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Abstract

Deep learning pipelines have become a very popular
method for various image recognition and classification
tasks. Over time, these network architectures have grown
to include many layers and are capable of producing ro-
bust networks for classification tasks. In this paper we
specifically explore the effectiveness of the VGG16 convo-
lutional neural network architecture on a 12 class subset
of the WHOI Plankton dataset. We examine the benefits of
transfer learning by using VGG network weights trained on
the ImageNet dataset. In the end, we are able to achieve an
test accuracy rate of 85%. We also explore several visual-
ization techniques in order to make sense of what convolu-
tional neural networks ”learn”.

1. Introduction

Plankton are important to marine ecosystems because of
their role in the food web and biogeochemical cycles. Re-
cently, imaging methods have assisted scientists in studying
plankton ecosystems. However, plankton classification is
tedious so efficient automatic classification systems based
on machine learning techniques have been developed [8].
Specifically, convolutional neural networks trained on large
volumes of annotated data have been capable to achieving
state of the art results. This paper will begin with a discus-
sion of the VGG16 architecture. We will analyze the results
from performing transfer learning with VGG16 and also ex-
plore several visualization techniques. The data used in this
paper is a subset of Oregon State Universitys Hatfield Ma-
rine Science Center plankton dataset from the National Data
Science Bowl. The data was collected using In Situ Ichthy-
oplankton Imaging System (ISIIS) and the data is composed
of 12 classes, 11868 training images and 2772 test images.

2. Convolutional Neural Network Classifica-
tion

2.1. VGG16

VGG16 is a 16-layer network used by the Visual Geom-
etry Group at the University of Oxford to obtain state of the
art results in the ILSVRC-2014 competition. The main fea-
ture of this architecture was the increased depth of the net-
work. In VGG16, 224x224 RGB images are passed through
5 blocks of convolutional layers where each block is com-
posed of increasing numbers of 3x3 filters. The stride is
fixed to 1 while the convolutional layer inputs are padded
such that the spatial resolution is preserved after convolu-
tion (i.e. the padding is 1 pixel for 33 filters). The blocks
are separated by max-pooling layers. Max-pooling is per-
formed over 22 windows with stride 2. The 5 blocks of
convolutional layers are followed by three fully-connected
(FC) layers. The final layer is a soft-max layer that outputs
class probabilities. The complete model is shown in figure
1.

3. Methods
We implemented our model in Keras using ImageNet

weights provided by the library. The plankton dataset was
provided by Peter Gerstoft [5]. All of our preprocessing,
training, testing, and visualization code can be found on
GitHub [2].

4. Results
We used the VGG16 network instead of training a cus-

tom CNN from scratch for the task of plankton classi-
fication. Our model used VGG16 with pretrained Im-
ageNet weights but without the final default 1000 class
softmax. We attached our own 12 class softmax for
plankton classification and only trained that layer. The
VGG16 network is essentially used as a feature extractor
for a simpler softmax classifier. Experiments were done
with both RMSprop[1]/Adam [7] optimizers and plots of
loss/accuracy vs iterations are shown in figures 2 and 3 re-
spectively. After performing transfer learning with a fine
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Figure 1: VGG16VGG16 Architecture

Optimizer Accuracy Loss
RMSprop 0.85 0.42

Adam 0.85 0.41

Table 1: VGG16 Plankton Transfer Learning Results

tuned final activation layer we were able to achieve a top
accuracy of 85% on the 12 class subset of the plankton im-
ages. The best results for each optimization method can be
found in table 1.

Figure 2: RMSprop Accuracy/Loss vs Iterations

Figure 3: Adam Accuracy/Loss vs Iterations
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5. Convolutional Neural Network Visualiza-
tions

CNNs are capable of extracting the relevant features
from images for the task of classification as shown in the
previous section. However, the black box structure of CNNs
obfuscates just exactly what a CNN is learning but the fol-
lowing visualization tools can provide some insight. CNNs
are composed of convolutional layers that are essentially
groups of filters. One visualization is to find an input im-
age that maximizes the activations of a particular filter.
This provides insight into what a particular filter is learning
within the CNN. This method can be extended to the final
dense layer to visualize the features that are important for a
particular output class. Lastly, we can draw heatmaps over
input images that correspond to how important each area is
to the classification decision. The following results are ob-
tained with the help of the keras-vis library [4] according to
instructions from [3].

5.1. Filter Visualizations

VGG16 is composed of blocks of 3x3 filters separated by
max-pooling layers. We can visualize what features each
filter captures by learning the input image that maximizes
the activation of that filter. The input image is initially ran-
dom while the loss is calculated as the activation of a par-
ticular filter. Using gradient ascent to maximize this loss
generates synthetic images that capture what a filter learns.
Example visualizations after 20 iterations are shown in fig-
ure 4 to 5. The filters within the first block capture color and
simple textures. Subsequent blocks take more iterations to
converge but capture more sophisticated patterns. These vi-
sualizations show that CNNs ”see” remarkably differently
from humans but do extract and combine important features
like color and texture when making predictions.

5.2. Dense Layer Visualizations

We can extend the visualization technique in the previ-
ous section to find images that maximize the final dense
layer softmax for a particular category. Gradient ascent is
applied until the loss reaches ≈ 1 which implies that the
CNN is 100% confident that the synthetic image is that cat-
egory. This technique was applied to a trained VGG16 net-
works with ImageNet category outputs and the images that
maximize the ”eagle”,”ouvel”, and ”sea snake” categories
are shown in figure 8. While the generated images do not
look natural, features like the eagles/ouvel wings/beak and
sea snake bodies are clearly present which confirm that the
CNN learns relevant features. The technique was also ap-
plied to the modified VGG16 net used for plankton classi-
fication. Convergence of gradient ascent was more difficult
and only occurred for several classes of plankton. How-
ever, the resulting synthetic images also capture the rele-

vant plankton features. In figure 9 we show the dense layer
visualizations for the acanthera and helix plankton classes.
These visualizations show both the spiked pattern of the
acanthera class and the circular pattern of the helix class.

5.3. Attention Maps

Not every patch within an image contains information
that contributes to the classification process. We can visu-
alize the regions of an image that are most relevant with
attention heatmaps. Existing methods for generating atten-
tion maps include occlusion maps and class activation maps
(CAM). However, occlusion maps are inefficient and CAM
is limited to certain CNN architectures ([4]) so gradient-
weighted CAM(grad-CAM) as implemented in keras-vis
will be used instead. Grad-CAM uses the class-specific
gradient information within the final convolutional layer to
generate attention maps ([9]).

Results for the 12 provided plankton classes are shown
in figure 10. The heatmaps demonstrate that the network
mainly focuses on the plankton bodies. However, it does
make classification errors and this can be attributed to when
the model applies attention to the patches that don’t include
the plankton.
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Figure 4: VGG16 Block 1 Filters

Figure 5: VGG16 Block 2 Filters

Figure 6: VGG16 Block 3 Filters

Figure 7: VGG16 Block 5 Filters
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Figure 8: Dense Layer Visualizations using ImageNet Cat-
egories (eagle, ouvel, and seasnake classes)

Figure 9: Dense Layer Visualizations using Plankton Cate-
gories; the top image corresponds to the acanthera class, the
bottom image corresponds to the helix class

5



Figure 10: Plankton Attention Maps
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6. Conclusion
In this paper we applied transfer learning to plankton

classification. Using a VGG network pre-trained on the
large ImageNet dataset we then fine tuned the last dense
layer to learn features of the plankton dataset. The effective-
ness of this method showcases the robust properties of the
VGG network. Even though the network had been trained
on different images, the many features that had been learned
throughout the 16 layers of the VGG proved to be extensible
to multiple classification tasks. The extensibility of these
features can be seen in the filter visualizations and the at-
tention maps. Our dense layer visualizations show how our
fine tuned last layer was also able to extract distinguishing
features for each plankton class.
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