
AnnouncementsClass is  170.

Matlab Grader homework, 
1 and 2 (of less than 9) homeworks Due 22 April tonight, Binary graded.
167, 165,164 has done the homework. (If you have not done HW talk to me/TA!)
Homework 3 due 5 May
Homework 4 (SVM +DL) due ~24 May

Jupiter “GPU” home work released Wednesday. Due 10 May

Projects: 39 Groups formed. Look at Piazza for help.
Guidelines is on Piazza
May 5 proposal due. TAs and Peter can approve. 

Today: 
• Stanford CNN 10, CNN and seismics

Wednesday 
• Stanford CNN 11, SVM, (Bishop 7), 
• Play with Tensorflow playground before class http://playground.tensorflow.org

Solve the spiral problem 
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

e.g. Sentiment Classification
sequence of words -> sentimentFei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201714

Recurrent Neural Networks: Process Sequences

e.g. Machine Translation
seq of words -> seq of words
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Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level
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Vanilla Neural Networks

“Vanilla” Neural Network o
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201722

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1

RNN: Computational Graph

hT
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h0 fW h1 fW h2 fW h3

x3

yT
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x2x1W

RNN: Computational Graph: Many to Many
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

h log e f i
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“e” “l” “l” “o”
SampleExample: 

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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Truncated Backpropagation through time
Loss
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Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 
1997

Vanilla RNN LSTM Cell state

Hidden state h(t)
Cell state c(t)

r
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

f: Forget gate, Whether to erase cell
i: Input gate, whether to write to cell
g: Gate gate (?), How much to write to cell
o: Output gate, How much to reveal cell

s
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]
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Classifying emergent and 
impulsive seismic noise in 

continuous seismic 
waveforms

Christopher W Johnson            NSF Postdoctoral Fellow     

UCSD / Scripps Institution of  Oceanography



Local Time
16                   20                      0                     4                       8                     12          16

The problem
• Identify material failures in the 

upper 1 km of  the crust

• Separate microseismicity (M<1)

• 59-74% of  daily record is not 
random noise
• Earthquake <1%
• Air-traffic ~7%
• Wind ~6%

• Develop new waveform classes
• air-traffic, vehicle-traffic, wind, 

human, instrument, etc.
Ben-Zion et al., GJI 2015

4/27/19 Christopher W Johnson – ECE228 CNN 2



The data
• 2014 deployment for ~30 days 

• 1100 vertical 10Hz geophones
• 10-30 m spacing
• 500 samples per second
• 1.6 Tb of  waveform data

• Experiment design optimized to 
explore properties and deformation 
in the shallow crust; upper 1km
• High res. velocity structure
• Imaging the damage zone
• Microseismic detection

~600 m

Ben-Zion et al., GJI 2015
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Earthquake detection
• Distributed region sensor 

network
• Source location random, but 

expected along major fault lines
• P-wave (compression) & S-wave 

(shear) travel times
• Grid search / regression to 

obtain location
• Requires robust detections for 

small events
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from IRIS website
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Recent advances in seismic detection

• 3-component 
seismic data 
(east, north, vert)

• CNN
• Each component 

is channel
• Softmax

probability 
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Ross et al., BSSA 2018
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Recent advances in seismic detection
• Example of  continuous waveform

• Every sample is classified as noise, P-wave, or S-wave
• Outperforms traditional methods utilizing STA/LTA

4/27/19 Christopher W Johnson – ECE228 CNN 6

Ross et al., BSSA 2018



Future direction is seismology
• Utilize accelerometer in everyone’s smart phone
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Kong et al., SRL, 2018



Research Approach and Objectives
• Need labeled data. This is >80% of  the work!

• Earthquakes
• Arrival time obtained from borehole seismometer within array

• Define noise
• Develop new algorithm to produce 2 noise labels

• Signal processing / spectral analysis
• Calculate earthquake SNR

• Discard events with SNR ~1
• Waveforms to spectrogram

• Matrix of  complex values
• Retain amplitude and phase

• Each input has 2 channels
• This is not a rule, just a choice 
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Deep learning model – Noise Labeling
• Labeling is expensive

• 1 day with 1100 geophones
• ~1800 CPU hrs on 3.4GHz Xeon Gold 

(1.7hr/per daily record)
• ~9000 CPU hrs on 2.6 GHz Xeon E5 

on COMET (5x decrease)

• Noise training data
• 1s labels
• 1100 stations for 3 days
• Use consecutive 4 s intervals
• Calculate spectrogram

Image from Meng, Ben-Zion, and Johnson, in GJI revisions
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Deep learning model – Assemble data
• Obtain earthquake arrival times

• Extract 4s waveforms 1s before p-wave arrival
• Vary start time within ±0.75s before p-wave
• Use each event 5x to retain equal weight with noise
• Filter 5-30 Hz, require SNR > 1.5
• Obtain ~480,000 p-wave examples
• Incorporates spatial variability across array

• Precalculate 2 noise labels
• Use 4s of  continuous labels

• Data set contains ~1.2 million labeled wavelets
• Each API has input format
• Shuffle data – Data must contain variability in subsets

P-wave

Noise
4/27/19 Christopher W Johnson – ECE228 CNN 10
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Deep learning model - Labels
• Earthquake • Random noise • Not random noise

• STFT
• Normalize waveform
• Retain amp & phase
• 2 layer input matrix

• Start with 3 labels
• Equal number in each class
• It is possible that non-random 

noise contains earthquakes
4/27/19 Christopher W Johnson – ECE228 CNN 11



Research Approach and Objectives
• Build Convolutional Neural Network

• Filter size, # layers, activation func (ReLU), 
• Pooling, batch normalization
• FCN, softmax

• Get the model working before fine tuning
• Hyperparameters

• Learning rate
• Good start is 0.01; Adjust up/down by an order of  magnitude
• Test decay

• Slow the learning rate with each epoch

• Test model design
• Improve model by systematically adjusting

• If  too many things change at once, which one helps / hurts
• Batch size

• 32-256 is a good start
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Software
• SKlearn

• Data preprocessing 
• Train, Validate, Test
• Shuffle

• Model performance
• Classification report

• Keras /  Tensorflow
• Keras uses Tensorflow backend

• Great place to start learning

• Pytorch
• Use if  familiar with Python and CNN
• Model is a class

• Many examples exist

4/27/19 Christopher W Johnson – ECE228 CNN 13



Convolutional Neural Network

The model design varies but 
this is the general setup

4/27/19 Christopher W Johnson – ECE228 CNN 14

251 x 41

251 x 41 x 32

ReLU
Pooling 2x2

125 x 20 x 64

ReLU
Pooling 2x2

62 x 10 x 128

I l l
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Convolutional Neural Network
• Convolutional

• Scan matrix by translating a mask or 
template and taking inner product

• Each mask contains filter weights
• Add bias to convolution output
• Repeat for set number of  output layers 

all using different weights

• Weights and biases are the only 
parameters
• Number of  parameters increases to the 

millions if  using multiple hidden layers

from http://deeplearning.stanford.edu/
4/27/19 Christopher W Johnson – ECE228 CNN 15



Convolutional Neural Network

• Rectifier
• Rectified linear unit (ReLU)
• Remove negative values
• Otherwise the problem is linear

• Can also try
• tanh, Leaky ReLU, etc

from algorithmia.com
4/27/19 Christopher W Johnson – ECE228 CNN 16



Convolutional Neural Network

• Pooling
• Down sample 
• Reduce dimensionality of  

subsequent layers
• Common techniques

• Max pooling (non-linear)
• Avg. pooling (linear)

• After each pooling the filter 
kernel is ‘zoomed out’ from the 
input matrix

from algorithmia.com
4/27/19 Christopher W Johnson – ECE228 CNN 17



Convolutional Neural Network
• Advanced feature extraction technique

• Each layer has many filters detecting various features

Output ConvNet features to a 
standard neural network

4/27/19 Christopher W Johnson – ECE228 CNN 18



Convolutional Neural Network
• Designed to learn complex neural 

decision path
• Hidden layers with ReLU activation

• Weights are trainable parameters

• Output final layer to softmax
activation function
• sum(output layer) = 1
• Probability estimate for final layer

• Stochastic gradient descent
• Adam optimization

• Variable learning rate

• ConvNet models require >50k 
LABELED training examples; even 
more for very complex problems

Softmax Activation

4/27/19 Christopher W Johnson – ECE228 CNN 19



How is that actually done?
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# Very simple Keras with Tensorflow backend example
model = Sequential()
# First filter
model.add(Conv2D(64, (5, 5), activation='relu', padding='same', input_shape=(n, o, p)))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
# Second filter
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
# Convolution operators are multi-dimension matrix. Flatten to array
model.add(Flatten()) 
# Send extracted features from convolutions to fully connected Neural Network
model.add(Dense(1024, activation='relu'))
model.add(BatchNormalization())
# Hidden layer
model.add(Dense(1024, activation='relu'))
model.add(BatchNormalization())
# Output layer with softmax activation
model.add(Dense(3, activation='softmax'))
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Model performance (on test data!!)
• Type I Error (precision)

• Quantify false positive
• Prediction correct

• !"#$ %&'()(*$
!"#$ %&'()(*$+,-.'$ %&'()(*$

• Type II Error (recall)
• Quantify false negative
• Prediction misclassifies

• !"#$ %&'()(*$
!"#$ %&'()(*$+,-.'$ /$0-)(*$

• F1-score
• Good = low FP and low FN
• Bad    = high FP and high FN
• Perfect == 1
• Failure == 0

4/27/19 Christopher W Johnson – ECE228 CNN 21
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• Model training w/ ~930,000 2-layer 
spectral amp and phase
• ~1 hour training time

• Validation and test
• Good precision on earthquakes
• Mislabeled noise data is expected
• Random noise and non-random noise 

shows 80-88% precision
• Non-random will contain some 

earthquakes producing 

Training metrics
Validation Set # 168587

precision recall f1-score support
EQ 0.99 0.93 0.96 56107
RN 0.88 0.93 0.91 56298
NRN 0.86 0.87 0.87 56182

weighted avg 0.91 0.91 0.91 168587

Test Set # 50000
precision recall f1-score support

EQ 0.98 0.85 0.91 16799
RN 0.87 0.93 0.90 16677
NRN  0.80 0.86 0.83 16524

weighted avg 0.89 0.88 0.88 50000

Deep learning model - Training

4/27/19 Christopher W Johnson – ECE228 CNN 22



Deep learning model - Training

• Earthquakes
• High precision ~99%
• Recall ~93%

• Not-random noise 
expected to have 
mislabeled input

• Random noise
• Precision ~88%
• Recall ~93%

• Non-random noise
• Precision ~86%
• Recall ~87%

4/27/19 Christopher W Johnson – ECE228 CNN 23



Deep learning model – Eq Detections
• 1.5 minutes to classify 1 s 

interval for entire daily 
record

• Results for J-day 149
• 19 catalog events
• 64 CNN detections
• 10 node minimum for detection
• Node stack average

• Time shifted to max cc
• Borehole seismometer 

comparison
• Filtered 5-30 Hz

• Similar results for all days 
processed

• Comparable to RF model but 
faster

4/27/19 Christopher W Johnson – SIO Geophysics Seminar 24



Remarks

• CNN can classify subtle variations in waveforms
• Used spectrogram here
• Time domain waveforms also will perform well if  trained correctly

• Advantages
• Trained model can classify waveforms more efficiently
• Potential to discover new observations

• Other possible directions
• Recurrent Neural Networks

• Incorporate time information
• Denoise with autoencoders

4/27/19 Christopher W Johnson – ECE228 CNN 25


