
Star Prediction Based on Yelp Business Data And
Application in Physics

Yuyi Tan
PID: A53220110

Electrical and Computer Engineering
University of California, San Diego

La Jolla, California 92093

Zeshi Du
PID: A53220026

Electrical and Computer Engineering
University of California, San Diego

La Jolla, California 92093

Zhiyu Hou
PID: A53209630

Electrical and Computer Engineering
University of California, San Diego

La Jolla, California 92093

Cheng Qian
PID: A53209561

Electrical and Computer Engineering
University of California, San Diego

La Jolla, California 92093

Wenjun Zhang
PID: A53218995

Electrical and Computer Engineering
University of California, San Diego

La Jolla, California 92093

Abstract—Rating prediction is one of the most important
application of machine learning. In this project, we are looking
for appropriate machine learning algorithms to predict the star
a user will assign to a business, and investigate the application
of these algorithms in physics. The four different models we
implement are Linear Regression and Logistic Regression, which
extract features from the data to train regression models for
prediction, Latent Factor Model(LFM), which cares about the
features of users and businesses themselves to train parameters
as weights to make prediction, and Feature Vectors From Text
method, which utilizes the text feature from the business reviews
dataset, such as unigrams and bigrams to train a weighted linear
regression. The accuracy of these models were graded by use of
the mean squared error(MSE), and the comparison were made
between these four methods. Besides rating prediction, these
machine learning methods can be widely applied in physics, such
as precipitation predictionm components/material usage lifetime
prediction and text mining for weather prediction.

Keywords—linear regression, logistic regression, latent factor,
text mining, applications in physics.

I. INTRODUCTION

A. Identify Dataset

We identify a business dataset from Kaggle which were
Yelp business reviews along with some data about the users and
business. The data contains 11,537 businesses, 8,282 check-in
sites, 43,873 users, and 229,907 reviews from the Phoenix, AZ
metropolitan area. In the reviews data, it contains the business
id, user id, stars, review text, date, etc. The star varies from
1 to 5, and its distribution is shown as Figure.1, where the
numbers of star from 1 to 5 are 17516, 20957, 35363, 79878
and 76193. So, from the whole dataset, we can see that people
prefer to give high star (star above or equal to 4).

The year of the date varies from 2005 to 2013, and the plot
of average star in each year is shown as in Figure.2. We can
see that the average star basically stays stable in each year.

The number review words vary from 0 to 1006. We take a
bin width of 150, the average stars in each bin are shown as

Fig. 1. Star Distribution Fig. 2. Average Star in Each Year

in Figure.3. We can see that the average star tends to decrease
with the increasing number of review words.

Fig. 3. Average Star in Each Review
Words Number Bin

Fig. 4. Average Star in Each Check-
in Bin

Then we take a look at the check-in data. The check-in
data contains the business id and the check-in info, which are
numbers of check-ins from during each hour on all Mondays
to all Sundays. The total number of check-in varies from 3 to
22,977. However, there is only one massive check-in 22,977,
most of the number of check-in are below 5000. So, we define
5 bins of check-in, which are 0 to 1000, 1001 to 2000, 2001
to 3000, 3001 to 4000, and above 4000. Their average stars
are shown as in Figure.4. We can see that when the number
of check-in is below 4000, the average star tend to increase
with a larger check-in number. And when check-ins are larger
than 4000, there are only 2 instances in the dataset, so it may
be misleading.

In the user data, it contains the user id, the first name of
the user, the review count that the user gave, and the average
star of the user, etc. The average star of the user varies from
0 to 5 star. The review count varies from 1 to 5807. We take
a bin width of 1000, the average stars in each bin are shown
as in Figure.5. The blank from 3000 to 5000 is that there is
no data in this range. When user review count is lower than
3000, the average star tend to decrease with a larger number of
user review count. And similarly, the instances of review count
above 3000 are limited in the dataset, so it may be misleading.

Fig. 5. Average Star in Each User
Review Count Bin

Fig. 6. Average Star in Each Business
Review Count Bin

In the business data, it contains the business id, the name
of the business, its location information, the stars, the review
count it received, etc. Since the business all located in Phoenix,
AZ metropolitan area, their city and state properties are the
same, and their latitude and longitude are very close. The star
of the business varies from 1 to 5 star. The review count varies
from 3 to 862. We take a bin width of 150, the average stars
in each bin are shown as in Figure.6. When business review
count is lower than 600, the average star tends to increase with
a larger number of business review count. For large number of
business review count, the instances are limited in the dataset,
so the statistic may not be strong enough.

From the exploratory analysis above, we can see that the
star a user gives a to certain business can be influenced by
many factors, such as the number of words of the review, the
total number of check-in of the business, the review count
the user gave, the review count the business received, or the
average stars of the user and the business.

B. Identify Predictive Task

From what have been discussed in 1.A, we already know
that the star a user gave to a business can be influenced by
many factors. So, we identify a prediction task to predict the
star on this dataset.

The review dataset contains 229,907 reviews. We divide the
dataset and define the first 100,000 reviews to be the training
data, the 100,001 to 200,000 reviews to be the validation data,
and the rest 29,907 reviews to be the test data. And since the
review data contains the user id and business id, we can use
these 2 IDs to obtain some other features like review counts
and check-in number from the user dataset, business dataset
and check-in dataset.

From the materials in 1.A, we can see that the average star
basically stays stable in each year. So, year may not be a very
relevant feature in this prediction task. Then, the following
features seem to have linear relationships with the stars:

Number of check-in: increases followed by star increasing

User review count: increases followed by star decreasing

Business review count: increases followed by star increas-
ing

Number of review words: increases followed by star de-
creasing

So, we may assume that the following theories: If a
business has more customers check-in, it may mean that its
reasonably good and people tend to give higher star.

If a user likes to give reviews, maybe he/she is pickier and
tends to give lower star.

If a business received more reviews, maybe its good and
people like to commend and give higher star.

If a review contains more words, maybe its because the
writer doesnt enjoy the experience and wants write more to
accuse it and tend to give lower star.

In addition, some other features like average stars of the
users and the business also seem reasonable to influence the
star a user will give to a business.

Therefore, we can implement a star prediction task based
on different features in this dataset.To do this, many machine
learning methods are available, such as Linear Regression,
Logistic Regression, Latent-factor model and Bags-of-words.

To assess the validity of the models predictions, we use
the measure of Mean Squared Error (MSE) to evaluate the
performance of the model.

II. FRAMEWORK

A. Baseline

A simple model relevant baseline for the star prediction is
to just use the average star to predict all the star that a user
will give to a business. The trivial predictor is as below:

star(user, business) = α (1)

B. Linear Regression

From the exploratory analysis, we see that many features
seem to have linear relationships with the star. So, we can
implement a prediction model based on linear regression.

There were plenty of features that can be reflected by
number in the dataset. Among all the features we felt the
votes based on three choices, useful, funny and cool would
help predict stars. Some other features like number of reviews
for a particular user or for a particular user, open information
of businesses etc. were also considered to be utilized in this
model.

To optimize the linear prediction model, we started with
basic features in review. The basic linear regression based on
three values of votes had a Mean Square Error of 1.411 on
train set and 1.439 on valid set. Afterwards we introduced more
features gradually and kept checking MSEs values. When we
added one of all features including open, review count, average
star for a business, average star for a user, votes, longitude
and latitude each time, the MSE decreased continuously and
it dropped to 1.069 on test set.

To avoid overfitting issue we introduced complexity and
set to various values to execute regularization process. The
equation was shown below

argmin
θ

=
1

N
||y −Xθ||22 + λ||θ||22 (2)

When we selected larger than 1, we noticed that the MSE
on validation set declined and MSE on test set raised. While
we set less than 1 we noticed that the MSE on validation
set increased and MSE on test set dropped. Validation set was
supposed to help optimize parameters for the model thus we
set to 1 and obtained the prediction vector .

There were two features that were not much useful during
the optimization of the model: longitude and latitude. Because
all the reviews were taken from businesses in a certain area
which was Phoenix, AZ metropolitan area. This limited area
led to very similar values of longitude and latitude and
prediction based on those two features did not work well.

C. Logistical Regression

Also, since the star a user give varies from 1 to 5, we
can define: when star is greater than 3.5, we consider it to be
good, and when star is equal or lower than 3.5, we consider it
to be not good. Then we can design a model based on Logistic
Regression for this task, which is to predict the star based on
the confidence of the star being good.

We define the labels yi to be:

yi =

{
1, if star ≥ 3.5
0, if star < 3.5

(3)

For the features of the model, we choose four features in
the whole dataset, and the feature vector will be:

Xi=[1, checkin, review words, user’s average star, busi-
ness’s average star]

A sigmoid function is defined as below:

σ(t) =
1

1 + e−t
(4)

Using the method in Logistic Regression, Xi · θshould be
maximized when yi is positive and minimized when yi is
negative. Also, to avoid overfitting, we introduce in the model
and set it to 1. Combining the regularizer, we define:

lλ(y|x) =
∑
i

−log(1 + eXiθ) +
∑
yi=0

−Xiθ − λ||θ||22 (5)

Then the derivative will be:

dl

dθk
=
∑
i

Xik(1− σ(Xiθ)) +
∑
yi=0

−Xik − λ2θk (6)

Using the formula above by setting λ = 1, we solve using
gradient ascent until θ finally converge.

Extracting the validation or test feature vectors X , then we
can use the equation below to obtain the yprediction data.

yprediction = Xθ (7)

yprediction is the confidence we get to say if the star is
good. We first find the maximum and minimum confidence in
the yprediction data. And call them ymax and ymin. Clearly
ymax > 0 and ymin < 0. Next, since the star varies from 1 to
5, we can predict the star using the formula below:

star =

{
3.5 + 1.5 ∗ ypredictionymax

, if yprediction ≥ 0

3.5− 2.5 ∗ ypredictionymin
, if yprediction < 0

(8)

In the user data, some user profiles are omitted from the
data because they have elected not to have public profiles.
Their reviews may still be in the data set if they are still visible
on Yelp. And in the check-in data, if there are no check-ins for
a business, the entire record will be omitted. In these cases,
we will just use the average star of all users or the average
check-ins of all business to represent the features.

In the attempt of optimizing the model, there are two fea-
tures that we thought will be useful but actually are irrelevant,
the number of reviews for a particular user or for a particular
user. By adding these two features the MSE will actually
increase in both the validation set and test set.

D. Latent Factor Model

In this data set, only caring about the features of the users
or items themselves cannot give an accurate model. Because
the evaluation and classification standards between individuals
are different. For example, peoples evaluations towards one
business Taco Bell may differs. Some people treat it as a
fast food chain and thought it junk food, while others treat
it as a traditional Mexican restaurant and found it healthy.
Apparently, we can’t rely on a single person’s subjective
idea to build a classification standard to the entire platform
user preferences. Latent factor model, which only care about
the interaction between user and item, can well model the
potential preferences and outperform on the problem of rating
predictions.

Partition data into training set, validation set and test set.
As we have 229,907 records of data, the most situation we
want is to train the whole data. However, in that case, we lost
the validation set and cannot decide the optimum value of .
Basically, we use the first 100,000 records for training and
then 100,000 for validation, leaving the rest for test.

Set initial value to deal with cold start. By statistics, we
found there are 5359 records in test set cannot find their
corresponding bias. These are the new users or items that
have never appeared in our training set, which is the cold start
situation. So, we set the median of two bias as the default
value of themselves. This operation slightly mitigates the cold
start problem but does not make big improvement of model
performance.

The basic implementation of LFM is as follow:

rating(user, item) ∼= α+ βuser+βitem (9)

βuser and βitem are two vectors that respectively stored
how much this user tend to rate things above the mean and
how much this item tends to receive higher rating than others.
All values are set to be default zero before iterative step.

In real implementation, we set up two 2-D dictionary to
store the rating in different structure to make it convenient for
checking the ratings in the iterative steps.

After adding the regularizer, the loss function is computed
as:

argmin
α,β

(
∑
u,i

(α+ βu + βi −Ru,i)2 + λ[
∑
u

(βu)
2
+
∑
i

(βi)
2
])

(10)

Then we need to optimize the jointly convex by iteratively
removing the mean and solving for beta. Set the λ =1. And
use the first half data for training.

Fig. 7. Iterative Procedure

By adding the user preference vector and item property
vector, we can get a more specific model.

Fig. 8. Matrix Multiplication of LFM

Rui =

K∑
k=1

γuk · γuk = γu · γi (11)

f(u, i) ∼= α+ βu + βi + γu · γi (12)

The two more iterative equations are:

γuk = γuk + α[(Ru,i −
K∑
k=1

γuk · γik)γik − λγuk] (13)

and

γik = γik + α[(Ru,i −
K∑
k=1

γuk · γik)γuk − λγki] (14)

Iteratively repeat the above steps until the difference of
between last time and current time is less than 1e-10. After
iteration, calculate the MSE on validation set. Next, we alter-
nate the value of λ from 1 to 20 with step size of 0.1, checking
the MSE on validation set to decide the λ that have the lowest
MSE.

Fig. 9. MSE versus lumda

Finally, we get the best lambda is around 4.4. Then we
round the final output to fit with actual number of stars. Some
of the final output go beyond 5 which is apparently contradict
with the real 5-star limit. So we set the range for final output
with upper bound of 5 and lower bound of 1. The mean square
error on test set is 1.28357.

E. Feature vectors from text

The model for feature vectors from text is using 1000
unigrams and 1000 bigrams as features to train a weighted
linear regression as below.

equationstar = α+
∑

(w∈text)
tfidf(t, d,D)θw (15)

Those 1000 unigrams and 1000 bigrams are carefully se-
lected by most common unigrams and bigrams in the reviews,
respectively. Also, in this model, the corresponding tf-idf
representation of original 1000 unigrams and 1000 bigrams
are used instead of the original features to try optimize the
model.

equationtfidf(t, d,D) = tf(t, d)× idf(t, d,D) (16)

where tf(t,d) = number of times the term t appears in
document d and idf(t,d,D)=log N/(d”” D:t”” d). When tf-idf is
high, it means this word appears much more frequently in this
document compared to other documents. When tf-idf is low,
it means this word appears infrequently in this document or it
appears in many documents.

The text feature has some congenital advantage for predict-
ing stars rating. For each user and business, the most direct
way to predict their stars rating is to read their reviews. For
machine learning, it is also true. As we tried this model to feat
the linear regression, there are two methods, using it original
features and using tf-idf representation. To optimize the model,
we use both 1000 unigrams and 1000 bigrams as its Xtrain. It
turns out to be that the original feature has a way better MSE
performance. We also tried the both method with only 1000
unigrams or bigrams. The optimum solution, however, still use
both bigrams features and unigrams features.

The scalability issue in this method is the lack of review
text. Normally, when you do not have the stars rating of a
restaurant, the review text may not be available too. In that
case, other method is needed, like linear regression and latent
factor method.

The overfitting for this problem is obviously too many
features. I used 1000 bigrams and unigrams in my model, but I
tried different numbers with it. When the features increased to
2000 bigrams and unigrams, the MSE score on my validation
set dropped. This is because when you include too many not
so common bigrams and unigrams in the model, other people
may not mention at all in their reviews. All these feature leads
the complexity to be too high and therefore the MSE dropped.

Since the overfitting issue in the last part shows that more
feature may not be beneficial, I tried to use PCA to lower
the dimension of the feature vectors. However, after a few
attempts on the PCA method, I found that even if I delete
only one dimension, the overall MSE dropped.

F. Related literature

In terms of linear regression there is another method
Local Weight Regression(LWG) which can adjust parameters
to train the predictor and avoid issues about under fitting and
overfitting. According to [3] when we predicted a specific
point we preferred to select points that were close to the
specific point rather than using all points. The smaller the
distance between one point and the specific point was the more
weight that point wound have. A higher weight meant more
contribution to the regression coefficients.

In [4] an article mentioned cross validation test which is
often known as k-fold cross validation test. In this test method,
the entire dataset was randomly divided into k parts and in
each test, we used (k-1) parts of them as train set to obtain a
model and test on the rest one part of data which worked as
test set. After all k parts were used for training various models
we select the one with best performance.

Nave Bayes recommender was used in [5] and it is a feasi-
ble way to tackle with cod start issues. In addition, a separate
naive Bayes classifier was trained so that no collaborative
information was used.

SVM used in [8] might prevent the overfitting problem and
makes its solution global optimum.

In [10] N-grams of words were used with unigram and
bigrams, but in the occasion where N-grams appeared sparsely
the predictor will be unstable. CRR-BoO (Constrained Ridge
Regression for Bag-of-Opinions) and CLO (cumulative linear
offset model) were two means used in [10] to make rating
predictions based on the text of review.

[11] combined the intuitive appeal of the multinomial
mixture and aspect models. For online applications, it was not
convenient to train the model whenever a rating was given
by a user, at that time aspect models did not work well and
URP (User Rating Profiles) outperforms the other methods by
a significant margin.

Based on observation, [13] modeled a business with two
latent factors one for its intrinsic characteristics and the
other for its extrinsic characteristics (or its influence to its
geographical neighbors). By cooperating geographical neigh-
borhood influences, the new model performed much better
than the state-of-the-art models including Biased MF, SVD++,
and Social MF. The prediction error is further decreased by
introducing influences from business category and review text.
The incorporation of geographical neighborhood influence can
help tackle cold start issues to some extent, since predicted
rating for new businesses based on both their geographical
neighbors and business categories would be reasonable and
much likely precise.

III. RESULTS AND CONCLUSION

The MSEs of the models discussed in Section 2 on test set
are shown in Table.1. Compared to the baseline, which is a
trivial model always predicting star to be the global average,
the models we discuss all have some improvements.

TABLE I. SYSTEM PARAMETERS

Model MSE on test set
Baseline 1.49216246635

Linear Regression 1.069472
Logistic Regression Noise 1.05464099259

Latent Factor Model 1.28357
Feature Vectors From Review Text 0.821051820175

Linear regression model is easy to implement and can be
executed rapidly even on a giant dataset. In addition, this model
can explore the latent relation between diverse features when
introducing several features to this prediction. However, this
model can only work well when there is a linear relationship
between the predicted goal and features used to generate the
predictor. Even when this linear relationship exists the model
may be interfered by some particular outliers therefore we need
to preprocess to eliminate those outliers before we train our
prediction model.

In a broad sense, logistical regression model is still a
linear model, so it basically shares the strengths and weakness
of the Linear Regression. The model is easy to implement
and optimize, but it can only well when linear relationships
exist between the predicted goal the and features used in the
model. In addition, this model treats the features as they are
independent.

The worst model to fit this data is latent factor model.
Latent factor model is a learning method. It is good at model
the personalized customer preference. In marketing strategy,
we call this long tail theory. It aims to cover the increasing
number of unpopular but individual requirements.

Fig. 10. Long Tail Theory

However, recalling our data set analysis in task 1. The user
in this data set tend to give common high ratings. The variance
of the stars is low. In this situation, we cannot take advantage
of latent factor model. On the contrary, by only caring the
rating that users give to business, LFM lost the information
of the features that linear or logical regression use. Therefore,
the model underperforms the regression model. Moreover, cold
start is a more vital problem in LFM. 5359 among 29907
reviews are either from new users or toward new businesses.
Features are not useful if we have many observations about
users and business, but are useful for which was never observed
before. Affected by large amount of cold-start issues, latent-
factor model is next-to-useless.

The strength of the Feature vectors from text is that with
various features in training set, we could get the lowest MSE
among the four models. By including 1000 unigrams and
bigrams, the most informative words, such as outstanding, 5
stars, worst and horrible, could clearly demonstrate the idea
people made and therefore the stars rating they would state.
The weakness of this model is due to its scalability. The model
will work only if we have a large amount of review texting
data. It not only means that we have to have the review text
that is available, but also the length of the review text matters.
For example, if we have a full review like Not Bad, it would
be difficult to determine the true idea and stars rating of this
review.

To sum up, we conclude the model that used feature vectors
from text best fit this dataset. Review text becomes the best
indicator of the star a customer would assign to a business.

IV. APPLICATIONS IN PHYSICS

These four methods, Linear regression, Logic regression,
Latent factor model, and Feature vectors from text can all be
applied in physics. For the first three methods, they all use
the digitizing data, for instance users ages, average stars. But

for Feature vectors from text method, it utilizes the text data
in the dataset, which shows both text information and digital
information that can be made use of in our method to apply
in physics.

A. Precipitation forecast

Similarly, Linear regression, logistic regression, Latent fac-
tor model all utilize an inputted variable, which is normally a
vector that has multiple features with each one of these features
have different values. We based on some of data, use Linear
regression or logistic regression method to train a weight, and
use the trained weight multiplied by the input vector, which
will output a predicted value. In General, the datasets we use
and the data we collected, have lots of features, and we choose
a result as the predict target, for instance, in precipitation
forecast, choose the precipitation as our purpose predicted
value. Based on those data and their corresponding actual
amount of precipitation, a weight can be trained through any
one of these three methods. And then, the trained weight will
be applied to make predictions of the future precipitation when
the corresponding inputted data relative to the precipitation is
given, as shown in Figure.11.

Fig. 11. Precipitation Prediction

B. Prediction of usage lifetime

The above three methods can also be applied in predicting
the usage lifetime of materials or components. Take the work-
ing environments as the features of the inputted data, for exam-
ple, loading conditions, surrounding environment, and choose
the usage lifetime as our purpose predicted value, trained
the weight, and the trained weight will be applied to make
predictions of lifetime of the material or the component when
the corresponding inputted data relative to the precipitation is
given.

C. Prediction of Weather Based on Text

Not only the digitizing data can be utilized, the text
information from dataset also very useful and easy to collected.
For the Features vectors from text, when we apply this method
in Weather prediction, we can select unigrams and bigrams

by the frequency they appear in the comments (as shown
in Figure.11) people made about the weather in the social
networks, such as Facebook, Instagram, respectively.

Fig. 12. Weather Prediction

REFERENCES

[1] Zhao Y F, Gao H, Lv Y S, et al. Latent factor model for traffic signal
control[C]// IEEE International Conference on Service Operations and
Logistics, and Informatics. IEEE, 2014:227-232.

[2] Zhang W, Wang J, Feng W. Combining latent factor model with location
features for event-based group recommendation[C]// ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2013:910-918.

[3] Machine Learning-Local Weight Linear Regression, CSDN.NET.
http://blog.csdn.net/herosofearth/article/details/51969517. N.p., n.d. Web.
12 Mar. 2017.

[4] ” Cross Validation” - linkin1005s blog Blog Channel - CSDN.NET.
http://blog.csdn.net/linkin1005/article/details/42869331. N.p., n.d. Web.
13 Mar. 2017.

[5] Schein, Andrew I., Alexandrin Popescul, Lyle H. Ungar, and David
M. Pennock. ”Methods and metrics for cold-start recommendations.”
Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval - SIGIR ’02 (2002):
n. pag. Web.

[6] P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted col-
laborative filtering. In Proceedings of the 2001 SIGIR Workshop on
Recommender Systems, 2001.

[7] R. J. Mooney and L. Roy. Content-based book recommending using
learning for text categorization. In Proceedings of the Fifth ACM
Conference on Digital Libraries, pages 195204, 2000.

[8] Lee, Young-Chan. ”Application of support vector machines to corporate
credit rating prediction.” Expert Systems with Applications 33.1 (2007):
67-74. Web.

[9] Hsu, C.-W., Chang, C.-C., Lin, C.-J. (2004). A practical guide to support
vector classification. Technical Report, Department of Computer Science
and Information Engineering, National Taiwan University. Available from
http://www.csie.ntu.edu.tw/ cjlin/papers/guide/guide.pdf.

[10] Lizhen Qu, Georgiana Ifrim Gerhard Weikum. The Bag-of-Opinions
Method for Review Rating Prediction from Sparse Text Patterns. COL-
ING ’10 Proceedings of the 23rd International Conference on Computa-
tional Linguistics Pages 913-921

[11] Marlin, Benjamin M. ”Modeling User Rating Profiles for Collaborative
Filtering.”NIPS. 2003.

[12] Huang, Zan, et al. ”Credit rating analysis with support vector machines
and neural networks: a market comparative study.”Decision support
systems37.4 (2004): 543-558.

[13] Hu, Longke, Aixin Sun, and Yong Liu. ”Your neighbors affect your
ratings: on geographical neighborhood influence to rating prediction.”
Proceedings of the 37th international ACM SIGIR conference on Re-
search development in information retrieval. ACM, 2014.

[14] National Weather Service, http://www.wpc.ncep.noaa.gov/qpf/day1-
7.shtml

