familiar application of
CNNs is the species identification problem. In ecology it is
often useful to identify the types of species in a given region
and quantify their population. Within marine ecology plankton
and corals often form the backbone of an ecosystem and the
presence or absence of certain species can provide telling
information about the health of the ecosystem. However, it is
costly to have trained personnel manually sort through samples
and image files to generate these metrics. Thus there is a large
interest in developing classification algorithms that can
perform these tasks and free up man power for other tasks.

Plantkon are particularly challenging to classify due to their
small size and huge numbers. Further images must be captured
using specialized equipment either in field or collected samples
which add to the overhead cost of classification. Most if not all
methods are standard CNN architectures that employ several
tricks to improve accuracy. For example in [6] Ornstein
discusses the use an eight layer Alex net architectures which
are either fine-tuned once or twice using radically different
plankton image sets. Single set fine tuning produced increased
accuracy from approximately 78% to 86% while double fine
tuning data resulted in modest improvements of less than 1%.
Ornstein concludes that fine tuning using appropriately

selected data sets could greatly improve existing classification
algorithms.

In a parallel evaluation of Alex net, [7] Dai et al. develop a
CNN architecture titled ZooplanktoNet for use in classifying
Zooplankton Images. Similar to Ornstein, this architecture is
developed from Alex net, and a variety of configurations were
tested. An optimal configuration was found with an 11 layer
system with layer dependent 13x13 and 7x7 convolution being
found optimal. Data preprocessing was purposefully limited to
detrending grayscale images by subtracting the mean intensity
and rescaling images to a 256x256 pixel size. Dai et al. reports
that this Alex net configuration was 92.8% accurate. The run
time of this method was found to be comparable to that of
smaller 8 and 9 layer CNNs trained on the same data, while
significantly faster than deeper layered next works with almost
the same accuracy.

In juxtaposition to the aforementioned plankton classifiers,
while corals are not as small their classification from image
data can be similarly difficult and taxing on resources. Most
identification efforts are currently focused not on individual
species of coral but instead on their function in the ecosystem.
Of particular interest is a CNN architecture proposed by
Elawady which is focused on developing coral classification
algorithms for eventual on-line learning applications [8].

Rather than using a predeveloped architecture such as Alex
net or ResNet the CNN is developed from scratch using
Matlab’s Deep Learning Tool box. Like most image
classification problems the proposed CNN architecture in [8]
begins with a preprocessing phase where images are de-noised
and normalized. Feature extraction is then performed on the
processed images. Lastly the CNN algorithm is trained using
the extracted features. Unlike most of the discussed research in
plankton identification the proposed algorithm for Coral
classification relies purely on the feature mappings generated
by the CNN.

The architecture of the CNN Elawady proposed
architecture uses six inputs, with nine outputs for each of the
classes. The authors did not identify an optimal number of
convolutional layers and instead presented data for several
different configurations typically ranging from 2 to 3 layers.
Sigmoids were used as activation functions. The input of the
CNN consisted of three color channel inputs and three
descriptor channels developed from the preprocessing phase.
These descriptor channels are as follows:

1) Zero Component Analysis (ZCA) Whitening: ZCA

whitening removes correlation between adjacent pixels.

The returned image signal is near white.

2) Phase Congruency: edge deteching techique based on

the fourier components of an image singal. As a result

phase congruency is robust against changes in illumination

and image contrast.

3) Weber Local Descriptor (WLD): Specialized edge

detection based on pixel to pixel changes in intensity and

image gradient orientation. Effective, for high-tecture

images such as those used in coral identification.

Using these inputs, networks were trained over 50 epochs. The
final results of classifier tests are shown in fig 4. Error rates by
the 50

th
 epoch were below 20 and 10 percent respectively for

the test and training data using the optimized architecture.

B. Sonar Imaging

Another promising application of CNN architectures is
sonar image processing. The use of Neural Networks in sonar
processing is not a novel concept, with research spanning back
at least 30 years into the 1980s. However, there has been
reticence, particularly within military research communities, to
apply neural network architectures to maritime surveillance
and target detection problems. This is understandable as
accurate target identification is critical to mission success, and
error rates of 5-10% seen in the plankton classifiers become
infeasible when human lives are involved. Further because of
the uncertain nature of deep learned features and their
contribution to the classifier dynamics, CNN’s are sometime
seen as black boxes. This has led to a stigma which has
resulted in sparse application to a problem that it is well suited
to address [9]. For this reason the driving platform for CNN
use in sonar image processing is the growing interest in
Autonomous Underwater Vehicles (AUVs). These applications
are typically framed as navigation or coordination problems
where one or more vehicles.

In [10] Valdenegro-Toro addressed the use CNNs in the
autonomous navigation problem. Forward looking sonar (FLS)
data is classified by CNN in a two stage approach which first
detects if/where an object is in the FLS data, and then classifies
the object into one of several classes. The CNN was developed
independent of an existing architecture due to its dual
classification and is summarized in fig 5. After initial training,
fine tuning was performed on convolutional layers initialized
with the pre-trained weights. In detecting marine debris, the
classifier performed with 93% detection recall and 75%
classification accuracy. While detection recall rates are high
the classification accuracy is lower than expected. However,
the network was shown to accurately detect
untrained/unlabeled objects and further research is being done
to improve the results of the classification algorithm.

Kim et al. address the autonomous coordination problem in
[11]. Of particular interest to this paper is tracking a

 Figure 4: Performance of Elawady’s algorithm on UCSD

 Moorea Labeled Corals data sets

Figure 5: graphic of Valdenegro-Toro’s class and object search

classifier. Note that until the second FC layer processing is the

same across both searches.

Figure6: Image of standard manta mine. Note that the manta is

a truncated conic. The fact that William’s Machine learning

algorithm can accurately classify mantas from other truncated

conics purely from SAS imaging demonstrates the efficacy of

CNN’s in SAS processing.

manipulator or small AUV/ROV and differentiating if from
obstacles captured in the sonar data. To this end the You Only
Look Once (YOLO) architecture was used. YOLO is known
for being able to analyze a large number of frames per-second
(FPS) and is thus perfect for a coordination problem involving
streamed sonar data. Though quantitative metrics were sparse,
it was shown that the trained YOLO architecture could classify
position with sufficient resolution and speed for a standard
control problem.

Due to this progress in sonar processing CNNs are
gradually being introduced for maritime military operations.
One example application is in mine countermeasure operations
where [9,12]. In [12] Williams develops a 10 layer CNN with
carefully tune layers and window sizes. The CNN takes in
synthetic aperture sonar (SAS) data and returns a binary
classification of whether or not the image is of a valid “target”
Three experiments are then run on three different target classes,
each simulating a variety of typical mine shapes, and seeking
differentiate them from rocks and other marine debris that may
be captured in the sonar imaging. In the most general test
where a variety standard mine shapes (cones, cylinders, etc)
from all other non-targets, the CNN methods developed in [12]
significantly outperformed existing neural network methods in
both probability of detection and false positive rates. Further
the CNN proved extremely effective in differentiating a
specific type of mine known as the manta (fig 6) from other
truncated conic objects with some data sets approaching 100%
detection rate with 0 false alarms.

C. Meteorological Prediction and Modeling

 Lastly CNNs have seen wide application in atmospheric
and oceanographic prediction. The canonical example is
extreme weather identification, where a human expert is relied
upon to identify and classify extreme weather events from
satellite imagery and forecasts.

Liu et al. present a promising method for extreme weather
classification based on CNNs [13]. Leveraging the Alex Net
architecture a 4 layer system is developed using dimensionally
large kernels in the convolution layers to reflect the relative
size and simplicity of weather patterns in imaging data. A three
channel input of RGB intensities is used to produce a binary
classification of the image. Three classification problems were
tested, tropical cyclone identification, weather front
identification, and atmospheric river identification. Image
patching and layer parameters were modified for each
classification problem, but were not optimized or otherwise
tuned.

Data used for the training and testing was from a
combination of simulation and reanalysis products. Ground
truth was established by having human experts label the events
individually. The reported results using binary classifiers
promising, showing that accuracy on test data ranged from
89% to 99%. The worst performance corresponded to
classification of weather fronts and the best performance on
classification of Tropical cyclones. While these results are
promising, Liu et al. do not address localization of atmospheric
phenomena, and rely on binary classification rather than a
signal classifying network, leading to immediate directions for
future work.

Another interesting application of CNNs is the sparse data
set problem. In in such problems one uses a machine learning
algorithm to predict missing data points of a system based on a
small number of measurements. Ducournau et al. introduce the
use of CNNs for analysis and prediction of sparse 2D data sets,
in particular sea surface temperature [14]. The problem was
chosen for its practically and ease of available data. Satellite
infrared measurements such as those available are readily

Figure 7: DITS network architecture. Left: standard recursive prediction method between forecast convolution and time integration

layers. Right: Motivating block diagram representing use of CNN to predict PDE time derivatives.

available, but often have low spatial resolution (on the order of
5 km). Data from OSTIA was used as both low resolution and
high resolution data were readily available for training and
testing. Higher resolution data sets were generated through a
combination of temperature measurements from buoys and
other remote measurement platforms. To this end Ducournau et
al. apply a caffe derivative SRCNN to a sparse satellite data set
from OSTIA and attempt to reconstruct a high resolution
prediction of sea surface temperature. Traditional methods use
a variety of interpolation methods. In this case the results of
SRCNN are compared against traditional interpolations such as
bi-cubic and EOF-linear interpolation. To quantify results the
mean PSNR was calculated for each approximation, and of the
methods tested SRCNN produce the best PSNR across the
tests. Further a comparison of gradients showed that PSNR
better captured the dynamics of the ground truth data where
other interpolations tended to smooth dynamics.

Finally, CNN’s have been shown to be capable of short
term weather forecasting. However, such predictors typically
have little basis in physical models and are primarily based on
feature extraction leading to similar stigma to that found in
CNN applications to military sonar. In [_] Firth proposes
Differentiation-Integration Time Step Network (DITS) a novel
CNN application that incorporates a CNN into the iterative
calculations of any time marched PDE. Firth’s architecture
uses a CNN to estimate the time derivatives of the variables of
a PDE rather than the overall system behavior. This is done by
feeding in a two dimensional data for the system variables such
as temperature, humidity, and pressure. DITS then estimates
time derivatives from the data which is then integrated using
any of the common integration methods (Leap-frog, RK
methods, etc). This results in a modified CNN architecture of
alternating convolution and integration layers which replace
standard pooling layers. This is summarized in fig 7.

In this architecture the feature map effectively becomes a
map of time derivatives, and use of the CNN immediately
provides several benefits. Error calculated at each step can be
handled via backpropagation into the neural network.
Combined with the recursive formulation this allows models
augmented with DITS to perform multistep predictions rather
than short term forecasts. Further, the use of the CNN when
combined with appropriate time marching schemes lends itself
to parallelization through spatially decomposing the 2D data

set and known acceleration techniques for time integration
methods. Lastly DITS assumes that the same physics apply
everywhere within a 2D data set and that there is no spatial
variations within it. This drastically reduces the number of
parameters which DITS must learn and thus reduces the
complexity relative to other forecast algorithms. This in turn
allows DITS to be run on smaller mesh sizes, refining the
result of simulations.

Firth applies his DITS to two case studies. The first
compares DITS with NCOM which is capable of predicting
temperature, salinity, and other metrics in addition to water
current forecasting. In the second case study Firth applies
DITS to RAP an atmospheric forecasting model. Both NCOM
and RAP represent state of the art algorithms in oceanographic
and atmospheric forecasting. In both cases training data for
DITS was generated by capturing the time derivatives
generated from NCOM and RAP. DITS was trained on this
data and then run in parallel with NCOM and DITS on a new
set of input data. It was found that the trained DITS forecasters
were comparably accurate to their counterparts. However,
DITS methods were significantly faster, and found to be 3.6
times faster than NCOM and 24 times faster than RAP! It is
worth noting that the results presented by Firth used leap-frog
integration and could perhaps be further improved by using a
method from the RK family.

D. Summary

Examining the presented applications it is clear the CNNs
have found niches in two types of application. First image
processing, and second spatially correlated data analysis and
filtering.

Image processing problems were primarily addressed in the
species classification and sonar algorithms. Comparison across
these algorithms is a nebulous task as they are developed and
targeted at two wholly different data sets. However, one can
draw some interesting conclusions from their methodologies
that may be useful for formulating future experiments. First,
and foremost the optimized architecture of ZooplanktoNet
should be subjected to the same fine tuning used by Orenstein
to see if similar improvements in classification can be achieved
with an architecture that is approaching 100% accuracy.
Further, it is interesting to note that the coral classifier
developed by Elwady with its modest depth and more

generalized classification categories performed with similar
levels of accuracy to Ornstein’s double fine-tuned classifiers.
Though comparison across problems is moot, the coral
classifier’s use of image preprocessing metrics may be worth
exploring in the plankton and sonar data sets. More generally
the performance of sonar applications lags behind CNNs used
in species identification. Whether this is due to stigma or lack
of interest as discussed by Williams in [15], or the nature of
information available through sonar imaging and waveforms is
unclear. The latter point might be addressed by adopting
Elwady’s incorporation of signal processing metrics as network
inputs, or incorporating relevant measures of ambient
conditions.

Lastly the applications in Meteorological prediction show
that CNN’s are incredibly powerful tools for spatial processing.
The sparse data problem presented by Ducournau is not new,
but the use of CNN’s to address spatially dependent data opens
new avenues for analysis for spatially driven sparse processing
problems, which could be generalized to other disciplines such
in signal processing and distributed sensing. Further, the DITS
network presented by Firth has ramifications that extend to
virtually all fields of science and bears an immediate need for
investigation. From a numerical standpoint the architecture
might be improved further by using different integration
methods, in particular the adaptive time step RK methods.
Considering the performance of CNNs in numerical prediction
problems it is clear that CNNs have vast potential outside of
just image processing. If nothing else the small body of work
presented here should impress upon the reader that CNNs
provide flexible solutions to many spatial driven problems and
can be restructured to address a surprising number of problems.

IV. CONCLUSION

This paper seeks to have provided a brief yet

comprehensive introduction to convolutional neural networks

for the uninformed reader. Using motivationg examples in the

fields of earth and ocean science it is clear that scientists and

engineers have only begun to scratch the surface of what is

possible with these networks. As our computers become faster

and more scientists are clued in to their capabilities we will

start to see them used to their full potential.

REFERENCES

[1] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).

ImageNet Classification with Deep Convolutional Neural

Networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q.

Weinberger (Eds.), Advances in Neural Information

Processing Systems 25 (pp. 1097–1105). Curran Associates,

Inc. Retrieved from http://papers.nips.cc/paper/4824-

imagenet-classification-with-deep-convolutional-neural-

networks.pdf

[2] Karpathy, A. (2015). Convolutional Neural Networks

(CNNs / ConvNets). Retrieved

from http://cs231n.github.io/convolutional-networks/

[3] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep

Residual Learning for Image Recognition. CoRR,

abs/1512.03385. Retrieved from

http://arxiv.org/abs/1512.03385

[4] Ioffe, S., & Szegedy, C. (2015). Batch Normalization:

Accelerating Deep Network Training by Reducing Internal

Covariate Shift. CoRR, abs/1502.03167. Retrieved from

http://arxiv.org/abs/1502.03167

[5] Vieira, A. (Jun 23, 2016). The Revolution of Depth.

https://medium.com/@Lidinwise/the-revolution-of-depth-

facf174924f5.

[6] Orenstein, E.C. and Beijbom, O., 2017, March. Transfer

Learning and Deep Feature Extraction for Planktonic Image

Data Sets. In Applications of Computer Vision (WACV), 2017

IEEE Winter Conference on (pp. 1082-1088). IEEE.

[7]J. Dai, et al., "ZooplanktoNet: Deep Convolutional

Network for Zooplankton Classification", in OCEANS 2016 -

Shanghai, Shanghai, China, 2017.

[8]M. Elawady, "Sparse Coral Classification Using Deep

Convolutional Neural Networks". arXiv preprint

arXiv:1511.09067, 2015.

[9] D. Williams, "Demystifying Deep Convolutional Neural

Networks for Sonar Image Classification”, in Underwater

Acoustics Conference, Skiathos, Greece, 2017.

[10] Valdenegro-Toro, M., 2016, November. End-to-end

object detection and recognition in forward-looking sonar

images with convolutional neural networks. In Autonomous

Underwater Vehicles (AUV), 2016 IEEE/OES (pp. 144-150).

IEEE.

[11] Kim, J. and Yu, S.C., 2016, November. Convolutional

neural network-based real-time ROV detection using forward-

looking sonar image. In Autonomous Underwater Vehicles

(AUV), 2016 IEEE/OES (pp. 396-400). IEEE

[12] D. Williams, "Underwater Target Classification in

Synthetic Aperture Sonar Imagery Using Deep Convolutional

Neural Networks," Proceedings of the 23rd International

Conference on Pattern Recognition, Cancún, Mexico,

December 2016.

[13]A. Ducournau and R. Fablet, "Deep learning for ocean

remote sensing: an application of convolutional neural

networks for super-resolution on satellite-derived SST data",

9th IAPR Workshop on Pattern Recognition in Remote

Sensing, Cancun, Mexico, 2016.

[14]Y. Liu, et al., “Application of deep convolutional neural

networks for detecting extreme weather in climate datasets,”

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://cs231n.github.io/convolutional-networks/
http://arxiv.org/abs/1512.03385

22nd ACM SIGKDD Conference on Knowledge Discovery

and Data Mining, San Fransisco, USA, 2016.

[15] R. Firth, "A NOVEL RECURRENT

CONVOLUTIONAL NEURAL NETWORK FOR OCEAN

AND WEATHER FORECASTING". Ph.D dissertation,

CSEE Department, LSU, LA, 2016

