
Source	localization	in	an	ocean	waveguide	
using	supervised	machine	learning

Haiqiang Niu,	Emma	Reeves,	and	Peter	Gerstoft

Scripps	Institution	of	Oceanography,	UC	San	Diego

Part	I
• Localization	on	Noise09	data	and	SBCEx16	data	

D = 152 m

Zs = 5 m

R = 0:1! 2:86 km

Zr = 128! 143 m

"z = 1 m

Layer
Cp = 1572! 1593 m=s

; = 1:76 g=cm3 ,p = 2:0 dB=6
24 m

Halfspace Cp = 5200 m=s

; = 1:8 g=cm3 ,p = 2:0 dB=6

(a)

1490 1495 1500 1505 1510
Sound speed (m/s)

0

50

100

150

D
ep

th
 (m

)

(b)

Noise	09	Experiment

• One
• Two
• Three

Noise	09	Experiment

-117.43 -117.425 -117.42 -117.415 -117.41
32.59

32.6

32.61

32.62

VLA 2

32.59

32.6

32.61

32.62

VLA 2

32.59

32.6

32.61

32.62
La

tit
ud

e
(d

eg
)

VLA 2

(c)

(b)

(a)

Longitude (deg)

• Training	data
• Jan.	31,	2009	01:43-
2:05

• 2	m/s

• Test-Data-1
• Jan.	31,	2009	01:01-
01:24

• -2	m/s

• Test-Data-2
• Feb.	4,	2009	13:41-
13:51

• 4	m/s

Noise	09	Experiment
• Training	data
• Jan.	31,	2009	01:43-
2:05

• 2	m/s

• Test-Data-1
• Jan.	31,	2009	01:01-
01:24

• -2	m/s

• Test-Data-2
• Feb.	4,	2009	13:41-
13:51

• 4	m/s

Pre-Processing
1. Convert	p(t)	to	p(f) (Fast	Fourier	Transform)

2. Normalize	p(f):	

3. Construct	Cross-Spectral	Density	Matrix	(CSDM)
1. Contains	signal	coherence	information
2. Improves	Signal-to-Noise	Ratio	(SNR)

4. Concatenate	upper	triangular	elements’	real	and	imaginary	parts,	
vectorize	to	create	input	X

1. Reduces	memory	requirements

For	L sensors,	N training	samples,	
X has	size	L(L+1)	× N	.

L

L

1

L(L+1
)

Feed-Forward	Neural	Network
• 2-layer	network
• Classification	with	classes	rk	,	k	=	1,…,	K
• Activation	Functions:

• Layer	2:	Sigmoid	(σ(X))	
• Output	Layer:	Softmax

• Multiple-frequency	inputs	to	increase	SNR

• Best	error	rate:	
Test-Data-1: 3%	**
Freq.	=	300:10:950	Hz,	Hidden	Nodes	=	1024,	#	Outputs	=	690,	#	Snapshots	=	10

• Test-Data-2: 3%	**
Freq.	=	300:10:950	Hz,	Hidden	Nodes	=	1024,	#	Outputs	=	138,	#	Snapshots	=	5	or	20

• **MAPE	error,	Rpi =	predicted	range,	Rgi =	ground	truth	range:		
100
N

Rpi
− Rgi
Rgii=1

N

∑

Multiple	Frequencies:	FNN

• (a)-(c)	Test-Data-1	

• (d)-(f)	Test-Data-2

• From	top	to	bottom:	
550	Hz,	950	Hz,	and	
300-950	Hz	with	10	
Hz	increments

Other	parameters:	FNN
• Test-Data-1

• (a)-(c)	varying	#	of	
classes	(output	nodes)	
138,	690,	14	outputs

• (d)-(f) varying	#	of	
snapshots	(stacked	
CSDMs)
1,	5,	20	snapshots

Signal-to-Noise	Ratio:	FNN
• SNR	affects	any	algorithms	
ability	to	localize	a	source

• Source	localization	on	
simulated	data	with	added	
white	noise	at	SNR:
• (a)	-10	dB
• (b)	-5	dB
• (c)	0	dB
• (d)	5	dB

• Multiple	frequencies,	more	
snapshots,	also	increase	
SNR	indirectly

Support	Vector	Machine	(SVM)
• Hyperplane maximally	
separates	(overlapping)	
classes

• Shown:	2-class,	2-D	
example	with	no	
overlap

• Acoustic	source	
localization	has	~138	
classes	and	17,952	
dimensions!

0 5 10
x(1)

-10

-5

0

5

x
(2

)

dM

x0

xs

Class: -1
Class: 1
Support vectors
Hyperplane
Margin boundary

Support	Vector	Machine	(SVM)
• Gaussian	radial	basis	function	(RBF):

• Best	error	rate--
Test-Data-1	(left):		2%	**,	Test-Data-2	(right):		2%	**

**	MAPE	error

k = exp(− 1
K
x− x ' 2)

Random	Forest	(RF)
• Gini index	used	to	find	optimal	
partition:

I(tn – lm):	identity	function
lm:	estimated	class	for	region	m
tn :	true	label	of	a	point
nm:	number	of	points	in	region	m

Gini index	:	equivalently,	the	percent	
of	correctly	estimated	labels	
multiplied	by	the	percent	of	
incorrectly	estimated		labels.

-5 0 1.9 5 10
x1

-10

-5

0

4.6

10

15

x
2

`3 = !1

`1 = 1
`2 = 1

tn = !1

tn = 1

!" ≥ 1.9!" < 1.9

!(< 4.6 !(≥ 4.6

l3	=-1 l2=1

l1=1

H =
1
nm

I(tn,ℓm) 1−
1
nm

I(tn − ℓm)
⎡

⎣
⎢

⎤

⎦
⎥

xn∈xm

∑

Random	Forest	(RF)
• Bagging	is	used	to	avoid	learning	noise	in	the	data

1. Learn	a	tree	model	until	any	new	region	contains	less	than	
50	points	(then	stop)

2. Randomly	initialize	the	model	and	run	again.	Since	it	is	a	
greedy	model,	the	trees	likely	won’t	match

3. Average	the	label	for	each	point	across	all	trees:	

where is	the	estimated	class	of	xi for	the	bth tree

f̂ bag(xn) =
1
B

f̂ trree,b(xn)
b=1

B

∑

f̂ trree,b(xi)

Random	Forest	(RF)
• Best	error	rate--

Test-Data-1	(left):		3%	**,	Test-Data-2	(right):		2%	**

**	MAPE	error

Regression	v	Classification
• Replace	error	cost	function	with	mean	squared	(or	
absolute)	error:

• FNN:	

• SVM:

• RF:		

E(w) = − 1
2

y(xn,w)− rn
2

n=1

N

∑

E(yn − rn) =
0,

yn − rn −ε,

⎧
⎨
⎪

⎩⎪

yn − rn < ε

otherwise

H = (ℓm − rn)
2

xn∈xm

∑

ℓm =
1
nm

rn
xn∈xm

∑

Regression
• Left:	FNN	results	for	(a)-(c)	Test-Data-1	and	(b)-(d)	Test-Data-2.	Top	
to	Bottom:	1,	2,	and	3	hidden	layers

• Right:	SVM	(top)	and	RF	
(bottom)	results	for	(a)-(b)	
Test-Data-1	and	(c)-(d)	Test-
Data-2	

Matched-Field	Processing
• Matched-field	processing	(MFP)	is	a	popular	method	in	
underwater	acoustics

• Maximize	|ai xi|2,	where	ai is	a	replica	and	xi	is	the	data,	both	at	the
ith receiver,	over	all	i

• ai is	generated	by	a	realistic	physical	model	(e.g.	using	the	wave	
equation)
• Requires	us	to	know	the	environment	pretty	well

• Add	L2 or	L1	penalties	to	promote	sparsity

• Adaptive	solutions	make	assumptions	on	the	noise	to	suppress	it

Matched-Field	Processing
• The	properties	of	sound	in	the	ocean	leads	to	peak	ambiguities	or	
“sidelobes”,	that	degrades	performance

120

Preliminary	results	from	
SBCEx16
• text

Part	II
• How	to	use	Python	for	machine	learning	codes

FNN	in	TensorFlow
1. Read	in	datasets define	a	function

not	used

load	training	and	test	sets

fix	dimensions	to	match	TensorFlow input

assign	to	data_sets object
make	sure	
dimensions	
look	right

FNN	in	TensorFlow
• Properties	of	data_sets object

FNN	in	TensorFlow
• How	to	define	the	mini-batch	update
• Do	this	within	the	data_sets object	declaration	

FNN	in	TensorFlow
• Import	libraries

prevents	Python	from	
getting	confused

import	separate	file	to	load	data

here	we	use	MatPlotLib

when	looping	over	files	in	a	directory

FNN	in	TensorFlow
• TensorFlow uses	“flags”	to	keep	track	of	model	parameters

• It	also	uses	“Interactive	Sessions”	that	update	variables	
dynamically	when	run

FNN	in	TensorFlow
• First,	load	data	and	define	neural	network	architecture

• (We	put	this	inside	the	function train_and_prediction()	for	
processing	multiple	files)

• (You	could	define	the	function	with	more	inputs,	like	
n_hidden,	to	try	different	architectures)

FNN	in	TensorFlow
• Second,	define	your	variables
• These	include:	weights,	biases,	weight	and	bias	random	
initialization,	cost	function,	optimization	method,	
performance	metrics	(i.e.	mean	square	error)

• Example:	define	weight	variable

other	types:	
constant,	weight_variable, and	
bias_variable.	
See	TensorFlow documentation	for	more.

FNN	in	TensorFlow
• Third,	define	a	neural	network	layer

• As	we	saw	in	previous	lectures,	we	usually	use	sigmoid activation	function	
for	hidden	layers	and	softmax or	sigmoid	for	output	layers

• You	can	always	find	more	in	online	TensorFlow documents

preallocate
weights	&	
biases

compute	
activationapply	activation	

function	(if	any)

FNN	in	TensorFlow
• Fourth,	define	neural	network	layer	architecture	

special	TensorFlow feature:
Softmax is	built	into	the	error	function	
(softmax_cross_entropy_with_logits)

A	dropout	layer	removes	
hidden	nodes	with	
probability	50%	to	prevent	
overfitting.

FNN	in	TensorFlow
• Finally,	train	and	predict!

• All	variables	must	be	initialized	first:

• Run	the	Interactive	Session	we	defined	earlier

Berkeley	Lab	Computing	Sciences

photo	credit:	Kris	Bouchard

photo	credit:	Roy	Kaltschmidt

Next	step,	deep	learning?.....

