
AnnouncementsClass is  170.

Matlab Grader homework, 
1 and 2 (of less than 9) homeworks Due 22 April tonight, Binary graded.
167, 165,164 has done the homework. (If you have not done HW talk to me/TA!)
Homework 3 due 5 May
Homework 4 (SVM +DL) due ~24 May

Jupiter “GPU” home work released Wednesday. Due 10 May

Projects: 39 Groups formed. Look at Piazza for help.
Guidelines is on Piazza
May 5 proposal due. TAs and Peter can approve. 

Today: 
• Stanford CNN 10, CNN and seismics

Wednesday 
• Stanford CNN 11, SVM, (Bishop 7), 
• Play with Tensorflow playground before class http://playground.tensorflow.org

Solve the spiral problem 

http://playground.tensorflow.org/
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

e.g. Sentiment Classification
sequence of words -> sentimentFei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201714

Recurrent Neural Networks: Process Sequences

e.g. Machine Translation
seq of words -> seq of words
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Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level
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Vanilla Neural Networks

“Vanilla” Neural Network



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201720

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201722

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1

RNN: Computational Graph

hT
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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.11

.17

.68
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.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample: 

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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Truncated Backpropagation through time
Loss
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Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 
1997

Vanilla RNN LSTM Cell state

Hidden state h(t)
Cell state c(t)
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

f: Forget gate, Whether to erase cell
i: Input gate, whether to write to cell
g: Gate gate (?), How much to write to cell
o: Output gate, How much to reveal cell
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☉
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ht-1
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f
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g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack



Classifying emergent and 
impulsive seismic noise in 

continuous seismic 
waveforms

Christopher W Johnson            NSF Postdoctoral Fellow     

UCSD / Scripps Institution of  Oceanography



Local Time
16                   20                      0                     4                       8                     12          16

The problem
• Identify material failures in the 

upper 1 km of  the crust

• Separate microseismicity (M<1)

• 59-74% of  daily record is not 
random noise
• Earthquake <1%
• Air-traffic ~7%
• Wind ~6%

• Develop new waveform classes
• air-traffic, vehicle-traffic, wind, 

human, instrument, etc.
Ben-Zion et al., GJI 2015

4/27/19 Christopher W Johnson – ECE228 CNN 2



The data
• 2014 deployment for ~30 days 

• 1100 vertical 10Hz geophones
• 10-30 m spacing
• 500 samples per second
• 1.6 Tb of  waveform data

• Experiment design optimized to 
explore properties and deformation 
in the shallow crust; upper 1km
• High res. velocity structure
• Imaging the damage zone
• Microseismic detection

~600 m

Ben-Zion et al., GJI 2015
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Earthquake detection
• Distributed region sensor 

network
• Source location random, but 

expected along major fault lines
• P-wave (compression) & S-wave 

(shear) travel times
• Grid search / regression to 

obtain location
• Requires robust detections for 

small events

4/27/19 Christopher W Johnson – ECE228 CNN 4

from IRIS website



Recent advances in seismic detection

• 3-component 
seismic data 
(east, north, vert)

• CNN
• Each component 

is channel
• Softmax

probability 

4/27/19 Christopher W Johnson – ECE228 CNN 5

Ross et al., BSSA 2018



Recent advances in seismic detection
• Example of  continuous waveform

• Every sample is classified as noise, P-wave, or S-wave
• Outperforms traditional methods utilizing STA/LTA

4/27/19 Christopher W Johnson – ECE228 CNN 6

Ross et al., BSSA 2018



Future direction is seismology
• Utilize accelerometer in everyone’s smart phone
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Kong et al., SRL, 2018



Research Approach and Objectives
• Need labeled data. This is >80% of  the work!

• Earthquakes
• Arrival time obtained from borehole seismometer within array

• Define noise
• Develop new algorithm to produce 2 noise labels

• Signal processing / spectral analysis
• Calculate earthquake SNR

• Discard events with SNR ~1
• Waveforms to spectrogram

• Matrix of  complex values
• Retain amplitude and phase

• Each input has 2 channels
• This is not a rule, just a choice 
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Deep learning model – Noise Labeling
• Labeling is expensive

• 1 day with 1100 geophones
• ~1800 CPU hrs on 3.4GHz Xeon Gold 

(1.7hr/per daily record)
• ~9000 CPU hrs on 2.6 GHz Xeon E5 

on COMET (5x decrease)

• Noise training data
• 1s labels
• 1100 stations for 3 days
• Use consecutive 4 s intervals
• Calculate spectrogram

Image from Meng, Ben-Zion, and Johnson, in GJI revisions
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Deep learning model – Assemble data
• Obtain earthquake arrival times

• Extract 4s waveforms 1s before p-wave arrival
• Vary start time within ±0.75s before p-wave
• Use each event 5x to retain equal weight with noise
• Filter 5-30 Hz, require SNR > 1.5
• Obtain ~480,000 p-wave examples
• Incorporates spatial variability across array

• Precalculate 2 noise labels
• Use 4s of  continuous labels

• Data set contains ~1.2 million labeled wavelets
• Each API has input format
• Shuffle data – Data must contain variability in subsets

P-wave

Noise
4/27/19 Christopher W Johnson – ECE228 CNN 10



Deep learning model - Labels
• Earthquake • Random noise • Not random noise

• STFT
• Normalize waveform
• Retain amp & phase
• 2 layer input matrix

• Start with 3 labels
• Equal number in each class
• It is possible that non-random 

noise contains earthquakes
4/27/19 Christopher W Johnson – ECE228 CNN 11



Research Approach and Objectives
• Build Convolutional Neural Network

• Filter size, # layers, activation func (ReLU), 
• Pooling, batch normalization
• FCN, softmax

• Get the model working before fine tuning
• Hyperparameters

• Learning rate
• Good start is 0.01; Adjust up/down by an order of  magnitude
• Test decay

• Slow the learning rate with each epoch

• Test model design
• Improve model by systematically adjusting

• If  too many things change at once, which one helps / hurts
• Batch size

• 32-256 is a good start

4/27/19 Christopher W Johnson – ECE228 CNN 12



Software
• SKlearn

• Data preprocessing 
• Train, Validate, Test
• Shuffle

• Model performance
• Classification report

• Keras /  Tensorflow
• Keras uses Tensorflow backend

• Great place to start learning

• Pytorch
• Use if  familiar with Python and CNN
• Model is a class

• Many examples exist

4/27/19 Christopher W Johnson – ECE228 CNN 13



Convolutional Neural Network

The model design varies but 
this is the general setup

4/27/19 Christopher W Johnson – ECE228 CNN 14

251 x 41

251 x 41 x 32

ReLU
Pooling 2x2

125 x 20 x 64

ReLU
Pooling 2x2

62 x 10 x 128



Convolutional Neural Network
• Convolutional

• Scan matrix by translating a mask or 
template and taking inner product

• Each mask contains filter weights
• Add bias to convolution output
• Repeat for set number of  output layers 

all using different weights

• Weights and biases are the only 
parameters
• Number of  parameters increases to the 

millions if  using multiple hidden layers

from http://deeplearning.stanford.edu/
4/27/19 Christopher W Johnson – ECE228 CNN 15



Convolutional Neural Network

• Rectifier
• Rectified linear unit (ReLU)
• Remove negative values
• Otherwise the problem is linear

• Can also try
• tanh, Leaky ReLU, etc

from algorithmia.com
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Convolutional Neural Network

• Pooling
• Down sample 
• Reduce dimensionality of  

subsequent layers
• Common techniques

• Max pooling (non-linear)
• Avg. pooling (linear)

• After each pooling the filter 
kernel is ‘zoomed out’ from the 
input matrix

from algorithmia.com
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Convolutional Neural Network
• Advanced feature extraction technique

• Each layer has many filters detecting various features

Output ConvNet features to a 
standard neural network
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Convolutional Neural Network
• Designed to learn complex neural 

decision path
• Hidden layers with ReLU activation

• Weights are trainable parameters

• Output final layer to softmax
activation function
• sum(output layer) = 1
• Probability estimate for final layer

• Stochastic gradient descent
• Adam optimization

• Variable learning rate

• ConvNet models require >50k 
LABELED training examples; even 
more for very complex problems

Softmax Activation

4/27/19 Christopher W Johnson – ECE228 CNN 19



How is that actually done?
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# Very simple Keras with Tensorflow backend example
model = Sequential()
# First filter
model.add(Conv2D(64, (5, 5), activation='relu', padding='same', input_shape=(n, o, p)))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
# Second filter
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
# Convolution operators are multi-dimension matrix. Flatten to array
model.add(Flatten()) 
# Send extracted features from convolutions to fully connected Neural Network
model.add(Dense(1024, activation='relu'))
model.add(BatchNormalization())
# Hidden layer
model.add(Dense(1024, activation='relu'))
model.add(BatchNormalization())
# Output layer with softmax activation
model.add(Dense(3, activation='softmax'))



Model performance (on test data!!)
• Type I Error (precision)

• Quantify false positive
• Prediction correct

• !"#$ %&'()(*$
!"#$ %&'()(*$+,-.'$ %&'()(*$

• Type II Error (recall)
• Quantify false negative
• Prediction misclassifies

• !"#$ %&'()(*$
!"#$ %&'()(*$+,-.'$ /$0-)(*$

• F1-score
• Good = low FP and low FN
• Bad    = high FP and high FN
• Perfect == 1
• Failure == 0

4/27/19 Christopher W Johnson – ECE228 CNN 21



• Model training w/ ~930,000 2-layer 
spectral amp and phase
• ~1 hour training time

• Validation and test
• Good precision on earthquakes
• Mislabeled noise data is expected
• Random noise and non-random noise 

shows 80-88% precision
• Non-random will contain some 

earthquakes producing 

Training metrics
Validation Set # 168587

precision recall f1-score support
EQ 0.99 0.93 0.96 56107
RN 0.88 0.93 0.91 56298
NRN 0.86 0.87 0.87 56182

weighted avg 0.91 0.91 0.91 168587

Test Set # 50000
precision recall f1-score support

EQ 0.98 0.85 0.91 16799
RN 0.87 0.93 0.90 16677
NRN  0.80 0.86 0.83 16524

weighted avg 0.89 0.88 0.88 50000

Deep learning model - Training

4/27/19 Christopher W Johnson – ECE228 CNN 22



Deep learning model - Training

• Earthquakes
• High precision ~99%
• Recall ~93%

• Not-random noise 
expected to have 
mislabeled input

• Random noise
• Precision ~88%
• Recall ~93%

• Non-random noise
• Precision ~86%
• Recall ~87%

4/27/19 Christopher W Johnson – ECE228 CNN 23



Deep learning model – Eq Detections
• 1.5 minutes to classify 1 s 

interval for entire daily 
record

• Results for J-day 149
• 19 catalog events
• 64 CNN detections
• 10 node minimum for detection
• Node stack average

• Time shifted to max cc
• Borehole seismometer 

comparison
• Filtered 5-30 Hz

• Similar results for all days 
processed

• Comparable to RF model but 
faster

4/27/19 Christopher W Johnson – SIO Geophysics Seminar 24



Remarks

• CNN can classify subtle variations in waveforms
• Used spectrogram here
• Time domain waveforms also will perform well if  trained correctly

• Advantages
• Trained model can classify waveforms more efficiently
• Potential to discover new observations

• Other possible directions
• Recurrent Neural Networks

• Incorporate time information
• Denoise with autoencoders

4/27/19 Christopher W Johnson – ECE228 CNN 25



Kernels

Information unchanged, but now we 
have a linear classifier on the 
transformed points.

With the kernel trick, we just need kernel
! ", $ = &(")) &($)

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x
(1)

|{z}
house’s list price

, x
(2)

|{z}
estimated worth

, x
(3)

|{z}
length of time on market

, x
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in a good area

, ...
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We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x
(1)2

, x
(2)2

, x
(1)
x
(2)
⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x
(1)2

z
(1)2 + x

(2)2
z
(2)2 + x

(1)
x
(2)
z
(1)
z
(2)
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Example 2:

[x(1), x(2), x(3)] ! �

⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.
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Input Space Feature Space
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Lecture 10

Support Vector Machines

Non Bayesian!

Features:

• Kernel

• Sparse representations

• Large margins



Regularize for plausibility

• Which one is best?

• We maximize the margin

Regularize for Plausibility (Generalizability)

Stephen Wright () Big Data Perspective January 2016 11 / 29

Regularize for Plausibility (Generalizability)

Stephen Wright () Big Data Perspective January 2016 11 / 29

500 Chapter 14. Kernels

Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.

R1
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y > 0

y < 0

w
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r = f(x)
∥w∥

x⊥

− w0
∥w∥

(a)

y = 0

y = 1

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

(b)

Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0 , otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0 .
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).
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Support Vector Machines

• The line that maximizes the minimum 

margin is a good bet.

– The model class of “hyper-planes with a margin m” 

has a low VC dimension if m is big.

• This maximum-margin separator is 

determined by a subset of the datapoints.

– Datapoints in this subset  are called 

“support vectors”.

– It is useful computationally if only few 

datapoints are support vectors, because 

the support vectors decide which side of 

the separator a test case is on.

The support vectors are 

indicated by the circles around 

them.



Lagrange multiplier (Bishop App E)

max $ % subject to . % = 0

Taylor	expansion
. 9 + ; = . 9 + <=∇ . 9

? %, A = $ % + A.(%)



Lagrange multiplier (Bishop App E)

max $ 9 subject to . 9 > 0
? 9, A = $ 9 + A.(9)

Either ∇ f 9 = G
Then . 9 is	inactive,	A=0

Or . 9 = 0 but	A >0

Thus optimizing ? 9, A with the 

Karesh-Kuhn-Trucker (KKT) 

equations

. 9 ≥ 0
A ≥ 0

A. 9 = 0



Testing a linear SVM

• The separator is defined as the set of points for which:
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