

ECE 285 Class Project Report
Based on

 ​Source localization in an ocean waveguide using supervised machine learning
Yiwen Gong (​yig122@eng.ucsd.edu)​,

Yu Chai(​yuc385@eng.ucsd.edu​),
Yifeng Bu(​ybu@eng.ucsd.edu​),

Xinxin Chen(​xic045@eng.ucsd.edu​)

Abstract
Source localization based on ocean acoustics sensor’s data is critical in oceanography.

In this report, we apply the paper “Source Localization in an ocrea waveguide using supervised
machine learning” by Haiqing Niu, Emma Reeves and Peter Gerstoft and optimize the machine
learning method for a better classification result. The main optimization strategy we use is PCA
dimension reduction to extract the features of the data. And then apply Feed-forward Neural
Networks (FNN) , random forests (RF) and Extremely randomized trees in this classify different
distances in this range estimation problem.

1. Introduction
We first preprocess the data. This part application is provided by the lecturer. According

to our test and analyzation, we found that if we directly apply feed-forward neural networks
(FNN), random forests (RF) and extra trees, as the source distance increases, we get terrible
results. This is due to poor sensing data collection and noise interference.
Hence, we make a PCA dimension reduction before applying these two machine learning
methods for decreasing the complexity of the data so that we can estimate distance based on the
most significant features.

2. Method
2.1 Input data preprocessing
Here we use the data preprocessing proposed by Haiqiang et.al[1]. The data received

from sensor is an array of pressure, and needed to be transformed into a normalized sample
covariance matrix. The matrix includes both amplitude and phase information instead of kinds of
complex variables such as amplitude of the pressure field, transmission loss etc.

By taking the Discrete Fourier Transform of the input pressure data at L sensors, complex
pressure at frequency f can be calculated. The sound pressure is modeled as

Where ε denotes noise, S(​f​) denotes source term and g is the Green’s function.
The complex pressure is also normalized to reduce the effect of the source amplitude|S(​f​)|

by applying

​Besides, the normalized sample covariance matrices are averaged over snapshots to sN
form the conjugate symmetric matrix.

Here H represents conjugate transpose operator and is the sound pressure over the sth
snapshot.

The data preprocessing is provided by Professor in matlab scripts.

2.2 Source range mapping[1]

Since the source localization is a classification problem, we need to discretize the source
ranges into different classes or as known as labels. The label represents the actual source range
class and will be the target output for the model. SVM (Support Vector Machine) and
RF(Random Forest) methods could directly use the labels to train the model. However, for the
FNN (feed-forward neural networks), we need to map the K*1 labels into as K *K binary
vectors. The mapping method also called one-hot encoder. One hot encoding transforms
categorical features to a format that works better with classification and regression algorithms.

 2.3 PCA dimension reduction

Too many features in the data will cause misclassification due to complex features. Such
data with a high dimension are often transformed into lower dimensional by utilizing the
principal component analysis (PCA)[4]. It finds the low dimensional approximation of the data
by projecting it onto linear subspaces. This kind of technique has a broad usage such as
information retrieval, image processing, and genomic analysis[5]. The goal of PCA is to reduce
the dimensionality of the data while keep as much as possible of the variation of the original
data.

We first compute the eigenvalues of the sample covariance matrix

, where

Where the original data has M samples and n features, eigenvalues are

. Their corresponding eigenvectors will also be computed as

. These eigenvectors form a basis for . To project data onto a lower
dimension K, we will only keeps terms corresponds to the K largest eigenvalues.[6]

The input data after preprocessing contains 7200 features, thus, we need to extract the most
important features so that we can classify the data as accurate as possible. The problem is that
how to choose the dimension of the PCA so that it could keep the most important features and
abandon useless characteristics. We compare the PCA dimensions of from 10 to 100.

2.4 FNN

FNN works in a single forward direction. In FNN, the data moves from the input nodes,
through hidden layers and to the output nodes and there are no cycles or loops in the network[2].

We directly apply python Scikit-learn module to implement FNN method. Following is
an example code of implementation.

We preprocess the data and label the classes as we discussed in the preceding sections.

2.5 Random Forest

Random forest works as a large collection of decorrelated decision trees.The algorithm
will first create random subsets of original training set, each will form a decision tree. Then using
all decision trees to make a ranking of classifiers. At the end, a voting mechanism will be used to
determine the final class of one new sample.[3]

Like FNN method, we directly apply python Scikit-learn module to implement the
Random Forest algorithm.

2.6 ​Extremely randomized trees
Extremely randomized trees, known as extra tree, is another method of the decision tree

model, which segments the input data randomly into a number of regions. Then using a random

estimators to build decision tree on each sub-sets of the input data and averaging over the
decisions trees to improve accuracy and control overfitting.

For each input sample Xn, n = 1,N. The input data will be divided into two groups
using the randomly cutoff value c based on whether Xi is larger or less compared than c value.
Do this process repeated.

Basic algorithm:[7]

As we could see from the process above, it's almost the same process as the Random

Forest except that the random forest choose the best cutting threshold for features but Extra tree
choose the random cut. In real world, some data sets will work better in Extra compared to
Random Forest.

In order to fit Extra Tree models, we use Scikit-learn package:

2.7 Experiment

During our experiment, we tried different models for the predictions, but the highest
accurate models we tried are FNN, Random Forest and Extra trees. Also, we found that in order
to produce a low MAPE, the number of features left for training after PCA reduction varies from
each dataset. We also found that there is a relationship between the number of trees used in the
random forest classifier algorithm and the number of components will be used after the PCA.
With a certain number of trees, the number of features after PCA reduction has a certain range
that will result a relative low MAPE. At the same time, with larger number of trees, this range
will go up. However there is one thing to be sure that is the number of components after the PCA
reduction should not be too high, it tends to fit poorly as the effect of most features in the 7200
features are negligible.

As the random forest will generate trees using random selected subsets of training
samples, the MAPE is not very stable every time we run the algorithm, and the range to choose
from is too large, we are not able to determine what will be the best combination of the number
of trees, and the number of features to train. We will choose the ‘best’ combination by running
them through a reasonable range, and each will be repeated for 29 trials.

3. Results

 3.1 MAPE of FNN

Frequency No. of
Hidden
neurons

No. of
PCA

Data1

Data3

Data4

Data5

350Hz 1024 20 90.46 36.65 None None

950Hz 1024 20 83.31 36.99 None None

300-950Hz
Δf=10

1024 20 5.09 2.84 1.50 10.74

300-950Hz
Δf=10

1024 10 5.12 3.67 1.84 5.45

300-950Hz
Δf=10

1024 100 12.28 4.13 1.24 6.67

300-950Hz
Δf=10

64 20 28.31 5.05 1.39 2.18

300-950Hz
Δf=10

128 20 21.45 29.95 1.45 27.63

300-950Hz
Δf=10

256 20 6.12 22.12 1.27 16.44

300-950Hz
Δf=10

512 20 9.93 2.15 1.42 20.82

300-950Hz
Δf=10

2048 20 5.35 2.48 1.38 2.06

 Figure 1

Data1, 300-950Hz Δf=10 snapshot = 10
Left PCA=10, Right PCA=20
Bottom PCA=100
Hidden Layer Neuron = 1024

For dataset 1 with hidden layer neurons equal to 1024, when PCA=20, it gives the best
MAPE. Principal component analysis significantly reduce the dimension of the original data but
still keep the feature with largest variance. The original dataset with 300-950Hz and 10
increments has over 10000 features. It is much larger than the number of training data. So
Preprocessing the data with PCA can help FNN to capture the essence of the training data. When
PCA is too low it will make data lose original information. Retaining too many features will
disturb the ability of FNN to learn the pattern of data. In this particular case, when PCA is 20 it
gives better result especially when the source are far from the sensors. (See figure 1)

Figure 2 Data 3, 300-950Hz Δf=10 snapshot = 10
Left PCA=10, Right PCA=20
Bottom PCA=100

PCA=20 may not be the best for each dataset, it still gives fairly good result. We also
notice that MAPE is not always a good tool for measuring the FNN to predict the location. From
figure 2, even PCA = 100 gives higher MAPE compared to PCA = 20, it has a better visual result
as the predicted location are distributed along the ground truth curve while PCA =20 gives a
prediction looks like stairs. The outliers of PCA=100 affect the accuracy, but prediction the
continuous movement can neglect the outliers since the object cannot jump in a sudden.

Figure 3 Data 5 300-950Hz Δf=10 snapshot = 10
PCA=20
Hidden layer size left=64, Right=128
Bottom=2048

The number of hidden layer neurons may affect the result significantly. From the figure
above, for datasets 5, when the size is 64, it gives 2.18 MAPE. But when increasing the size to
128 the FNN will fail completely. Only when the size reaches 1024 will it give acceptable result.
For dataset 3, size 64 will lead to a complete fail. However, datasets 4 are immune to the change
of size of the hidden layer neurons.We found that 1024 neurons is generally a good size for
datasets. Depending on different datasets the optimal choice of hidden layer size is different.

3.2 MAPE of RF and ET
We compared the predictions before and after preprocessing the data using PCA dimension
reductions

Comparison of algorithm with and without PCA
Random Forest:
dataset 01:

Figure 1 w/o PCA Figure 2 w/ PCA=53

Figure 1 is the prediction using the random Forest after Processing PCA dimension reduction.
The model made a good prediction for around first 130 data. However, the differences between
the real data and predictions are large after the first 130 data. So the MAPE for Figure 1 is only
183.86%. After the PCA reduction, the differences between the real data and the
predictions becomes much smaller. The MAPE for figure 2 is 3.65%.

Extra Tree:

Figure3 w/o PCA Figure 4 w/PCA=53

Figure 3 is the predictions using Extra trees after processing PCA dimension reduction. As we
could see that the ability of the model for predictions becomes much weaker after first 130 data,
similar as the random forest algorithm. The MAPE for this model is 142.2%. However, after the
PCA reduction, the prediction describes the real data with minor mistakes. The MAPE for this
model is 3.44%

Comparison of Random Forest and Extra Tree
Since Random Forest and Extra Tree are really similar prediction models, we compared the
result predicted by the two models.

dataset 03:

 Figure 5(Random Forest) w/ PCA=20 Figure 6(Extra Tree) w/ PCA=20

After we pre processed the data, the MAPE in random forest model is 1.9%. The MAPE in Extra
Tree is 4.6%. It is easily to see from the figure 6 that there are some really bad predictions after
the first 120 points.

dataset 04:

 Figure7(Random Forest) w/ PCA=34 Figure8(Extra Tree) w/ PCA=34

After pre-processed the data, the MAPE in random forest is 1.12% but the MAPE in Extra Tree
is 1.04%. Though both models performed the data well, Extra Tree has lower MAPE in this
dataset.

Based on 5 datasets using both Random Forest and Extra Tree classifiers, they both have
better performance on some datasets.

4. Conclusion
Without using Principle Component Analysis to form reduced number of features for

training, FNN overperformed Random Forest and Extra Tree in terms of MAPE.
By using PCA dimension reduction, all three methods were able to achieve high accuracy

by using a small number of features instead of the original 7200 features. The accuracy of the
results could be highly influenced by the number of dimensions(features) in train data. There
does not exist a large difference between the performance of FNN, RF and ET over the given 5
datasets with proper tuning parameters.

5. Reference
[1] Haiqiang Niu, Emma Reeves,and Peter Gerstoft. ​Source localization in an ocean waveguide
using supervised machine learning. (2017)​. Scripps Institution of Oceanography, University of
California San Diego, La Jolla, California 92093-0238, USA

[2] C. M. Bishop(2006), Pattern Recognition and Machine Learning. Springer, Chaps. 4, 5 and 7.

[3]L. Breiman(2001), “Random Forest”, Mach. Learn. 45, 5-32.

[4]I. Jolliffe (2002). Principal component analysis. Springer. 2nd edition.

[5]C. Ding, X.F. He(2004), Proceedings of the 21 st International Conference on Machine
Learning, Banff, Canada

[6]F.F.Li (2008), COS 429 Course material, Princeton University, retrieved from:
http://www.cs.princeton.edu/courses/archive/fall08/cos429/CourseMaterials/lecture2/PCA_hand
out.pdf

[7]Geurts, Pierre, Damien Ernst, and Louis Wehenkel. "Extremely randomized trees." Machine
Learning 63.1 (2006): 3-42. Web.

http://www.cs.princeton.edu/courses/archive/fall08/cos429/CourseMaterials/lecture2/PCA_handout.pdf
http://www.cs.princeton.edu/courses/archive/fall08/cos429/CourseMaterials/lecture2/PCA_handout.pdf

