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 Convolutional neural networks have recently gained traction 

as a deep learning method for a variety of multidimensional, 

spatial processing problems. A myriad of architectures and 

applications exist and it can be daunting for the uninitiated to 

approach the subject. This survey paper seeks to provide a 

primer on Convolutional neural networks particularly within the 

fields of Earth and Ocean Sciences. We begin with a brief 

discussion motivating the development and structure of 

Convolutional Networks, followed by a presentation of several 

prominent modern architectures. We then present several 

canonical and novel applications within these fields to provide 

the reader with a better understanding of how these networks are 

being used to address complex processing problems. 

I. MOTIVATION AND BASIC STRUCTURE 

We begin our discussion by considering why convolutional 
neural networks (CNNs) exist. One might ask: “why not plug 
image data into standard neural networks (NNs)”? NNs fail to 
address two key idiosyncrasies of image data. These 
shortcomings makes analysis of image data with traditional 
networks an ill-posed problem. CNNs were developed as 
adaptations to standard NNs specifically for image analysis. 

The first characteristic of images that NNs fail to address is 
that the pixels of an image are not i.i.d. Image pixels have a 
correlation with neighboring and nearby pixels as a function of 
distance (really number of pixels away as distance is discrete 
here). It is a must for NNs that the data they are supplied with 
be i.i.d. CNNs address this issue by reading in blocks of pixels 
instead of one pixel at a time and assume that these blocks of 
pixels are i.i.d. This block of pixels that are read in is called a 
receptive field and neurons in the convolution layers are 
associated with these instead of individual pixels. 

The second characteristic of images that needed to be 
addressed by NNs is that image data is naturally three-
dimensional. Image data has a width and a height that 
correspond to spatial dimensions and a depth that corresponds 
to the spectral bands read in by each pixel (for standard images 
each pixel has red, green, and blue input channels).  

Each neuron of a feature layer can then be seen as a 
discrete three dimensional filter over the pixels in a receptive 
field and the colors for each pixel. This filter is then applied to 
the entire image by running it over a patch of the image (of size 
equal to receptive field size) and then moving the filter a 

predetermined amount and applying it over a new patch until 
the entire image has been covered. One can see why these 
special networks have been dubbed “convolutional neural 
networks,” as each feature layer created is a convolution of a 
filter with the image (or previous convolution layer if at higher 
layers). Each neuron of a layer then creates a two-dimensional 
feature layer which is stacked up on top of feature layers 
formed by the other neurons in the layer to form a convolution 
layer. Neurons in subsequent layers then have filter dimensions 
of depth corresponding to the depth (number of feature layers) 
of the previous convolution layer. 

The filters in each layer (i.e. the weights) are learned 
through backpropagation just like standard neural networks. In 
this fashion the networks learn to identify the most salient 
features of the image for classification.  

CNNs are set up with a number of subsequent convolution 
layers that image data is processed through followed by a few 
fully connected layers akin to the layers of a standard NN in 
which neurons in a given layer are connected to every neuron 
of neighboring layers. One can think of the convolution layers 
as the layers that identify objects in an image, with the first 
layer identifying simple abstract features such as edges with 
different orientations or blotches of colors and subsequent 
layers identify more complex, higher order patterns that are 
composed of the features of previous layers. The fully 
connected layers then take the patterns deemed important by 
the convolution layers and classify them.  

An immediate challenge to using CNNs is that their sheer 
size makes them very burdensome to train. They contain more 
layers than most typical NNs not to mention that each 
convolution layer is a three-dimensional structure. It should be 
noted here that a corollary of establishing receptive field sizes 
for each layer is that each neuron has only as many weights 
assigned to it as pixels in the receptive field times the depth of 
the previous layer. This cuts down on the number of weights 
that need to be adjusted during training significantly. There are 
a couple of other tricks that are typically implemented in CNNs 
in order to avoid prohibitively long training times. Another 
challenge is that the size of CNNs needed to pick out 
distinguishing features from images will easily lead to 
overfitting of the data without massive amounts of training 
images. Large amounts of training images are usually not 



available for most applications as they require experts to label 
data manually which is both time consuming and costly. 

Instead of using neurons with saturating, nonlinear 
activation functions typically found in standard NNs, such as 
the tanh or sigmoid functions, CNNs commonly employ 
ReLUs (Rectified Linear Units). ReLUs refer to neurons with 
the activation function: f(x) = max(0,x). These neurons will be 
active if their convolution with a patch of the previous layer 
results in a value of x greater than zero or completely inactive 
otherwise. ReLUs exhibit behavior similar to real neurons in 
this sense. CNNs with ReLUs train several times faster than 
their equivalent networks with tanh activation functions [1]. 
This also prevents many of the neurons from being activated at 
all, which reduces the effective size of the network and reduces 
the potential for overfitting.  

Another trick commonly employed is the use of pooling 
layers in between the convolution layers. These layers will take 
small patches of the previous convolution layer and apply a 
max function to them. The neuron with the largest activation 
will be kept will the rest will be discarded. This significantly 
cuts down on the size of the network in terms of connections to 
the subsequent layer, thus reducing training time and helping to 
prevent overfitting [2]. 

II. A DISCUSSION OF MODERN ARCHITECTURES 

The first modern CNN architecture discussed in this paper 
is AlexNet. AlexNet was first introduced to the world in 2012. 
Its architecture, as shown in fig 1, consists of five convolution 
layers, three pooling layers, and three fully connected layers. 
When AlexNet was first introduced to the CNN community is 
was one of the deeper networks out there. Additionally, it was 
one of the first networks to do away with pooling layers after 
each of its convolution layers and instead implemented only a 
few. These two modifications to previous CNN architectures 
radically increased the number of tunable parameters in the 
network and reintroduced the problems of long training times 
and overfitting that were previously ameliorated by ReLUs and 
pooling layers.  

In the interest of reducing long training times a dual GPU 
architecture had to be designed to speed up training. In order to 
mitigate the problem of overfitting data the creators of AlexNet 
had to use a technique called dropout. Dropout is the major 

innovation of Alexnet and it was motivated by noticing that 
combining the predictions of multiple different network models 
resulted in lower test errors. The dropout method aims to 
replicate these results using a single network. It achieves this 
by randomly setting the activations of half the neurons in the 
first two fully connected layers to zero for each training image. 
Each image is then trained with different sets of neurons, and 
thus slightly different networks (using the qualifier “slightly” 
here because neuron weights are shared between these random 
subsets). During testing all the neurons in these two layers are 
present with neuron activations averaged. The creators of 
AlexNet speculate that this method prevents complex co-
adaptations of neurons and forces the network to learn more 
robust features. By training each image on a slightly different 
network of significantly reduced size from the original 
architecture they managed to reduce the number of parameters 
in their system during training and solve the problem of 
overfitting and reduce the test error by averaging out all of the 
(quasi-independent) reduced size models.  

Next we consider ResNet, a newer architecture that is  
considered state of the art. This architecture was introduced in 
2015 and uses 34 convolution layers, two pooling layers, and 
only one fully connected layer [3]. ResNet introduced two new 
innovations to CNNs: the first being shortcut connections 
between convolution layers and the second being batch 
normalization. 

ResNet was born from the question that had started to 
consume the CNN community a few years ago: Is creating 
better networks as easy as stacking more layers? When 
additional layers were piled on to existing networks the 
network’s classification error would eventually plateau with 
additional layers and then begin to degrade. The obvious 
explanation for this was that overfitting was causing the 
accuracy degradation , however to the surprise of everyone this 
was not found to be the case. This was tested by constructing a 
reasonably sized network with known accuracy and stacking 
on layers that were simply identity mappings. This deep 
network should in theory perform with as much accuracy as the 
shallow network it was built from, but it ended up performing 
worse. It is conjectured by the authors that very deep networks 
have exponentially low convergence rates which cause the 
training error (i.e. the solvers at hand cannot handle the 
optimization of these networks). The inventors of ResNet then 

        Figure 1: AlexNet network architecture. The architecture is shown as two parallel CNNs that share information between certain layers  

        (but between all fully connected layers) because the network was trained in parallel on two different GPUs 



Figure 2: A shortcut mapping over a couple layers in ResNet 

Figure 3: The winning architectures of the ImageNet 

competition by year, depicting the staggering rate improvement 

of CNNs through the years (Vieira, 2016) 
 

came up with idea of creating shortcut identity mappings of a 
given layer to a couple layers above it as seen in Fig 2. The 
idea behind this being that this would provide a reference for 
the solver when attempting to tune the parameters of the higher 
layer. This simple, but elegant solution to the new problem of 
running into the limits of current optimization methods allowed 
the creators of residual networks to build networks with over a 
hundred layers capable of superhuman object identification.  

The creators of ResNet didn’t exactly come up with batch 
normalization, nor were they really the first to use it. ResNet 
was the first highly successful CNN architecture to implement 
batch normalization however, and it’s worth mentioning in this 
survey as it has since been widely adopted by CNNs in place 
of, or in conjunction with ReLUs. The motivation for batch 
normalization is that it has been known for a long time that 
training a network is much faster when the inputs to the 
network are decorrelated and whitened (i.e. linearly 
transformed to have zero means and unit variances) (Ioffe, 
2015). This is a preprocessing trick that aims to decorrelate the 
data with PCA and subsequently rescale each dimension of the 
data matrix to a uniform scaling, giving the data a proper 
gaussian distribution. This works to speed up training times by 
preventing disparate scaling of inputs which during the forward 
pass can saturate activations (or in the case of ReLUs cause 
divergence). During backpropagation the network can then get 
stuck dealing with what is referred to as vanishing gradients. 
This is when it becomes exceedingly difficult to tune 
parameters due to the small gradients provided by the saturated 
activations. The creators of the batch normalization method 
posit that in the new age of deep networks this trick can be 
expanded upon. Each layer of the network receives as inputs 
the activations from the previous layer. One can view each 
layer as its own subnetwork and use the whitening trick on the 
activations of the previous layer, thus providing each layer 
with nicely behaved inputs. This method introduces two new 
tunable parameters per neuron that can linearly transform the 
whitened input back (i.e. provide an identity mapping from the 
previous activation) so that the network can tune activations to 
whatever extent the normalization is optimal in subsequent 
training steps. Covariances and mean values for activation 
normalization are obtained from small batches of data (hence 
the name) and are later used to form unbiased statistics for the 
training set. Finally, after the long setup, the punchline is that 
batch normalization is able to reduce training times by over an 
order of magnitude. Amazingly, it is at the same time able to 
mitigate overfitting in the network such that it can make the 
use of dropout unnecessary. The authors of the paper state that 

the regularization properties emerge because each image is 
presented to the network together with other images in the 
batch so the network no longer produces deterministic values 
for a given training image. It is thus an incredibly versatile and 
useful tool that helped Resnet achieve the success it has.  

III. APPLICATIONS 

Having introduced the theory behind CNNs and common 
architectures the discussion now turns towards major 
applications of CNNs in atmospheric and ocean science. It 
should come as no surprise that many of these applications are 
image processing problems. The remainder of this section will 
address three major application fields for CNNs: Specifies 
Identification, Sonar Imaging, and Meteorological prediction.  
A brief discussion of trends and future research directions 
concludes the section. 

A. Organism Identification 

Perhaps the most common and familiar application of 
CNNs is the species identification problem. In ecology it is 
often useful to identify the types of species in a given region 
and quantify their population. Within marine ecology plankton 
and corals often form the backbone of an ecosystem and the 
presence or absence of certain species can provide telling 
information about the health of the ecosystem. However, it is 
costly to have trained personnel manually sort through samples 
and image files to generate these metrics. Thus there is a large 
interest in developing classification algorithms that can 
perform these tasks and free up man power for other tasks. 

Plantkon are particularly challenging to classify due to their 
small size and huge numbers. Further images must be captured 
using specialized equipment either in field or collected samples 
which add to the overhead cost of classification. Most if not all 
methods are standard CNN architectures that employ several 
tricks to improve accuracy. For example in [6] Ornstein 
discusses the use an eight layer Alex net architectures which 
are either fine-tuned once or twice using radically different 
plankton image sets. Single set fine tuning produced increased 
accuracy from approximately 78% to 86% while double fine 
tuning data resulted in modest improvements of less than 1%. 
Ornstein concludes that fine tuning using appropriately 



selected data sets could greatly improve existing classification 
algorithms. 

In a parallel evaluation of Alex net, [7] Dai et al. develop a 
CNN architecture titled ZooplanktoNet for use in classifying 
Zooplankton Images. Similar to Ornstein, this architecture is 
developed from Alex net, and a variety of configurations were 
tested. An optimal configuration was found with an 11 layer 
system with layer dependent 13x13 and 7x7 convolution being 
found optimal. Data preprocessing was purposefully limited to 
detrending grayscale images by subtracting the mean intensity 
and rescaling images to a 256x256 pixel size. Dai et al. reports 
that this Alex net configuration was 92.8% accurate. The run 
time of this method was found to be comparable to that of 
smaller 8 and 9 layer CNNs trained on the same data, while 
significantly faster than deeper layered next works with almost 
the same accuracy.   

In juxtaposition to the aforementioned plankton classifiers, 
while corals are not as small their classification from image 
data can be similarly difficult and taxing on resources. Most 
identification efforts are currently focused not on individual 
species of coral but instead on their function in the ecosystem. 
Of particular interest is a CNN architecture proposed by 
Elawady which is focused on developing coral classification 
algorithms for eventual on-line learning applications [8].  

Rather than using a predeveloped architecture such as Alex 
net or ResNet the CNN is developed from scratch using 
Matlab’s Deep Learning Tool box. Like most image 
classification problems the proposed CNN architecture in [8] 
begins with a preprocessing phase where images are de-noised 
and normalized. Feature extraction is then performed on the 
processed images. Lastly the CNN algorithm is trained using 
the extracted features. Unlike most of the discussed research in 
plankton identification the proposed algorithm for Coral 
classification relies purely on the feature mappings generated 
by the CNN.   

The architecture of the CNN Elawady proposed 
architecture uses six inputs, with nine outputs for each of the 
classes. The authors did not identify an optimal number of 
convolutional layers and instead presented data for several 
different configurations typically ranging from 2 to 3 layers. 
Sigmoids were used as activation functions. The input of the 
CNN consisted of three color channel inputs and three 
descriptor channels developed from the preprocessing phase. 
These descriptor channels are as follows: 

1) Zero Component Analysis (ZCA) Whitening: ZCA 

whitening removes correlation between adjacent pixels. 

The returned image signal is near white.  

2) Phase Congruency: edge deteching techique based on 

the fourier components of an image singal. As a result 

phase congruency is robust against changes in illumination 

and image contrast. 

3) Weber Local Descriptor (WLD): Specialized edge 

detection based on pixel to pixel changes in intensity and 

image gradient orientation. Effective, for high-tecture 

images such as those used in coral identification.  
 

Using these inputs, networks were trained over 50 epochs. The 
final results of classifier tests are shown in fig 4. Error rates by 
the 50

th
 epoch were below 20 and 10 percent respectively for 

the test and training data using the optimized architecture.  

B. Sonar Imaging 

Another promising application of CNN architectures is 
sonar image processing. The use of Neural Networks in sonar 
processing is not a novel concept, with research spanning back 
at least 30 years into the 1980s. However, there has been 
reticence, particularly within military research communities, to 
apply neural network architectures to maritime surveillance 
and target detection problems. This is understandable as 
accurate target identification is critical to mission success, and 
error rates of 5-10% seen in the plankton classifiers become 
infeasible when human lives are involved. Further because of 
the uncertain nature of deep learned features and their 
contribution to the classifier dynamics, CNN’s are sometime 
seen as black boxes. This has led to a stigma which has 
resulted in sparse application to a problem that it is well suited 
to address [9]. For this reason the driving platform for CNN 
use in sonar image processing is the growing interest in 
Autonomous Underwater Vehicles (AUVs). These applications 
are typically framed as navigation or coordination problems 
where one or more vehicles.  

In [10] Valdenegro-Toro addressed the use CNNs in the 
autonomous navigation problem. Forward looking sonar (FLS) 
data is classified by CNN in a two stage approach which first 
detects if/where an object is in the FLS data, and then classifies 
the object into one of several classes. The CNN was developed 
independent of an existing architecture due to its dual 
classification and is summarized in fig 5.  After initial training, 
fine tuning was performed on convolutional layers initialized 
with the pre-trained weights. In detecting marine debris, the 
classifier performed with 93% detection recall and 75% 
classification accuracy. While detection recall rates are high 
the classification accuracy is lower than expected. However, 
the network was shown to accurately detect 
untrained/unlabeled objects and further research is being done 
to improve the results of the classification algorithm.  

Kim et al. address the autonomous coordination problem in 
[11]. Of particular interest to this paper is tracking a 

      Figure 4: Performance of Elawady’s algorithm on UCSD    

      Moorea Labeled Corals data sets 



Figure 5:  graphic of Valdenegro-Toro’s class and object search 

classifier. Note that until the second FC layer processing is the 

same across both searches. 

Figure6:  Image of standard manta mine. Note that the manta is 

a truncated conic. The fact that William’s Machine learning 

algorithm can accurately classify mantas from other truncated 

conics purely from SAS imaging demonstrates the efficacy of 

CNN’s in SAS processing. 

manipulator or small AUV/ROV and differentiating if from 
obstacles captured in the sonar data. To this end the You Only 
Look Once (YOLO) architecture was used. YOLO is known 
for being able to analyze a large number of frames per-second 
(FPS) and is thus perfect for a coordination problem involving 
streamed sonar data. Though quantitative metrics were sparse, 
it was shown that the trained YOLO architecture could classify 
position with sufficient resolution and speed for a standard 
control problem. 

Due to this progress in sonar processing CNNs are 
gradually being introduced for maritime military operations. 
One example application is in mine countermeasure operations 
where [9,12]. In [12] Williams develops a 10 layer CNN with 
carefully tune layers and window sizes. The CNN takes in 
synthetic aperture sonar (SAS) data and returns a binary 
classification of whether or not the image is of a valid “target” 
Three experiments are then run on three different target classes, 
each simulating a variety of typical mine shapes, and seeking 
differentiate them from rocks and other marine debris that may 
be captured in the sonar imaging. In the most general test 
where a variety standard mine shapes (cones, cylinders, etc) 
from all other non-targets, the CNN methods developed in [12] 
significantly outperformed existing neural network methods in 
both probability of detection and false positive rates. Further 
the CNN proved extremely effective in differentiating a 
specific type of mine known as the manta (fig 6) from other 
truncated conic objects with some data sets approaching 100% 
detection rate with 0 false alarms. 

C. Meteorological Prediction and Modeling 

 Lastly CNNs have seen wide application in atmospheric 
and oceanographic prediction.  The canonical example is 
extreme weather identification, where a human expert is relied 
upon to identify and classify extreme weather events from 
satellite imagery and forecasts.  

Liu et al. present a promising method for extreme weather 
classification based on CNNs [13]. Leveraging the Alex Net 
architecture a 4 layer system is developed using dimensionally 
large kernels in the convolution layers to reflect the relative 
size and simplicity of weather patterns in imaging data. A three 
channel input of RGB intensities is used to produce a binary 
classification of the image. Three classification problems were 
tested, tropical cyclone identification, weather front 
identification, and atmospheric river identification. Image 
patching and layer parameters were modified for each 
classification problem, but were not optimized or otherwise 
tuned. 

Data used for the training and testing was from a 
combination of simulation and reanalysis products. Ground 
truth was established by having human experts label the events 
individually. The reported results using binary classifiers 
promising, showing that accuracy on test data ranged from 
89% to 99%. The worst performance corresponded to 
classification of weather fronts and the best performance on 
classification of Tropical cyclones. While these results are 
promising, Liu et al. do not address localization of atmospheric 
phenomena, and rely on binary classification rather than a 
signal classifying network, leading to immediate directions for 
future work. 

Another interesting application of CNNs is the sparse data 
set problem. In in such problems one uses a machine learning 
algorithm to predict missing data points of a system based on a 
small number of measurements.  Ducournau et al. introduce the 
use of CNNs for analysis and prediction of sparse 2D data sets, 
in particular sea surface temperature [14]. The problem was 
chosen for its practically and ease of available data. Satellite 
infrared measurements such as those available are readily 



Figure 7: DITS network architecture. Left: standard recursive prediction method between forecast convolution and time integration 

layers. Right: Motivating block diagram representing use of CNN to predict PDE time derivatives. 

available, but often have low spatial resolution (on the order of 
5 km). Data from OSTIA was used as both low resolution and 
high resolution data were readily available for training and 
testing. Higher resolution data sets were generated through a 
combination of temperature measurements from buoys and 
other remote measurement platforms. To this end Ducournau et 
al. apply a caffe derivative SRCNN to a sparse satellite data set 
from OSTIA and attempt to reconstruct a high resolution 
prediction of sea surface temperature. Traditional methods use 
a variety of interpolation methods. In this case the results of 
SRCNN are compared against traditional interpolations such as 
bi-cubic and EOF-linear interpolation. To quantify results the 
mean PSNR was calculated for each approximation, and of the 
methods tested SRCNN produce the best PSNR across the 
tests. Further a comparison of gradients showed that PSNR 
better captured the dynamics of the ground truth data where 
other interpolations tended to smooth dynamics. 

Finally, CNN’s have been shown to be capable of short 
term weather forecasting. However, such predictors typically 
have little basis in physical models and are primarily based on 
feature extraction leading to similar stigma to that found in 
CNN applications to military sonar. In [_] Firth proposes 
Differentiation-Integration Time Step Network (DITS) a novel 
CNN application that incorporates a CNN into the iterative 
calculations of any time marched PDE. Firth’s architecture 
uses a CNN to estimate the time derivatives of the variables of 
a PDE rather than the overall system behavior. This is done by 
feeding in a two dimensional data for the system variables such 
as temperature, humidity, and pressure. DITS then estimates 
time derivatives from the data which is then integrated using 
any of the common integration methods (Leap-frog, RK 
methods, etc). This results in a modified CNN architecture of 
alternating convolution and integration layers which replace 
standard pooling layers. This is summarized in fig 7.  

In this architecture the feature map effectively becomes a 
map of time derivatives, and use of the CNN immediately 
provides several benefits. Error calculated at each step can be 
handled via backpropagation into the neural network. 
Combined with the recursive formulation this allows models 
augmented with DITS to perform multistep predictions rather 
than short term forecasts. Further, the use of the CNN when 
combined with appropriate time marching schemes lends itself 
to parallelization through spatially decomposing the 2D data 

set and known acceleration techniques for time integration 
methods. Lastly DITS assumes that the same physics apply 
everywhere within a 2D data set and that there is no spatial 
variations within it. This drastically reduces the number of 
parameters which DITS must learn and thus reduces the 
complexity relative to other forecast algorithms. This in turn 
allows DITS to be run on smaller mesh sizes, refining the 
result of simulations. 

Firth applies his DITS to two case studies. The first 
compares DITS with NCOM which is capable of predicting 
temperature, salinity, and other metrics in addition to water 
current forecasting. In the second case study Firth applies 
DITS to RAP an atmospheric forecasting model. Both NCOM 
and RAP represent state of the art algorithms in oceanographic 
and atmospheric forecasting. In both cases training data for 
DITS was generated by capturing the time derivatives 
generated from NCOM and RAP. DITS was trained on this 
data and then run in parallel with NCOM and DITS on a new 
set of input data. It was found that the trained DITS forecasters 
were comparably accurate to their counterparts. However, 
DITS methods were significantly faster, and found to be 3.6 
times faster than NCOM and 24 times faster than RAP! It is 
worth noting that the results presented by Firth used leap-frog 
integration and could perhaps be further improved by using a 
method from the RK family. 

D. Summary 

Examining the presented applications it is clear the CNNs 
have found niches in two types of application. First image 
processing, and second spatially correlated data analysis and 
filtering. 

Image processing problems were primarily addressed in the 
species classification and sonar algorithms. Comparison across 
these algorithms is a nebulous task as they are developed and 
targeted at two wholly different data sets. However, one can 
draw some interesting conclusions from their methodologies 
that may be useful for formulating future experiments. First, 
and foremost the optimized architecture of ZooplanktoNet 
should be subjected to the same fine tuning used by Orenstein 
to see if similar improvements in classification can be achieved 
with an architecture that is approaching 100% accuracy. 
Further, it is interesting to note that the coral classifier 
developed by Elwady with its modest depth and more 



generalized classification categories performed with similar 
levels of accuracy to Ornstein’s double fine-tuned classifiers. 
Though comparison across problems is moot, the coral 
classifier’s use of image preprocessing metrics may be worth 
exploring in the plankton and sonar data sets. More generally 
the performance of sonar applications lags behind CNNs used 
in species identification. Whether this is due to stigma or lack 
of interest as discussed by Williams in [15], or the nature of 
information available through sonar imaging and waveforms is 
unclear. The latter point might be addressed by adopting 
Elwady’s incorporation of signal processing metrics as network 
inputs, or incorporating relevant measures of ambient 
conditions.  

Lastly the applications in Meteorological prediction show 
that CNN’s are incredibly powerful tools for spatial processing. 
The sparse data problem presented by Ducournau is not new, 
but the use of CNN’s to address spatially dependent data opens 
new avenues for analysis for spatially driven sparse processing 
problems, which could be generalized to other disciplines such 
in signal processing and distributed sensing. Further, the DITS 
network presented by Firth has ramifications that extend to 
virtually all fields of science and bears an immediate need for 
investigation. From a numerical standpoint the architecture 
might be improved further by using different integration 
methods, in particular the adaptive time step RK methods. 
Considering the performance of CNNs in numerical prediction 
problems it is clear that CNNs have vast potential outside of 
just image processing. If nothing else the small body of work 
presented here should impress upon the reader that CNNs 
provide flexible solutions to many spatial driven problems and 
can be restructured to address a surprising number of problems. 

IV. CONCLUSION 

This paper seeks to have provided a brief yet 

comprehensive introduction to convolutional neural networks 

for the uninformed reader. Using motivationg examples in the 

fields of earth and ocean science it is clear that scientists and 

engineers have only begun to scratch the surface of what is 

possible with these networks. As our computers become faster 

and more scientists are clued in to their capabilities we will 

start to see them used to their full potential. 
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