
ECE 285 Final Project

Michael Threet
mthreet@ucsd.edu

Chenyin Liu
chl586@ucsd.edu

Rui Guo
rug009@eng.ucsd.edu

Abstract

Source localization allows for range finding in underwa-
ter acoustics. Traditionally, source localization was done
using Matched Field Processing, but this method has proven
to be complicated to model and computationally expensive.
This paper examines the used of three machine learning
methods (Random Forests, Support Vector Machines, and
Neural Networks) in the source localization problem, and
does some fine-tuning to achieve acceptable results. Instead
of treating source localization as a regression problem, this
paper creates range classes based on “cutting up” the ob-
served ranges into uniform chunks of distances. The results
when using classification were largely successful. All three
machine learning methods produced accurate results, with
the Support Vector Machine performing the best.

1. Introduction

Source localization is an important problem in underwa-
ter acoustics. Using an array of underwater pressure sen-
sors, the range of a passing ship may be estimated. This is
normally done using Matched Field Processing (MFP), but
this technique is not always straightforward. MFP requires
the local ocean environment to be accurately modeled, but
this is a very complicated task that produces unpredictable
results. In addition, MFP can be computationally expensive
when predicting a ship’s range.

This paper uses machine learning techniques to perform
source localization, namely Random Forests (RFs), Support
Vector Machines (SVMs), and Neural Networks (NNs).
These three techniques attempt to solve the issues that arise
when doing MFP. All of the techniques do not need to
model an underwater environment; instead, they require a
(large) set of data to be trained and evaluated on. Addition-
ally, while the machine learning techniques require a rel-
atively long training time, their prediction times are quick
and computationally inexpensive compared to MFP.

For more information, see [6].

Figure 1: The paths of the ship that were tracked to obtain
the training data

1.1. The Data

The data used in this paper was obtained from an un-
derwater array of pressure sensors. To obtain the “ground
truth” data, a ship was sailed on five different courses with
its GPS position recorded, which provided the true ranges
used for training the machine learning methods (see Fig-
ure 1). For this paper, only DataSet01 and DataSet02 were
used.

2. Background

The three machine learning techniques used in this pa-
per required an input that was a vector of observations or
samples. To meet this requirement, some preprocessing
was required. In addition, source localization was treated
as a classification problem in this paper by discretizing the
the ranges into a set number of classes. This led to much
higher prediction accuracy, albeit at the cost of some range
knowledge due to discretization. The three machine learn-
ing methods described in this section are therefore assumed
to perform classification instead of regression.

1

Figure 2: An example structure of a decision tree for deter-
mining whether it is time to quit a process

2.1. Preprocessing the Data

The data is initially a time series of pressure values
received at L sensors. The DFT of the time series re-
sponse at each sensor is taken to form a vector p(f) =
[p1(f), · · · , pL(f)]T . This vector is then normalized to

p̃(f) =
p(f)√

L∑
l=1

|pl(f)|2
=

p(f)

‖p(f)‖2
. (1)

The sample covariance matrices are then averaged over
Ns snapshots to form

C(f) =
1

Ns

Ns∑
s=1

p̃s(f)p̃
H
s (f), (2)

Only the real and imaginary parts of the complex val-
ued entries of diagonal and upper triangular matrix in C(f)
are used as input to save memory and improve calculation
speed. These entries are vectorized to form the real-valued
vector x of length L × (L + 1), which is used as the input
vector to all three machine learning techniques used in this
paper.

For more information, see [6].

2.2. Random Forest

A RF is a well-known machine learning method based on
decision trees. A RF is composed of many decision trees,
each of which can provide a class prediction [5]. Since a RF
is composed of many decision trees, it can form more com-
plex features and relationships from the data than a single
decision tree. At prediction time, the RF selects the class
that is predicted by the most decision trees as the true class.
The subsections below describe the major components of
the RF algorithm.

Figure 3: The raw data before decision tree classification

Figure 4: The data after decision tree classification

2.2.1 Decision Tree

The decision tree grows from the root, or topmost node. For
this paper, the root would be something of the form: “What
is the range of the observed ship given the sample covari-
ance input?”. When the root tries to grow it will judge the
growth condition based on the value of Gini impurity (see
Equation 3). As in Figure 2, the decision tree grows from
its root and forms nodes based on input values and infor-
mation from previous decisions [1]. Moreover, any feature
can just be a part of decision tree and there will not be any
exception.

According to the accommodation of feature adjustment,
any feature of the data can be a part of a decision tree [5].
In a RF, the objective is to put features into decision trees.
The number of decision trees depends on the architecture of
the RF and the complexity of the input data. The decision
tree is a classifier that divides the input data into different
classes.

Figure 3 shows a distribution of raw data. The data con-
sists of good, bad, and unsure samples. The data has no
clear groupings or shared features between each class type.
However, a decision tree can be used to classify the raw
data. Figure 4 shows the result of applying a decision tree
to the raw data. The groupings are not perfect, but they do
manage to capture most of the classes correctly.

2.2.2 Gini Impurity

The Gini impurity is used to find the optimal partition. The
Gini impurity is described as

IG(f) =

J∑
i=1

fi(1− fi) (3)

2

Figure 5: An example of the bagging algorithm

where IG(f) is the Gini impurity, J is the total number of
classes, and fi is the fraction of items labeled as class i in
the dataset. The Gini impurity measures how often a sample
would be mislabeled if its label was randomly chosen [1].
This allows the decision tree to “split” the dataset in the
best manner possible, as it can measure the likelihood of a
mislabel based on the current input class.

2.2.3 Bagging

Bagging is a method used in a RF to avoid overfitting. Bag-
ging can be used for classification to improve test accuracy
and lower the variance of the model [5]. Bagging involves
randomly selecting (with replacement) a subset of the train-
ing data, and training a single decision tree on this subset.
This is done over many training iterations, and allows for
different decision trees within the RF to form independent
features of the training data. At prediction time, the re-
sponse of each decision tree within the RF is observed, and
the class that was predicted the most often is chosen as the
predicted class. See Figure 5 for a visual example of bag-
ging.

2.3. SVM

In machine learning, Support Vector Machines are su-
pervised learning models that analyze data and are used for
classification and regression. The basic idea is, given a set
of training examples each marked as belonging to one or
the other of two categories, a SVM builds a model that as-
signs new examples to one class, making it a binary linear

classifier [2]. The SVM attempts to form a hyperplane that
best separates the two classes, first by maximizing the num-
ber of correctly labeled examples, and then by maximizing
each correctly labeled example’s distance from the hyper-
plane.

In addition to performing linear classification, SVMs can
perform a non-linear classification by using the kernel trick,
implicitly mapping the inputs into high-dimensional spaces
[3]. In this paper, 7200 data inputs are mapped to 1 of 150
total classes.

2.4. Principal Component Analysis

Introduction: The main goal of PCA is to reduce the
dimension of data space and fasten the model built time.
PCA is a procedure that uses an orthogonal transformation
to convert a set of observations into a set of values of lin-
early uncorrelated variables called principal components.
The number of principal components is less than or equal
to the number of original variables.

Take a data matrix X , with observations in its columns.
The column-wise mean is then subtracted from X to cen-
ter the observations around 0. PCA transforms a set of p-
dimensional vectors using weights wk = (w1, ..., wp)k that
map each row vector xi of X to a new vector of principal
component scores ti = (t1, .., tm)i, given by tki = xi ∗ wk

for i = 1, ..., n and k = 1, ...,m. PCA attempts to ensure
that each variable in t inherits the maximum possible vari-
ance from X , so that the transformed data retains as much
of its original shape as possible. See [7] for more informa-
tion.

Using PCA with a SVM: PCA is used to reduce the di-
mensionality of the input vectors to the SVM. In this paper,
the original dimensionality is 7200, which is very large and
leads to long and computationally expensive training times.
With the benefit of PCA, the dimensionality of the input
vectors can be reduced while still maintaining enough in-
formation to accurately predict labels.

2.5. Neural Network

A neural network contains a number of hidden layers,
each with neurons that take inputs from the previous layer
and connect their outputs to the next layer (see Figure 6).
The number of hidden layers and the number of neurons in
each hidden layer can be varied to create networks that are
very deep and complex, or networks that are shallow and
less computationally expensive to train [4].

Each neuron takes a linear combination of the outputs of
the previous layer as its inputs. The output of each neuron
is a non-linear function applied on this linear combination
(usually a sigmoid, hyperbolic tangent, or ReLU function).
By applying non-linear functions, the neural network is able
to learn more complex features, as it is not limited to just
linear combinations of the inputs.

3

Figure 6: An example architecture of a neural network with
two hidden layers

Mathematically, this means that the input to the jth neu-
ron in the kth layer is

ik = wT
k−1,jok−1 (4)

and the output of each neuron is

ok = f(ik) (5)

where wk−1,j is the vector of learned weights for the jth

neuron, ok−1 is a vector of the output of each neuron in the
(k − 1)th layer, and f(x) is the activation function of the
neuron.

A neural network is “trained” by using error back-
propagation. A training example, accompanied with its cor-
rect label or output, is given to the network. After forward-
propagating the input using the current weights, the error is
calculated. Working backwards, the network can use this
error to adjust the weights for every neuron in every hidden
layer [4]. With enough training examples, the error should
converge to a small value, and the weights should stabilize
to their“ideal” values.

The neural networks used in this paper are implemented
using the scikit-learn MLPClassifier. While this is not the
most flexible model, it allowed for the easiest implementa-
tion and training. The networks use two hidden layers with
ReLU activations. The number of neurons in each layer var-
ied as an experimental parameter. Additionally, the solver
used to train the network was varied, with the Stochas-
tic Gradient Descent (SGD), Limited-memory Broyden-
FletcherGoldfarbShanno (LBFGS), and Adam solvers be-
ing used.

3. Experiments and Results

3.1. Random Forest

The RF has many tunable parameters and implementa-
tions. A good starting point is with the default setup of the
scikit-learn RandomForestClassifier.

Figure 7: The RF test results before parameter tuning

Figure 8: The RF test results for the first dataset after pa-
rameter tuning with a MAPE 17%

3.1.1 Parameters change

After some testing, it became clear that certain parameters
have a larger effect on the error rate than others. The im-
portant features were found to be the number of trees, the
number of features, and the depth of the trees. Figure 7
shows the test results for the first dataset with the default
RF configuration. The results are not good, as there are a
lot of samples scattered around without any structure.

Figure 8 shows the test results for the second dataset with
the tuned RF parameters. This result looks much better,
as there is a lot more structure to the predictions and a re-
spectable MAPE of 17%. The tuned parameters were 800
trees, 100 features, and a depth of 13.

Next, the tuned RF was trained and tested on the second
dataset to determine its robustness. Figure 9 shows the re-
sults of this test. While the RF produced a lower MAPE of
13% for the second dataset, the visual results do not look as
promising. The RF appears to have minimized its error by
guessing a nearly constant value, which is not a promising
result.

3.2. SVM

When implementing models using SVMs, a variety of
kernels should be considered. In this paper, three kernels
were evaluated.

4

Figure 9: The RF test results for the second dataset after
parameter tuning with a MAPE 13%

3.2.1 Linear Kernel

A linear kernel is the simplest option and the easiest to im-
plement. While linear kernels typically do not perform as
well as non-linear ones, they are often used as a baseline
due to their simplicity. Linear kernels are less computation-
ally expensive, which allows them to achieve much faster
training times, at the cost of some accuracy.

Linear kernels depend mainly on a penalty parameter.
This parameter, usually specified as a float between 0 and
1, determines if the SVM should focus on increasing classi-
fication accuracy or maximizing the distance of datapoints
from the separating hyperplane. For a penalty parameter
that is close to 0, the SVM will try maximize the distance
from the separating hyperplane, even if it leads to misclassi-
fication. For a penalty parameter that is close to 1, the SVM
will focus on increasing classification accuracy, even if it
leads to very small margins for hyperplane separation. For
this paper, the penalty parameter was set to 1.

3.2.2 Polynomial Kernel

A polynomial kernel maps the input data into a higher di-
mensional space, allowing for more complex features to be
formed, as the separating hyperplane can now appear as
non-linear in the original sample space. A polynomial ker-
nel will usually obtain a higher classification accuracy than
a linear kernel, albeit with a longer training time and a risk
of overfitting.

Polynomial kernels depend on the same penalty param-
eter as the linear kernel. Polynomial kernels also depend
on a parameter that changes the order of their higher di-
mensional mapping. A higher order parameter can lead to
more complex features being formed, but it may also result
in longer training times and overfitting.

3.2.3 Radial Basis Function Kernel

A RBF kernel determines an input vector’s distance from an
arbitrary point, and uses that as a feature for learning. The

Figure 10: The test results for the first dataset using a poly-
nomial kernel, C = 1,degree = 1

RBF kernel can be thought of as a similarity measure, since
it just compares a distance between two points. The RBF
kernel is usually more flexible, since it can model complex
functions much easier than a linear or polynomial kernel
[3].

RBF kernels depend on the same penalty parameter as
the linear and polynomial kernels. RBF kernels also depend
on a parameter gamma that affects the “reach” or radius of
a single training example. A large gamma limits the range
of a training example’s “reach”, and leads to overfitting. A
small gamma increases the “reach” of each training exam-
ple, and leads to each support vector spanning the entire
dataset. A “correct” value for gamma will allow for locally
similar examples to be grouped together and for distant ex-
amples to be classified as a separate class.

3.2.4 SVMs in Weka

For this paper, weka was used to implement a multiclass
SVM. See Section 5 for more details.

3.2.5 Test Models and Results

With the benefit of PCA, the input dimensionality can be
reduced by 60% while still maintaining 90% of the origi-
nal variance. This greatly reduced the training and evalu-
ation time. When tuning the parameters, such as gamma
for the RBF kernel, it is beneficial to adjust the param-
eters in an exponential order. For example, for gamma,
generate a SVM model with a RBF kernel and try γ =
2−16, ..., 2−8, ..., 2−2, 1, 2, 4, ... to find a decent range of
gammas to fine-tune the model with.

The best results for the first dataset came from a poly-
nomial kernel with a degree of 1. Figure 10 shows these
results.

The best results for the second dataset came from a RBF
kernel with a gamma of 1

128 . Figure 11 shows these results.

3.3. Neural Network

The NNs were first evaluated based on the number of
neurons in each hidden layer. In this case there were two

5

Figure 11: The test results for the first set using a RBF ker-
nel, C = 1, gamma = 1

128

(a) (b)

Figure 12: The MAPE results for each dataset

(a) (b) (c)

Figure 13: The test results for the first test case with the a)
SGD, b) Adam, and c) LBFGS solvers and 10 neurons per
hidden layer

hidden layers, both with 5, 10, or 15 neurons. In addition, a
different solver was used for each number of neurons. Fig-
ure 12 shows the Mean Absolute Percentage Error for each
dataset using the three solvers and a variable number of neu-
rons in the hidden layers.

For the first dataset, the Adam solver performs best on
average, but both the Adam and LBFGS solvers reach the
same solution at 15 neurons per hidden layer. The SGD
solver does not perform well at all, with a MAPE of almost
one (the worst score possible). Figure 13 shows the test
results for the case with 10 neurons in each hidden layer for
the dataset.

For the second dataset both the Adam and LBFGS
solvers reach essentially the same result for each number of
neurons per hidden layer. The SGD solver performs much
better on the second dataset, but, interestingly enough, the

(a) (b) (c)

Figure 14: The test results for the second test case with the
a) SGD, b) Adam, and c) LBFGS solvers and 15 neurons
per hidden layer

(a) (b)

Figure 15: The test results for the updated SGD architec-
ture. The MAPE for the first datset was 67%, while the
MAPE for the second dataset was 13%

MAPE actually increases as the number of neurons in-
creases from 10 to 15. Figure 14 shows the test results for
the case with 15 neurons in each hidden layer for the second
dataset.

A closer look at the results reveals that the SGD solver
always guesses the minimum value of the test data. This
leads to larger MAPE and a useless result, since the NN
only guesses one value.

Based on these results, the NN was tested on what pa-
rameters to adjust to make sure that the SGD solver reached
a better solution. One reasonable assumption was to in-
creases the number of neurons in the hidden layer, since
a larger number of neurons can help to form more com-
plex features in the dataset. The other option was to change
the activation function of each neuron. The activation was
changed from a ReLU to an identity function (i.e. there
was no non-linearity applied to the linear combination of
inputs).

Figure 15 shows the test output for both dataset using a
NN with two hidden layers, 50 neurons per hidden layer,
and an identity function used at each neuron. This new ar-
chitecture worked well for the second dataset, but not for
the first dataset.

To make sure that the SGD solver produced an adequate
result, two more changes were made. The first was to in-
crease the number of neurons in each hidden layer to 100.

6

(a) (b)

Figure 16: The test results for the second updated SGD ar-
chitecture. The MAPE for the first datset was 19%, while
the MAPE for the second dataset was 9%

The second was to increases the number of training itera-
tions from 200 to 1000. With more training iterations, the
SGD solver should reach a better solution. Figure 16 shows
the new results.

With these changes, the SGD solver was able to achieve
results similar to the Adam and LBFGS solvers.

4. Conclusion

Method Dataset 1 Dataset 2
RF 17% 13%

SVM 13% 11%
NN 19% 9%

Table 1: The best MAPE scores for each method on each
dataset

All three of the machine learning methods performed
well, with a MAPE of 19% or lower for all test cases. The
NN achieved the lowest MAPE, but it also achieved the
highest. This variance (albeit in a small sample size) could
mean that a NN is not the best option for source localiza-
tion. The RF performed the next best on average, but it did
not achieve the best MAPE score for either of the test cases.

The SVM performed best on average, and it also per-
formed best on the first dataset. Based on these results, it
seems that the SVM is the best machine learning method to
use for source localization. These results also align with the
results in [6], although the MAPE scores in this paper are
higher due to a lack of fine-tuning.

While some of the results were not promising (i.e. the
RF on the second dataset and the NN with the SGD solver),
most of the results showed great promise. With more time
and computational power, a machine learning approach
could reach much greater accuracy and robustness. Over-
all, however, the results demonstrate that machine learning
approaches are a viable option for source localization.

References
[1] G. Biau and E. Scornet. A random forest guided tour, 2015.
[2] I. Carmichael and J. Marron. Geometric insights into support

vector machine behavior using the kkt conditions, 2017.
[3] W. M. Czarnecki and J. Tabor. Cluster based rbf kernel for

support vector machines, 2014.
[4] F. Giannini, V. Laveglia, A. Rossi, D. Zanca, and A. Zugarini.

Neural networks for beginners. a fast implementation in mat-
lab, torch, tensorflow, 2017.

[5] G. Louppe. Understanding random forests: From theory to
practice, 2014.

[6] H. Niu, E. Reeves, and P. Gerstoft. Source localization in an
ocean waveguide using supervised machine learning, 2017.

[7] J. Shlens. A tutorial on principal component analysis, 2014.

7

5. Appendix
5.1. Setting Up Weka

Installation: The lastest weka tool can be found through
this link: http://www.cs.waikato.ac.nz/ml/
weka/downloading.html It has stable and testing ver-
sions for Windows, OSX, and Linux.

Convert the Data: Weka has its own data input format,
with the most common being arff and csv. In this paper we
are using a csv format file. The training and testing data
must be converted to a csv format with the data and labels
in the same file. Data will be denoted as a numeric value
while label is a nominal value. Run the python file to csv.py
provided. Be sure to specify the directory of data.

Data Preprocessing: Click ”open” and navigate through
the folder and open train.csv Once opened, click the choose
button under the filter, select NumericToNominal under fil-
ter/unsupervised/ folder, and then click on function param-
eter. Change the column 7201 to nominal which is the fea-
ture. Click apply. Next, click on the choose button once
again under the filter, select Principal components under the
same folder, and click apply. By default it will cover the
varaince under 0.95 and reduce the dimension to 5. Option:
If it still gives the out of memory error, choose the resample
function, change the percentage to 50, and click apply.

SVM Classification: After data preprocessing, click on
classify and choose SMO filter under classifer/functions.
Set the appropriate values to be the same as the parameters
in python file. For the kernels discussed in this paper, weka
has all the available functions. For specific setup, check
Figure 17. For the test options, use training set and select
(nom)class as the feature. Click start. The weka tool com-
sumes a lot of memory even after PCA. Be sure when start-
ing weka to specify the -Xmx which is the memory buffer
size for running this JDK.

Figure 17: SMO setup for polynomial kernel

8

http://www.cs.waikato.ac.nz/ml/weka/downloading.html
http://www.cs.waikato.ac.nz/ml/weka/downloading.html

