
Investigate machine learning methods based on Source Localization in
an ocean waveguide

Chen Du
PID: A53223649

Yi Zheng
PID: A53098162

Yuehao Jia
PID: A53100711

Abstract— Supervised machine learning methods have been
introduced to learn the potential relationship between source
range and acoustic data. For multi-frequency acoustic data,
there are too many redundant features which will cause overfit-
ting. Principal component analysis is one efficient way to reduce
dimension of data while retaining variance. In this project,
we investigate the acoustic source localization using support
vector machine (SVM), random forest (RF) and feed-forward
neural networks (FNN) combined with PCA. The performance
of 3 methods are compared with different parameters and
datasets. Results show that with suitable parameters, SVM
has outstanding performance in classification but relatively
poor performance in regression; FNN combined with PCA
has good performance in both classification and regression. RF
combined with PCA has better performance in regression but
lower precision in classification compared with SVM. Generally
speaking, PCA efficiently improves the performance of FNN
and saves lots of the training time of RF.

I. INTRODUCTION

Acoustic source localization is widely used in modern
ocean engineering to localize ships or animals.[1][2] By
measuring sound pressure, it is possible to obtain a source
direction using various technologies. Since the unstable and
complicated ocean environment is too difficult to be accu-
rately modeled, the conventional matched-field processing
(MFP)[3] is limited in some practical applications.[4]

In recent years, machine learning has drawn great attention
to deal with problems in physical science. One significant
advantage of machine learning is that algorithms directly
learning features from data, making it possible to find the
potential relationship between features and labels. Haiqiang
et.al has applied supervised machine learning methods in
acoustic source range localization, including support vector
machine (SVM), random forest (RF), and feed-forward neu-
ral networks (FNN)[4]. Instead of model-generated fields,
the acoustic observations are used to train the machine
learning models and are preprocessed into normalized sample
covariance matrices (SCM) as the input. The models include
both classification and regression, based on TensorFlow us-
ing scikit-learn package[5]. However, considering multiple-
frequency SCMs as input of FNN and RF, the data’s feature
is of high dimension. In this case, overfitting would be a
problem if we train the model directly. One efficient way to
deal with overfitting caused by high-dimensional data is the
principal component analysis (PCA)[6], which could map the
original data onto a lower dimensional space, retaining most
of the variance. This method is widely used in preprocessing
high dimensional data[7] [8].

In this project, we applied 3 kinds of supervised machine
learning methods with PCA in acoustic source localization
based on the work of Haiqiang et.al[4]. The performance
of SVM, FNN and RF are compared with different pre-
processing and model parameters. In particular, for pre-
processing, we considered the selection of frequency and
snapshot number. For PCA, we transform data into different
dimensions. For SVM, we tuned the penalty parameter and
scaling parameter, and compare the difference between two
scikit−learn inbuilt functions LienarSVC and SVC (kernel
= linear), as well as different kernel functions. For FNN,
we consider different number of hidden neurons. For RF,
we tested different tree numbers and the maximum tree
depths. For each method, both classification and regression
are considered.

The rest of the paper consists of 3 parts: in section II
we describe the mathematic models of the system including
preprocessing, PCA, SVM, RF and FNN. In section III we
introduce the experiment design and analyze the results.
Finally we draw conclusion in section IV.

II. MATHEMATICAL SYSTEM MODELS

The system consists of 5 parts, including data preprocess-
ing, principal component analysis, support vector machine,
random forest, feed-forward neural networks. After prepro-
cessing, the acoustic dataset is transformed into training
sample vectors and test sample vectors. The labelled training
samples are used to train the machine learning models, and
the trained models are used to predict the labels of test data.
The input of RF and FNN are mapped to low dimension by
PCA before training and test.

Fig. 1: Diagram of the system

A. Data Preprocessing

We use the data preprocessing method proposed by
Haiqiang et.al [4], which could transfer the array pres-

sure time series into a normalized sample covariance
matrix. The sound pressure at frequency f p(f) =
[p1(f), p2(f), p3(f) . . . pL(f)]T is the DFT of the input pres-
sure data at L sensors,the complex pressure is normalized to
reduce the effect of source amplitude.

p̃(f) =
p(f)√∑L
l=1 |pl(f)|2

=
p(f)

‖p(f)‖2
(1)

”Then the normalized Sample Covariance Matrices(SCMs)
is computed and averaged over Ns snapshots”[4]

C(f) =
1

Ns

Ns∑
s=1

p̃s(f)p̃s
H(f) (2)

Only the diagonal and upper triangular matrix in C(f) are
used as input, since C(f) is complex matrix, the real and
imaginary parts forms a real-valued input vector x of length
L× (L+ 1). For multiple frequencies, the input vector is of
size Nf × L× (L+ 1).

In classification problem, the source ranges are discretized
into K bins, r1, r2, r3, . . . rK , of equal width ∆r. Each
input vector xn, n = 1, 2, 3, . . . N is labeled by tn where
tn ∈ rK , k = 1, 2, 3, . . .K. Specially for FNN, the input
data is transformed into a 1×K binary vector tn such that

tk =

{
1 if |tn − rk| ≤ ∆r

2

0 otherwise
(3)

where tn = tn,1, tn,2, tn,3, tn,..., tn,K , therefore represents
the expected output probability of the neural network. In the
regression problem, the target output rn is a continuous range
variable for all three models.[4]

B. Principal Component Analysis

Principal Component Analysis invented by Karl Pear-
son [9], and later independently developed by Harold
Hotelling[6]. For conventional PCA, given the preprocessed
SCM samples XN×D, where N is the number of samples
and D is the dimension of features of each sample, the scatter
matrix is calculated as

ΣX = (X − µX)T (X − µX) (4)

where µX is the mean of all samples. The eigenvalues λs
and corresponding eigenvectors ϑs of ΣX are computed by
eigenvalue decomposition, where

ΣXϑ = λϑ (5)

The N eigenvectors are normalized and sorted in terms of
corresponding eigenvalues from large to small

ϑ1, ϑ2, . . . , ϑN with λ1 > λ2 > . . . > λN (6)

The first k eigenvectors with the largest eigenvalues are
chosen to construct the d× k dimension eigenvector matrix
W

W = [ϑ1, ϑ2, . . . ϑk] (7)

Finally, both training data and test data are transformed
onto new subspace by multiplying W

y = x×W (8)

Since the time complexity of eigenvalue decomposition of
a DxD matrix is O(D3), the computing load becomes very
high when the samples dimension D is large. A compact
trick[10] could significantly reduce the complexity. The basic
idea is shown below

(X − µX)(X − µX)Tϑ = λ× ϑ (9)

(X−µX)T (X−µX)(X−µX)Tϑ = λ×(X−µX)Tϑ (10)

We can see (X−µX)Tϑ is the corresponding eigenvector
of scatter matrix. When N � D, we only need to perform
the eigenvalue decomposition of a N × N matrix (X −
µX)(X − µX)T instead of a D × D scatter matrix, which
could reduce the computation load significantly. Note all the
eigenvectors should be normalized before transformation.

C. Support Vector Machine

Support vector machine (SVM) is a discriminative su-
pervised machine learning method which is popular in
solving classification and regression problems[11]. An im-
portant property of support vector machine is that the
determination of the model parameters corresponds to a
convex optimization problem, so any local solution is also a
global optimum[12]. The data is divided into two (or more)
classes by defining a hyperplane that maximally separates
the classes.

For two-class problem where the class label sn ∈ {−1, 1},
the class of each input point xn is determined by the form

yn = wTxn + b (11)

A hyperplane satisfying wTxn+b = 0 is used to separate
the two classes. If yn > 0, estimated class label ŝn = 1; if
yn < 0, then ŝn = -1.

Fig. 2: A linear separable example of two-dimensional hy-
perplane between two classes

If the training data are linearly separable, we can select
two parallel hyperplanes that separate the two classes of data
and try to maximize the distance between them, these two
hyperplanes can be described by the equations wTxn+b = 1
and wTxn + b = −1. The region bounded by these two
hyperplanes is called the margin. The distance between these
two hyperplane is 2

‖~w‖2 , so to maximize the distance is equal

to minimize ‖w‖. Since the data points should be correctly
separated out of the margin, for each input point we must
have

ŝn(wTxs + b) ≥ 1, n = 1, 2, 3 . . . N (12)

Putting together, we get the optimization problem[12]

argmin ‖w‖2 (13)

subject to ŝn(wTxs + b) ≥ 1, n = 1, 2 . . . N (14)

Since the data are usually not linearly separable, the
hinge loss function[13] is introduced for soft-margin SVM.

L(xn) = max(0, 1− ŝn(wTxs + b)) (15)

For input points lying on the correct side, the correspond
hinge loss is 0, while for misclassified points, the functions
value is proportional to the distance from the margin.Then
we wish to minimize

C × [
1

N

N∑
n=1

max(0, 1− ŝn(wTxs + b))] + ‖w‖2 (16)

where parameter C determines the trade-off between in-
creasing the margin-size and ensuring that xn is correctly
classified.

For non-linear classification problems, the kernel trick[14]
is introduced to make data separable in a feature space. A
similarity function k is calculated between each prediction
of unlabeled input xi and labeled input xj . We implemented
four kernel functions in following table.

Linear Kernel Polynomial Kernel
k = xTi xj k = (γxTi xj + a)d

Sigmoid Kernel RBF Kernel
k = tanh(γxTi xj + a) k = exp(−γ|xi − xj |)2

For regression problem, support vector regression aims to
minimize the ε - sensitive error function

εε(yn − rn) =

{
0, if |yn − rn| < ε

|yn − rn| − ε, otherwise
(17)

where rn is the true source range at sample n and ε defines
a region on either side of the hyperplane.

Since the source localization is a multi-class classification
problem. A multi-class SVM is created by training one-
vs-one models on all possible pairs of classes [12]. We
use the SVC and SVR functions provided by scikit-learn
to implement SVM. And the LinearSVC function is also
applied as a comparison (see Section III-D).

D. Random Forest

Random forest is an ensemble machine learning method
for classification and regression. A random forest classifier
consists of multiple decision trees trained by different subset
of the same training data. Though each single decision tree
overfits its training subset, RF is robust by averaging over
multiple decision trees. The class with most votes over all
decision trees will be chosen as the prediction.

In training step, each decision tree is randomly assigned
a subset of training data. For each node of the tree, the

Fig. 3: Random Forest [15]

input data is split according to a cutoff value c along the
ith dimension.

xn ∈ xleft if xni > c
xn ∈ xright if xni ≤ c

(18)

xleft and xright are the left and right regions. The optimal
cutoff values are determined by minimize the cost function
G.

c∗ = argmin
c

G(c) (19)

G(c) =
nleft
N

H(xleft) +
nright
N

H(xright) (20)

where nleft and nright are the numbers of points in the
regions xleft and xright. H(·) is an impurity function. We
apply Gini impurity [16] as the impurity function.

H(xm) =

K∑
k=1

frk(1− frk) (21)

frk =
1

nm

∑
xn∈xm

I(tn, rk) (22)

where rk, k = 1, 2, . . .K are the source range classes and
tn is the label of point xn in region m, frk is the fraction
of points labeled with class rk in region m. The region m is
labeled by class lm which represent the most common class
in the region.

lm = argmax
rk

∑
xn∈xm

I(tn, rk) (23)

I(tn, rk) =

{
1, if tn = rk
0, otherwise

(24)

The remaining regions are partitioned iteratively until the
tree reaches the maximum depth.

For regression problem, ”the estimated class for each
region is defined as the mean of the rue class for all points
in the region, and the mean squared error is used as the
impurity function”[4].

lm =
1

nm

∑
xn∈xm

rn (25)

H(xm) =
∑

xn∈xm

(lm − rn)2 (26)

where rn is the source range at sample n.
Even though RF is robust to overfitting with sufficient

trees and max depth, it takes a long time to train the model
for high dimension data. PCA could effectively reduce the
training time, as well as retain most of the precision.

E. Feedforward Neural Network

Feedforward neural network (FNN) is an artificial neural
network which can be described a series of functional
transformations [17], wherein the information moves only
forward from input through the hidden layer to the output,
as figure 4

Fig. 4: One-hidden-layer feedforward neural network [17]

The input layer consists of D neurons where D is the
dimension of the feature of each sample. For node j in
hidden layer, the linear combination of the input variables
is computed as activation aj

aj =

D∑
i=1

w
(L)
ji xi + w

(L)
j0 , j = 1, 2, 3 . . .M (27)

where M is the number of neurons in hidden layer. The
parameters wji and wj0 are called the weights and biases.
Then aj is transformed using an activation function.

zj = f(aj) (28)

we choose the sigmoid function as the activation function
for hidden layer

f(a) = σ(a) =
1

1 + e−a
(29)

For node k in output layer, the linear combinations of zj is
computed as

ak =

M∑
j=1

w
(2)
kj zj + w

(2)
k0 , k = 1, 2, . . .K (30)

Note K is the number of range bins. And the softmax
function[18] is used as the activation function for output
layer, which could constrain the output class yk(x,w) to be
probability that the source is at range rk:

yk(x,w) =
exp(ak(x,w))∑K
j=1 exp(aj(x,w))

, k = 1, 2, 3 . . .K (31)

where w is the set of all weight and bias parameters.
During training, the averaged cross entropy is chosen as

the cost function

E(w) = − 1

N

N∑
n=1

K∑
k=1

tnk ln ynk (32)

and resulting weights and biases are to minimize the cost
function

ŵ = argmin
w

[− 1

N

N∑
n=1

K∑
k=1

tnk ln ynk] (33)

For regression problem, the output layer consists of only
one neuron which represents continuous range variable. And
the sum-of-squares error function[12] is chosen as cost
function

E(w) =
1

2

N∑
n=1

|y(xn, w)− rn|2 (34)

The Adaptive Moment estimation method[19] is used for
optimization. The FNN is trained by specific iterations with
a step length. For high dimension training data without
enough samples, FNN will overfit the training data and has
low precision. PCA is performed before training to avoid
overfitting.

III. EXPERIMENT AND RESULT ANALYSIS

We use 2 of the given 5 datasets as the inputs of our
system: Dataset01 and Dataset03. Each dataset contains
two raw time series of pressure (Pa) acoustic data files
received by vertical linear array (V LA) consisting of 15
hydrophones, one for training and another for test. The given
corresponding true ranges and times recorded by GPS were
used to create data labels by linear interpolation.

In Dataset01, the data from period J255 19:06:05-
19:21:05 are used as training set and J256 09:32:10-09:48:10
are used as test set. In Dataset03, the data from period
J257 09:37:05-09:48:30 are used as training set and J258
05:45:20-05:56:05 are used as test set.

After preprocessing, the 15× 15 SCMs of every selected
frequency are averaged over chosen snapshots with 1-sec
succession. For single frequency SCM, the input vector
is of length (feature dimension) 240(15 × 16). For multi-
frequencies SCMs, the input vector is of length 240 × Nf ,
where Nf is the number of selected frequencies. For exam-
ple, if we select 30 frequencies to compute the input SCM,
the dimension D of each sample vector is 240× 30 = 7200.

The training samples are picked every second, while the
test samples are picked every 5 seconds. For Dataset01, the
training set has (895− snapshot) samples, and test set has
(955 − snapshot)/5 samples; for Dataset03, the training
set has (655 − snapshot) samples, and test set has (645 −
snapshot)/5 samples. Using 20m as the range interval
for classification, in Dataset01, the source-receiver range
0− 2960m are divided into K = 149 discrete range points;
in Dataset03, the source-receiver ranges 850− 3080m are
divided into K = 112 discrete range points.

The mean absolute percentage error (MAPE) over N
samples are used to quantitatively evaluate the results, which
is defined as

EMAPE =
100

N

N∑
i=1

|Rpi −Rgi
Rgi

| (35)

where Rpi and Rgi are the predicted range and the ground
truth range respectively.

By using different parameters at each stage of the system,
the performance of FNN, SVM, RF are discussed in follow-
ing sections. Note there are many parameters to be tuned,
limited by pages we cannot list all combinations, so when
we focus on one parameter, the rest parameters are chosen
as the same value which is relatively good by comparing the
overall results.

A. Frequency Selection

Fig. 5: Range Predictions on Dataset01 (a, b, c) and
Dataset03 (d, e, f) by FNN. (a)(d) 515Hz, (b)(e) 300-700 Hz
with 100 Hz increment, i.e. 5 frequencies. (c)(f) 300-700Hz
with 13 Hz increment, i.e. 30 frequencies.

Figure 5 shows the FNN prediction results based on
different frequency selections. The PCA dimension is set
100, and the hidden layer contains 1000 neurons. We can
see for both Dataset01 and Dataset03, predictions based
on 30 frequencies have the lowest MAPE. This is because
multi-frequency features are more robust to noise with more
uncorrelated features.

B. Snapshots

Fig. 6: Range Predictions on Dataset01 (a, b, c) and
Dataset03 (d, e, f) by FNN. (a)(d) snapshot = 1, (b)(e)
snapshot = 5, (c)(f) snapshot = 20.

In preprocessing, SCMs are averaged by snapshots to
reduce the noise. But since all the variables are averaged,
some features such as periodical variables will also be
impaired, which results in higher ratio of misclassification.
Since we have applied PCA to filter out the noise, there is
no need to do a snapshot average. From figure 6 we can
see that FNN has the best performance when snapshot=1.
To compare the effects of different snapshots, the input data
is of 30 frequencies and the dimension after PCA is set 100,
while the hidden layer contains 1000 neurons.

C. Support Vector Machine

We applied four different kernels for SVM including
linear, sigmoid, radial basis function and polynomial. For
polynomial and sigmoid kernel, the coefficient a are set to
0, and the degree of polynomial kernel is set to 1. So the
only difference between polynomial kernel and linear kernel
is the coefficient gamma, which perform just a scaling.

For classification problem, figure 7 shows the results using
four different kernels on Dataset01 with C = 1, gamma =
1/149.

We can see the linear kernel works well, but other 3
kernels have a continuous misclassification part. Recall that
the penalty parameter C controls the trade-off between
increasing the margin-size and ensuring that sample points

Fig. 7: SVM Classification on Dataset01, C=1,
gamma=1/149

Fig. 8: SVM Classification on Dataset01, C=1000,
gamma=1/149

are correctly classified, a large C means a soft boundary
while a small C means a hard boundary. For polynomial
kernel with degree = 1 and a = 1, its indeed a linear kernel
whose penalty parameter C is multiplied by gamma. Once
we increase the value of C to 1000, we can see all 4 kernels
have outstanding performance since the minimum MAPE is
3.19 for Dataset01, see figure 8. While the minimum MAPE
for Dataset03 is 0.71.

By comparing figure 7 and figure 8, we can see when C =
1, we give too much attention on maximizing the margin so
there is a continuous points lies on the wrong sides. The
effect of C can be also observed by setting gamma to 1 for
polynomial kernel (See Fig. 10).

For regression problem, figure 9 shows the results on
Dataset01 with C = 1000, gamma = 1/149. We can

Fig. 9: SVM Regression on Dataset01, C = 1000, gamma =
1/149

see the SVM regression does not have as good performance
as classification since the minimum MAPE is 28.2 for
Dataset01 and 11.2 for Dataset03.

Fig. 10: Classification using SVC and LinearSVC on
Dataset01. (a)(b)(c) C = 1, gamma = 1, (d)(e)(f), C=0.01,
gamma=1

D. LinearSVC vs. SVC

Besides SVC, there is another function provided by
scikit − learn named LinearSV C. Though named as
SVC, this function is actually not a conventional SVM

classifier. The default loss function of LinearSVC is the
squared hinge loss, and it will penalize the intercept b. So
instead of minimizing ‖w‖2, LinearSVC aims at minimiz-
ing ‖w, b‖2. Moreover, for multi-class problem, LinearSVC
performs one-vs-rest while SVC performs one-vs-one.[20]
These changes result in the different performance of Linear
SVC and SVC.

Figure 10 shows the classification results on Dataset01
using LinearSVC and SVC with linear and polynomial kernel
(degree=1). The gamma is set to 1 so the polynomial kernel
is actually linear kernel. We can see when C = 1, the SVC
has better performance than LinearSVC, but when C = 0.01,
LinearSVC has lower MAPE.

E. Random Forest

Fig. 11: RF Classification Results on Dataset01. (a)(b)(c) tree
number = 50, (d)(e)(f) tree number = 500. (a)(d) max depth
= 5, (b)(e) max depth = 20, (c)(f) max depth = 100. PCA =
100.

For classification problem, figure 11 shows the prediction
results on Dataset01 using different tree number and depth.
We can see when tree number = 50, the MAPE of the
prediction is large, this is because RF needs sufficient amount
of trees to avoid overfitting, when the tree number is low, the
prediction variance increases. Also we can see the decision
tree needs sufficient depth to fit the data. With PCA = 100,
RF with 500 trees and 100 depth has the best performance.
The minimum MAPE obtained is 4.17 for Dataset01 and
0.82 for Dataset03.

Fig. 12: RF Regression Results on Dataset01 (a)(b) and
Dataset03 (c)(d). (a)(c) tree number = 50, (b)(d) tree number
= 500. Max depth = 100 and PCA = 100.

Fig. 13: FNN Classification Results on Dataset01. (a)(b)(c)
PCA = 100, (d)(e)(f) PCA = 500, (a)(d) hidden neurons = 5,
(b)(e) hidden neurons = 100, (c)(f) hidden neurons = 1000.

Figure 12 shows the results of RF regression on
Dataset01 with different tree numbers. We can see again
RF needs sufficient number of trees to ensure precision.
Comparing figure 9 and figure 12 we can see RF has better

performance in regression problem than SVM, with PCA =
100. The minimum MAPE of Dataset01 is 11.09, while the
minimum MAPE of Dataset03 is 5.5.

F. Feed-forward neural Network

For classification problem, figure 13 shows the results of
FNN on Dataset01 with different numbers of hidden neu-
rons and PCA dimensions. From figure 13(a)(d), we can see
that the FNN has relatively poor performance with limited
hidden neurons. However, from figure 13(b)(c), and (e)(f),
it is clearly that too many hidden neurons will also reduce
the performance because of overfitting. After tuning, we
found 100 hidden neurons is a suitable choice.We can also
see that FNN with PCA=100 has better performance than
FNN with PCA = 500. This is because PCA=100 actually
filters out more redundant features than PCA=500 from the
original data, which avoids overfitting more effectively. The
minimum MAPE we obtained is 3.35 for Dataset01, and
1.37 for Dataset03.

Fig. 14: FNN Regression Results on Dataset01 (a)(b) and
Dataset03 (c)(d). (a)(c) Hidden neurons = 100, (b)(d) Hidden
neurons = 1000. PCA = 20.

Figure 14 shows the regression results on Dataset01 and
Dataset03 with different hidden neurons, After tuning, the
dimension of PCA is set 20. Comparing figure 9, figure 12
and figure 14, we can see FNN has relatively the best per-
formance for regression problem, since the minimum MAPE
obtained is 9.14 for Dataset01 and 4.26 for Dataset03.

IV. CONCLUSION

Considering the experiment results, for classification prob-
lem, SVM has the overall best performance with the mini-
mum MAPE 3.19 for Dataset01 and 0.71 for Dataset03.
For regression problem, FNN has the overall best perfor-
mance with the minimum MAPE 9.14 for Dataset01 and
4.26 for Dataset03. PCA effectively avoids the overfitting
problem of FNN, and retains most of RF’s precision while

reduces the training time significantly. In acoustic data anal-
ysis, PCA is, to some degree, like an adaptive filter which
could efficiently remove the redundant variables and noise,
and preserve only important features for source localization.

REFERENCES

[1] Roee Diamant, Hwee-Pink Tan, and Lutz Lampe. Los and nlos
classification for underwater acoustic localization. IEEE Transactions
on mobile Computing, 13(2):311–323, 2014.

[2] Christopher MA Verlinden, Jit Sarkar, WS Hodgkiss, WA Kuperman,
and KG Sabra. Passive acoustic source localization using sources
of opportunity. The Journal of the Acoustical Society of America,
138(1):EL54–EL59, 2015.

[3] Alexandra Tolstoy. Matched field processing for underwater acoustics.
World Scientific, 1993.

[4] Haiqiang Niu, Peter Gerstoft, and Emma Reeves. Source localization in
an ocean waveguide using supervised machine learning. arXiv preprint
arXiv:1701.08431, 2017.

[5] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Ma-
chine learning in python. Journal of Machine Learning Research,
12(Oct):2825–2830, 2011.

[6] Harold Hotelling. Analysis of a complex of statistical variables into
principal components. Journal of educational psychology, 24(6):417,
1933.

[7] Yacine Ait-Sahalia and Dacheng Xiu. Using principal component anal-
ysis to estimate a high dimensional factor model with high-frequency
data. 2016.

[8] Shabnam N Kadir, Dan FM Goodman, and Kenneth D Harris. High-
dimensional cluster analysis with the masked em algorithm. Neural
computation, 2014.

[9] Karl Pearson. Liii. on lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, 2(11):559–572, 1901.

[10] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal
of cognitive neuroscience, 3(1):71–86, 1991.

[11] Zhuowen Tu. Learning generative models via discriminative ap-
proaches. In Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on, pages 1–8. IEEE, 2007.

[12] C Bishop. Pattern recognition and machine learning (information
science and statistics), 1st edn. 2006. corr. 2nd printing edn. Springer,
New York, 2007.

[13] Urün Dogan, Tobias Glasmachers, and Christian Igel. A unified
view on multi-class support vector classification. Journal of Machine
Learning Research, 17(45):1–32, 2016.

[14] Bernhard Schölkopf. The kernel trick for distances. In Advances in
neural information processing systems, pages 301–307, 2001.

[15] Cuong Nguyen, Yong Wang, and Ha Nam Nguyen. Random forest
classifier combined with feature selection for breast cancer diagnosis
and prognostic. 2013.

[16] Leo Breiman. Technical note: Some properties of splitting criteria.
Machine Learning, 24(1):41–47, 1996.

[17] Yudong Zhang, Shuihua Wang, Genlin Ji, and Preetha Phillips. Fruit
classification using computer vision and feedforward neural network.
Journal of Food Engineering, 143:167–177, 2014.

[18] Kaibo Duan, S Sathiya Keerthi, Wei Chu, Shirish Krishnaj Shevade,
and Aun Neow Poo. Multi-category classification by soft-max com-
bination of binary classifiers. In International Workshop on Multiple
Classifier Systems, pages 125–134. Springer, 2003.

[19] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[20] Wojciech Marian Czarnecki. Under what parameters are SVC and
LinearSVC in scikit-learn equivalent?, 2015. Available at https:
//goo.gl/PnkHBe.

https://goo.gl/PnkHBe
https://goo.gl/PnkHBe

	INTRODUCTION
	MATHEMATICAL SYSTEM MODELS
	Data Preprocessing
	Principal Component Analysis
	Support Vector Machine
	Random Forest
	Feedforward Neural Network

	EXPERIMENT AND RESULT ANALYSIS
	Frequency Selection
	Snapshots
	Support Vector Machine
	LinearSVC vs. SVC
	Random Forest
	Feed-forward neural Network

	CONCLUSION
	References

