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I. ABSTRACT

In this project, a general x-ray absorption near-edge
spectroscopy (XANES) spectra classification and inter-
pretation analytical workflow is implemented using au-
toencoders neural network and feed forward neural net-
work. We systematically investigated the effects of the
layer number in autoencoders neural network. We show
that the activation function and the dropout optimiza-
tion has a strong influence on the convergence speed and
accuracy of feed-forward neural network. Using the com-
bination of autoencoders and feed forward neural net-
work, the classification accuracy of Si K-edge XANES
spectra reaches 92%.

II. INTRODUCTION

X-ray absorption spectroscopy (XAS) is one of the
most important and widely used technique for determin-
ing the local structure and electronic structure of mate-
rials. Despite its popularity, only very few sparse XAS
reference resources are available to the community. To
our knowledge, no universal the XAS spectrum interpre-
tation algorithm is available due to the shortage of ref-
erence XAS database. Typical spectrum interpretation
procedure reported by the literatures usually include a
proper comparison between an unknown spectrum and a
group of reference spectra either from experimental mea-
surement or computational simulation. Reference spec-
tra close to the unknown spectrum in shape and edge po-
sition are than selected for further in depth study. The
largest open XAS database is the EELS DB1, which was
created in the 1990s. The EELS DB only contains 21
XAS spectrums, which limited the capability and further
usage of the database.

In our course project, we developed a universal XAS
spectrum matching and interpretation platform using au-
toencoder and feed forward neural network using Si K-
edge near-edge spectroscopy (XANES) as a model sys-
tem. To overcome the shortage of standard reference
data source. The FEFF software developed by Professor
John Rehr, is used for ab initio multiple scattering calcu-
lations of X-ray spectra2. Typical signal processing tech-
nique such as spectra denoising, alignment and shift were
tested and implemented during data preprocessing. The
ultimate target of this universal workflow is automatical
detection of a spectrums chemical space and potential
elements, which also includes a XANES spectrum’s ab-
sorbing species and crystal structural information of the

source material. A rational classification framework built
based on neural network is presented in this paper. Pa-
rameters utilized in machine learning algorithm could be
customized by users. Supervised learning and interpre-
tation of XANES spectra could be achieved using the the
developed workflow.

III. PHYSICAL AND MATHEMATICAL FRAMEWORK

The entire classification process of XANES spectra
could be divided into three stages.

1. Simulation and preprocessing of spectra.

2. Learning process of autoencoders.

3. Training of classification feed-forward neural net-
work builds on top of trained autoencoders.

For data analysis and query convenience, the simula-
tion and physical framework were setup using MongoDB
as the database system. This architecture permits effi-
ciency query and inserting of spectra data. The neural
networks were implemented using Tensorflow. All train-
ings were done on Nvidia K80 GPU. The architecture
summary of the framework is shown in Figure 1.

FIG. 1. Framework architecture of analysis workflow.
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A. Input data simulation and preprocessing

X-ray absorption fine structure (XAFS) refers to the
details of how x-ray are absorbed by an atom at ener-
gies near and above the core-level binding energies of
that atom (Figure 2). XAFS spectra are very sensitive
to the chemical and physical states of atoms. A x-ray
absorption spectrum is usually divided into two regimes:
x-ray absorption near-edge spectroscopy (XANES) and
extended x-ray absorption fine-structure (XAFS). The
XANES is more crucial for the analysis of oxidation
states and coordination chemistry of a material (Figure
3). The signal intensity of XANES spectra is multiple
orders of magnitude higher than XAFS spectra. There-
fore, the XANES spectra are more robust to noise at the
lower specimen concentrations.

FIG. 2. Relationship between x-ray absorption spectrum and
the electronic structure of a material.

The traditional approach of XANES spectra interpre-
tation is mainly based on a straightforward comparison
between the collected spectrum and reference spectra col-
lected. This method highly relies on the chemical intu-
ition of researchers. So far, no simple analytic description
of XANES has been derived. Clearly, as shown in Fig-
ure 3, the edge position and shape of XANES are very
sensitive to the valence state of the XANES absorption
atom. The shape and edge position of a spectrum could
be useful in identifying the phases of a material.

In our project, we collected more than 500 Si K-edge
XANES spectra with respect to different chemical com-
positions using the FEFF software2. We divided the
entire collection of spectra into 12 subgroups accord-
ing their compositions. Each subgroup’s spectra has a
unique chemical system id that represents elements in-
cluded in the materials. To avoid the inconsistency on
absorption energy between different spectra, we applied
interpolation using the Scipy.interp1d package. The sam-
pling point density was set to 500 for each spectrum in
order to minimize information loss during interpolation.
After spectra interpolation, all spectra share the same

FIG. 3. Fe K-edge XANES spectrum of Fe metal and different
FE oxides with different Fe oxidation states.3

absorption energy range. In later training, we reduced
each XANES spectra to a one dimension vector corre-
sponding to x-ray absorption values. A neural network is
then setup for classification task of the entire spetra col-
lection. The neural network structure is shown in Figure
4.

FIG. 4. Structure of spectrum simulation, autoencoders and
classification feed-forward neural network

B. Autoencoders

An autoencoder is a network with three or more layers,
where the input layer and the output have the same num-
ber of neurons, and those intermediate (hidden) layers
have a lower number of neurons. The network is trained
to reproduce the input data. The same pattern of ac-
tivity in the input layer will be revealed in the output
layer.

In our project, we want to use the autoencoder neural
network to improve the learning process. As the overall
dataset’s size is relatively small. A well-trained autoen-
coder neural network will be able to denoise our input
spectra and keep the most critical information of each
spectrum for further classification problem. An autoen-
coder typically works through two phases:

1. An encoder phase that corresponds to a dimen-
sional reduction for the original input.

2. A decoding phase that is capable of reconstructing
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the original input from the encoded (compressed)
representation.

During training, both the input and the output of the au-
toencoders are the 500 spectra. Copying the input to the
output may sound useless as we are not interested in the
output of the autoencoders. While we hope that training
the autoencoders could help us retrieve useful features
of the spectra data. The trained autoencoders neural
network could project the spectra onto a subspace with
lower dimensions. Learning an undercomplete represen-
tation, i.e. code dimension of an autoencoder is less than
the input dimension, forces the autoencoder to capture
the latent features of the training spectra4. The mean
squared error function5 was chosen as the cost function
(equation 1). As the point of the autoencoder is to cre-
ate a reduction matrix that is capable of reproducing the
original data, i.e. spectra, the input data is identical to
the decoded data.

MSE =
1

n

N∑
n=1

(Ŷi − Yi)
2, (1)

where Ŷi is the spectra generated by autoencoders and
Yi is the ground truth spectra, i.e. the input spectra.

C. Feed-forward neural networks

The feed-forward neural network (FNN), also known
as multi-layer perceptron, is constructed separately. The
input of the FNN is the output of the encoder part of the
autoencoders. FNN is widely used for supervised pattern
classification.6,7

We use a five layers model to construct the FNN. The
input layer, L1, is comprised of D input variables, where
D is the batch size. In our study, the training of FNN is
conducted at D = 16. There are three hidden layers in
our FNN. Hidden layer L2 has 100 neurons. Hidden layer
L3 and L4 has 60 neurons and 30 neurons respectively. In
the output layer, L5, there are 12 neurons. The softmax
function is used as the activation function in the output
layer L5. The probability of a spectrum belongs to a class
is calculated using the following expression 2:

yk(x,w) =
exp(ak(x,w))∑K
j=1 exp(aj(x,w))

, k = 1, · · · ,K (2)

, where yk(x,w) represents the probability of x from class
k. The class label with highest probability is used as
the predicted label of the spectrum. We use the cross-
entropy loss function8 in FNN. The loss function of FNN

is defined in equation 3:

L(w) =
1

n

N∑
n=1

[ynlogŷn + (1 − yn)log(1 − ŷn)], (3)

where N represents the number of samples. ŷn is the
predicted label of sample n. yn is the true label of the
sample.

To test the effect of different activation functions and
dropout, we implement four different kinds of configura-
tion of FNN in our study:

1. FNN using logistic sigmoid as the intermediate ac-
tivation function.

2. FNN using ReLU as the intermediate activation
function.

3. FNN using ReLU activation function with the
dropout ratio equals 0.8.

4. FNN using a mixture of ReLU and sigmoid activa-
tion functions in different layers with the dropout
ratio set to 0.8.

.
The logistic sigmoid function is given by the following

equation:

f(a) = σ(a) =
1

1 + e−a
, (4)

where aj is the jth linear combination of the input
variable calculated using equation 5.7

aj =

D∑
i=1

wjixi + wj0, j = 1, · · · ,M. (5)

In equation 5, M is the number of neurons in layer j. i is
the index number of a neuron in the layer. The parame-
ter wj0 is called the biases. Figure 5 shows a comparison
between the Sigmoid and the ReLU activation function.
A Rectified Linear Unit (ReLU) unit computes the func-
tion f(x) = max(0, x). Theoretically, ReLU is compu-
tationally more efficient because it does not require any
exponential computations, such as those required in Sig-
moid or tanh activations. Furthermore ReLU was found
to greatly accelerate the convergence of stochastic gradi-
ent descent compared to the Sigmoid/tanh functions.9

An effective strategy researchers take to improve the
model’s robustness is introducing a dropout optimization
during the training process of FNN.10During the learn-
ing phase, the connections with the next layer can be
limited to a subset of neurons to reduce the weights to
be updated, this learning optimization technique is called
dropout. This technique decreases the overfitting within
a neural network with many layers and/or neurons. In
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(a)

(b)

FIG. 5. (a) Diagram of sigmoid activation function (b) ReLU
function.

general, the dropout layers are positioned after the layers
that possess a lot of trainable neurons. In our study, we
test the dropout ratio ranges from 0.4 to 1 with 0.2 as
interval.

Several optimization methods are provided in the Ten-
sorFlow software. In this paper, Adam11(Adaptive Mo-
ment estimation) is used.

IV. RESULTS

A. Structure and configuration of Autoencoders

Figure 6 shows the decreasing of training cost of au-
toencoders of different configuration during 200 epochs
training. We observe that the performance of NN 2 is
the best among all 4 different configurations we tested.
As shown in Figure 6, when we reduced the autoencoder
layer to one, it takes much longer time for the autoen-
coder neural network to converge. The training costs of
NN 1, NN 2 and NN 3 converge within first 100 epochs,
while NN 4 converges after 180 epochs. The neural net-
work configuration information is summarized in Table
I. Based on our test, we decide to use the configuration
2 as the autoencoders structure in further classification
problem.

To visualize the effectiveness of autoencoders, we di-
rectly output the results of encoder part of the NN 1
autoencoders. We project the data on two axes as shown

FIG. 6. Mean square root training cost of autoencoders with
different configurations.

FIG. 7. Scattering plot of spectrum after encoder using au-
toencoders with configuration 1.

in Figure 7. We notice that on two dimensions the au-
toencoder successfully captures latent factors of spectra.
Even though the performance of configuration 1 is not
the best as observed from our previously mentioned tests,
the scattering plot indicates that the autoencoder works
effectively in separating the dataset linearly in lower di-
mension space.

B. Structure and configuration of FNN

From Figure 8, we notice that introduction of dropout
optimization decreases the classification accuracy the
FNN from 95% to 90% when the dropout ratio was set
to 0.8. Instead, the dropout optimization speeds up the
convergence of FNN. No significant accuracy fluctuation
is observed after 100 training epochs when we drop 20%
neuron during training phase by using a dropout ratio
equals 0.8. Further increase in dropout ratio has a detri-
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Configuration NN 1 NN 2 NN 3 NN 4
Encoder layer 1 128 128 128 128
Encoder layer 2 64 64 64 -
Encoder layer 3 32 32 - -
Encoder layer 4 2 - - -
Decoder layer 1 2 - - -
Decoder layer 2 32 32 - -
Decoder layer 3 64 64 64 -
Decoder layer 4 128 128 128 128

TABLE I. Configuration of autoencoders neural network
tested

mental effect on the classification performance of FNN.
The fluctuation on the classification accuracy reappears
when the dropout ratio equals 0.6 or 0.4. The classifica-
tion accuracy does not get affected significantly with re-
spect to the change of dropout ratio. Over 89% classifica-
tion accuracy is obtained at dropout ratio equals 0.4. The
main reason of probably we do not have enough train-
ing data for our FNN. Comparing our dataset with the
MNIST dataset12, the size of our dataset is 100 smaller.
It is quite surprising that the performance of FNN does
not degrade to large extend on a dataset with such small
size. The investigation provides an indirect evidence that
supports the robustness of FNN in the classification task.
In the later investigation regarding the effect of different
activation functions, we will keep the dropout ratio at
0.8.

FIG. 8. Effect of dropout in preventing overfitting of FNN.

To obtain a more quantitative assessment of the activa-
tion function, we tested four different kinds of FNN archi-
tectures. Table II summarized the architectures we im-
plemented in our study. The FNN1 configuration is the
default neural network structure we used in our dropout
ratio screening. In FNN2, we replaced all four layers’
activation function to Sigmoid function. We mixed Relu
activation function with Sigmoid activation function in

FNN3 and FNN4. The first two layers’ activation func-
tion of FNN3 is Sigmoid, the last two layers’ activation
function of FNN4 is ReLU. While in FNN4, the first two
layers’ activation function is ReLU. To ensure the conver-
gence of training, we trained all models for 500 epochs.

Configuration FNN1 FNN2 FNN3 FNN4
Layer 1 ReLU Sigmoid Sigmoid ReLU
Layer 2 ReLU Sigmoid Sigmoid ReLU
Layer 3 ReLU Sigmoid ReLU Sigmoid
Layer 4 ReLU Sigmoid ReLU Sigmoid

TABLE II. Configuration of autoencoders tested, the dropout
ratio of all 4 configuration equals 0.8.

From the training results, as shown in Figure 9, we
have established that same classification accuracy could
be achieved with different activation functions. Replac-
ing the ReLU activation function with Sigmoid activation
function smooths the accuracy fluctuation occurs after
200 epochs in FNN1.

From Figure 9 and Figure 8, there exists a plateau
within first 100 epochs in general. This indicates a sat-
uration of training. It is because the ReLU is activated
only above 0 and the gradient is 0 whenever the unit is
not active13. The vanishing of gradient occurs below 0
in ReLU layer causes slow optimization convergence as
shown in Figure 9. When we replaced the ReLU layers
partially with Sigmoid layers, we see a shortening of the
training saturation plateau. The FNN4 structure per-
forms the best among all four FNN architectures. The
FNN4 is able to achieve the highest classification accu-
racy and second-best convergence speed using a com-
bined ReLU, Sigmoid and dropout approach.

FIG. 9. Effect of activation function in FNN.
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V. CONCLUSION

To conclude, we have preformed classfication of Si K-
edge XANES spectra using a combination of autoen-
coders and FNN. The 2D scatter plot suggested that the
autoencoder has learned the principle subspace of the
training data. Using FNN, we show that the classifi-
cation of simulated Si K-edge XANES could be achieved
with a classification accuracy exceeds 90%. The presence
of dropout optimization and a mixture of ReLU/Sigmoid
activation function leads to an increase in the robustness
and convergence speed of FNN. The FNN architecture
with first two layers using ReLU activation function and
last two layers using Sigmoid activation function is the
recommended one based on our investigation.
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