Class is 170.

Announcements

Matlab Grader homework,

1 and 2 (of less than 9) homeworks Due 22 April **tonight**, Binary graded. 167, 165,164 has done the homework. (**If you have not done HW talk to me/TA!**) Homework 3 due **5 May Homework 4 (SVM +DL) due ~24 May**

Jupiter "GPU" home work released Wednesday. Due 10 May

Projects: 39 Groups formed. Look at Piazza for help. Guidelines is on Piazza

May 5 proposal due. TAs and Peter can approve.

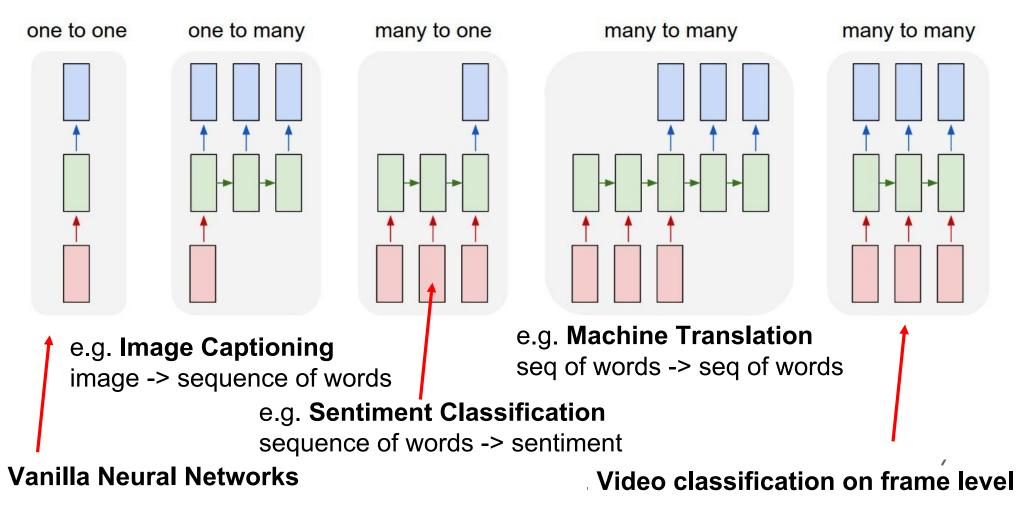
Today:

• Stanford CNN 10, CNN and seismics

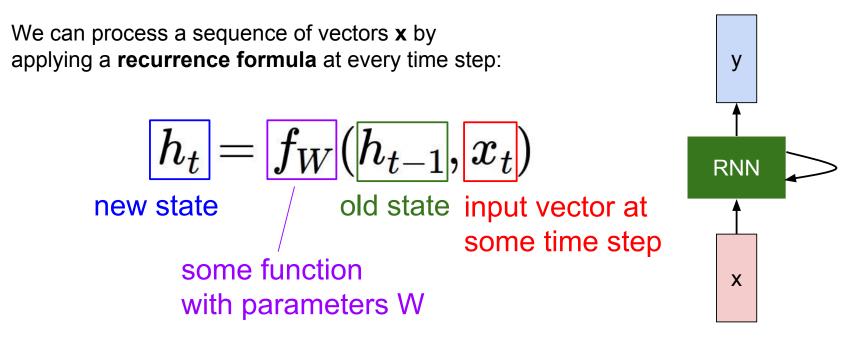
Wednesday

- Stanford CNN 11, SVM, (Bishop 7),
- Play with Tensorflow playground before class <u>http://playground.tensorflow.org</u>
 Solve the spiral problem

Recurrent Neural Networks: Process Sequences

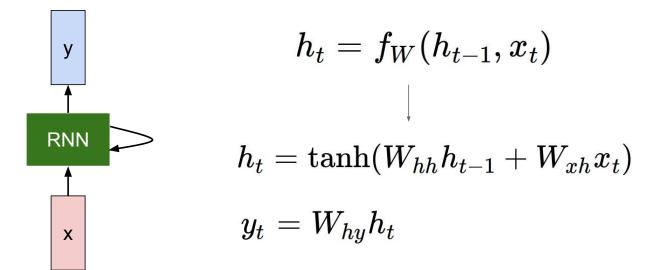


Recurrent Neural Network

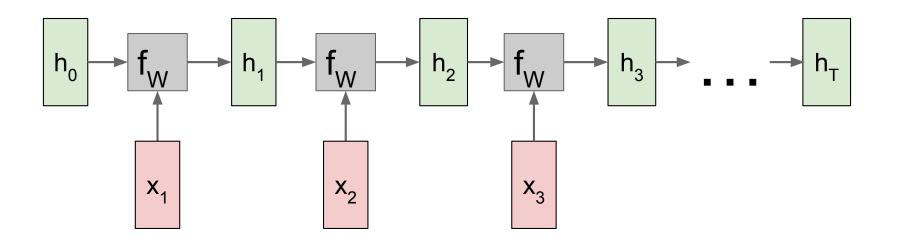


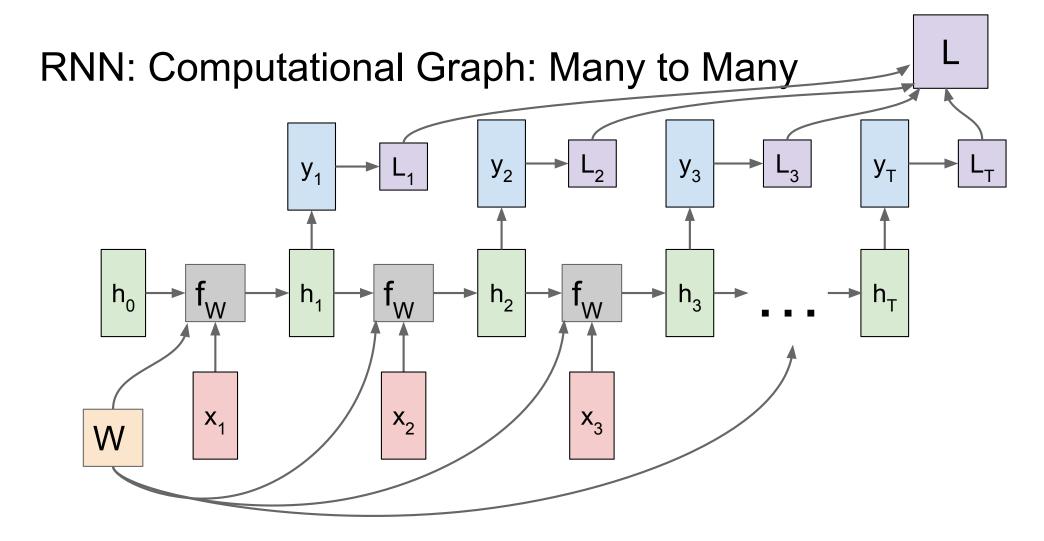
(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector h:



RNN: Computational Graph





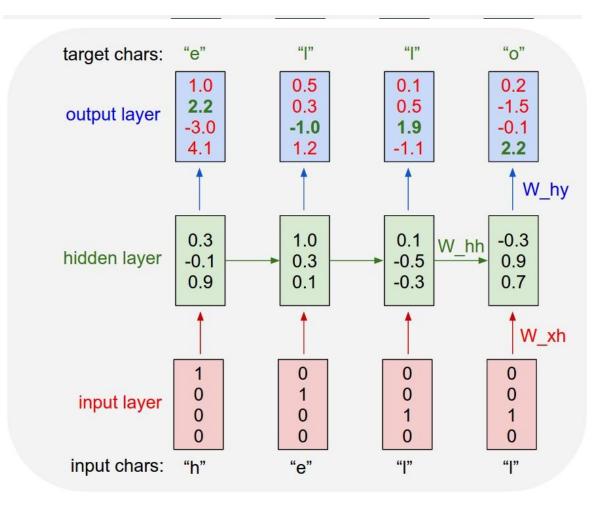
Example: Character-level Language Model

Vocabulary: [h,e,I,o]

Example training sequence: **"hello"**

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

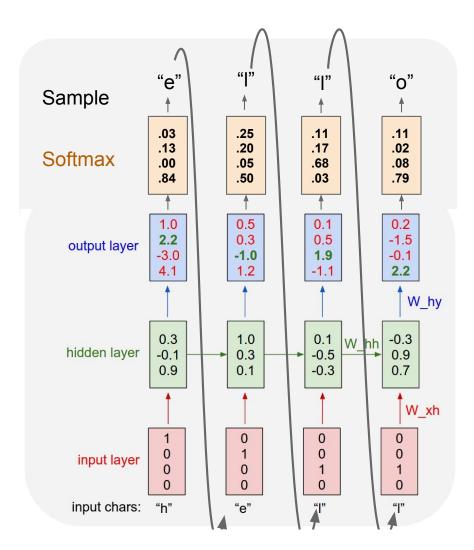
$$y_t = W_{hy}h_t$$



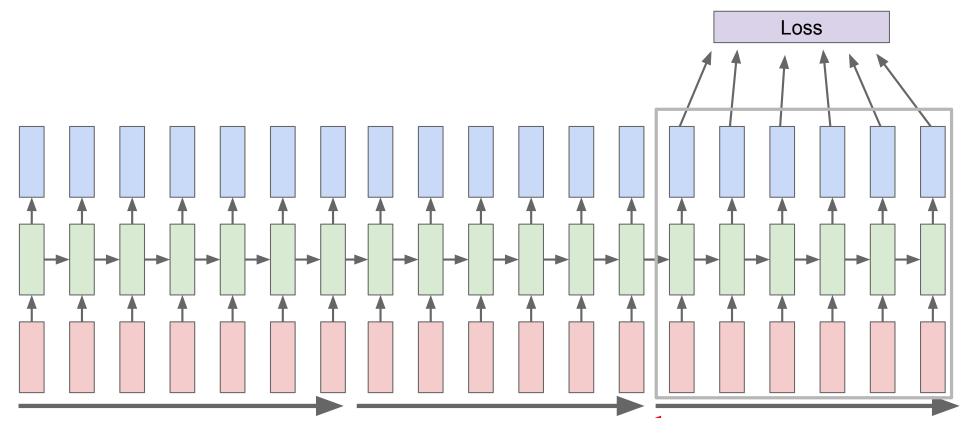
Example: Character-level Language Model Sampling

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model



Truncated Backpropagation through time



Long Short Term Memory (LSTM)

Vanilla RNN

LSTM Cell state

$$h_t = \tanh\left(W\begin{pmatrix}h_{t-1}\\x_t\end{pmatrix}\right)$$

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

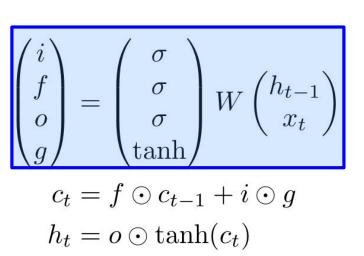
Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation

Hidden state h(t) Cell state c(t) Long Short Term Memory (LSTM) [Hochreiter et al., 1997]

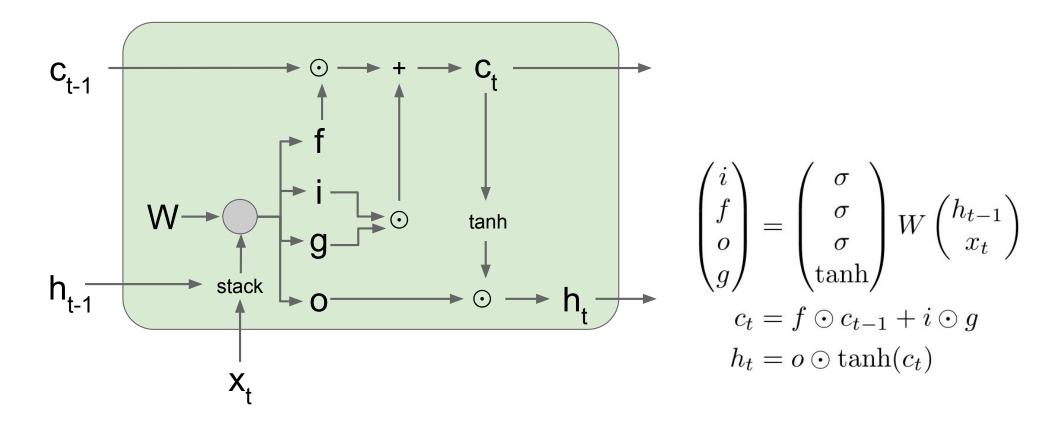
> vector from below (x) sigmoid Х sigmoid h W vector from sigmoid 0 before (h) tanh g 4*h 4h 4h x 2h

f: <u>Forget gate</u>, Whether to erase cell

- i: <u>Input gate</u>, whether to write to cell
- g: <u>Gate gate</u> (?), How much to write to cell
- o: Output gate, How much to reveal cell



Long Short Term Memory (LSTM) [Hochreiter et al., 1997]



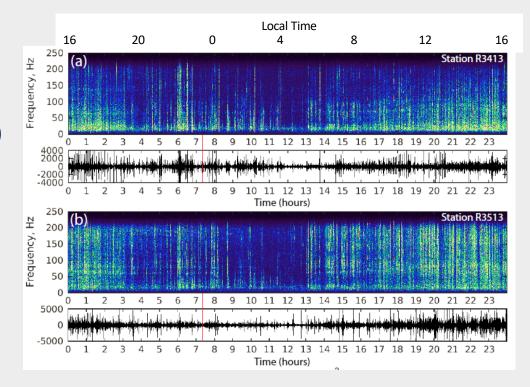
Classifying emergent and impulsive seismic noise in continuous seismic waveforms

Christopher W Johnson

NSF Postdoctoral Fellow UCSD / Scripps Institution of Oceanography

The problem

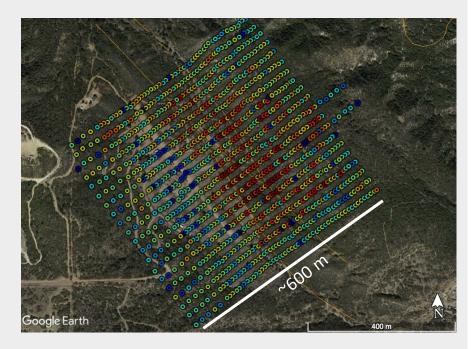
- Identify material failures in the upper 1 km of the crust
- Separate microseismicity (M<1)
- 59-74% of daily record is not random noise
 - Earthquake <1%
 - Air-traffic ~7%
 - Wind ~6%
- Develop new waveform classes
 - air-traffic, vehicle-traffic, wind, human, instrument, etc.



Christopher W Johnson - ECE228 CNN

The data

- 2014 deployment for ~30 days
 - 1100 vertical 10Hz geophones
 - 10-30 m spacing
 - 500 samples per second
 - 1.6 Tb of waveform data
- Experiment design optimized to explore properties and deformation in the shallow crust; upper 1km
 - High res. velocity structure
 - Imaging the damage zone
 - Microseismic detection

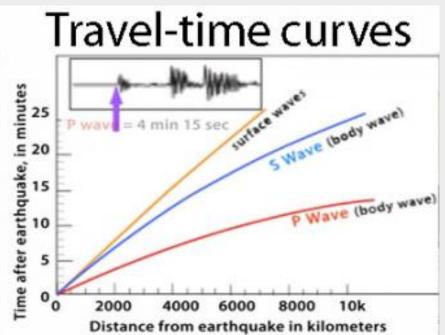


Christopher W Johnson – ECE228 CNN

Ben-Zion et al., GJI 2015

Earthquake detection

- Distributed region sensor network
- Source location random, but expected along major fault lines
- P-wave (compression) & S-wave (shear) travel times
- Grid search / regression to obtain location
- Requires robust detections for small events

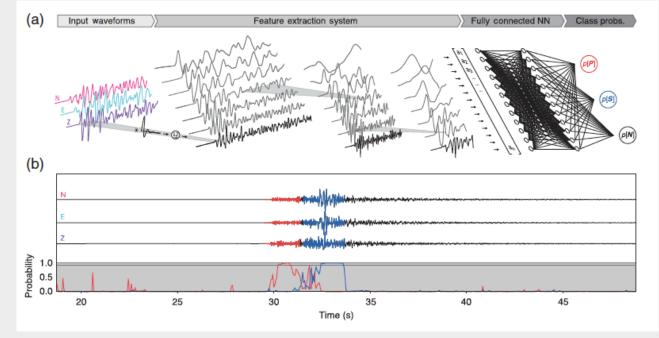


from IRIS website

Christopher W Johnson – ECE228 CNN

Recent advances in seismic detection

- 3-component seismic data (east, north, vert)
- CNN
 - Each component is channel
 - Softmax probability



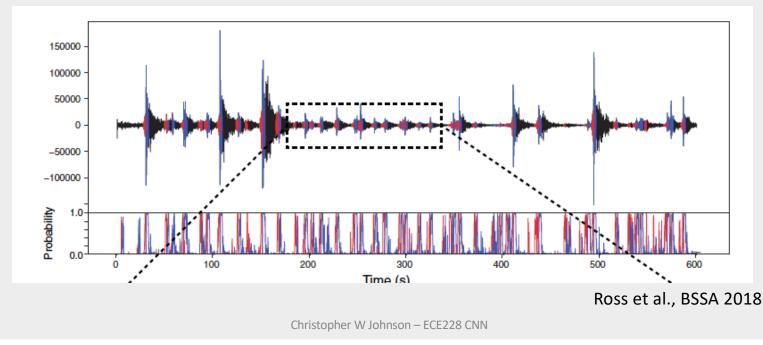
Ross et al., BSSA 2018

Recent advances in seismic detection

Example of continuous waveform

4/27/19

• Every sample is classified as noise, P-wave, or S-wave

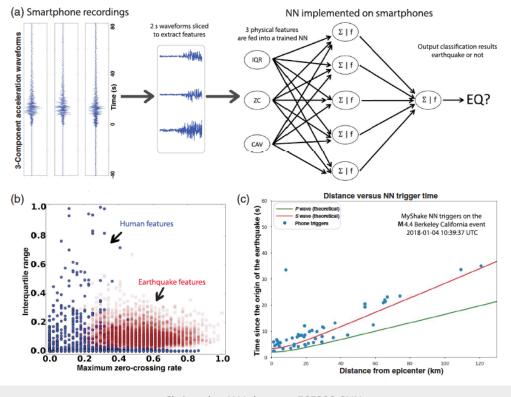


6

Outperforms traditional methods utilizing STA/LTA

Future direction is seismology

Utilize accelerometer in everyone's smart phone



Kong et al., SRL, 2018

Christopher W Johnson – ECE228 CNN

7

4/27/19

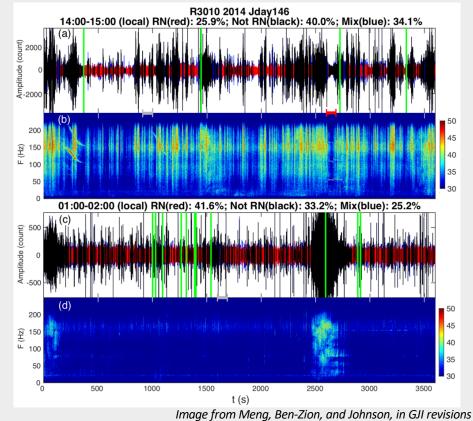
Research Approach and Objectives

- Need labeled data. This is >80% of the work!
 - Earthquakes
 - Arrival time obtained from borehole seismometer within array
 - Define noise
 - Develop new algorithm to produce 2 noise labels
 - Signal processing / spectral analysis
 - Calculate earthquake SNR
 - Discard events with SNR ~1
 - Waveforms to spectrogram
 - Matrix of complex values
 - Retain amplitude and phase
 - Each input has 2 channels
 - This is not a rule, just a choice

Deep learning model – Noise Labeling

Labeling is expensive

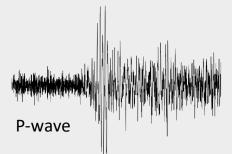
- 1 day with 1100 geophones
 - ~1800 CPU hrs on 3.4GHz Xeon Gold (1.7hr/per daily record)
 - ~9000 CPU hrs on 2.6 GHz Xeon E5 on COMET (5x decrease)
- Noise training data
 - 1s labels
 - 1100 stations for 3 days
 - Use consecutive 4 s intervals
 - Calculate spectrogram

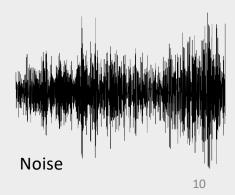


Christopher W Johnson – ECE228 CNN

Deep learning model – Assemble data

- Obtain earthquake arrival times
 - Extract 4s waveforms 1s before p-wave arrival
 - Vary start time within ±0.75s before p-wave
 - Use each event 5x to retain equal weight with noise
 - Filter 5-30 Hz, require SNR > 1.5
 - Obtain ~480,000 p-wave examples
 - Incorporates spatial variability across array
- Precalculate 2 noise labels
 - Use 4s of continuous labels
- Data set contains ~1.2 million labeled wavelets
 - Each API has input format
 - Shuffle data Data must contain variability in subsets



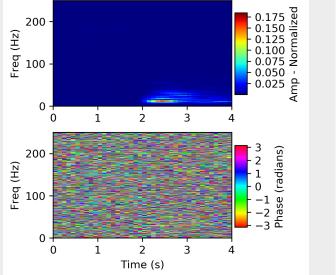


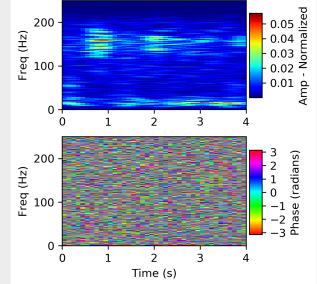
Deep learning model - Labels

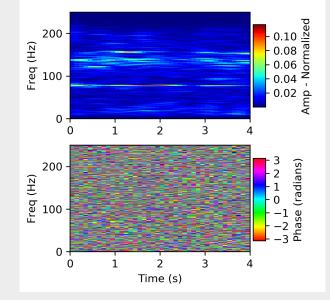
Earthquake

Random noise

Not random noise







Start with 3 labels

- Equal number in each class
- It is possible that non-random noise contains earthquakes
 4/27/19

• STFT

- Normalize waveform
- Retain amp & phase
- 2 layer input matrix

Christopher W Johnson – ECE228 CNN

Research Approach and Objectives

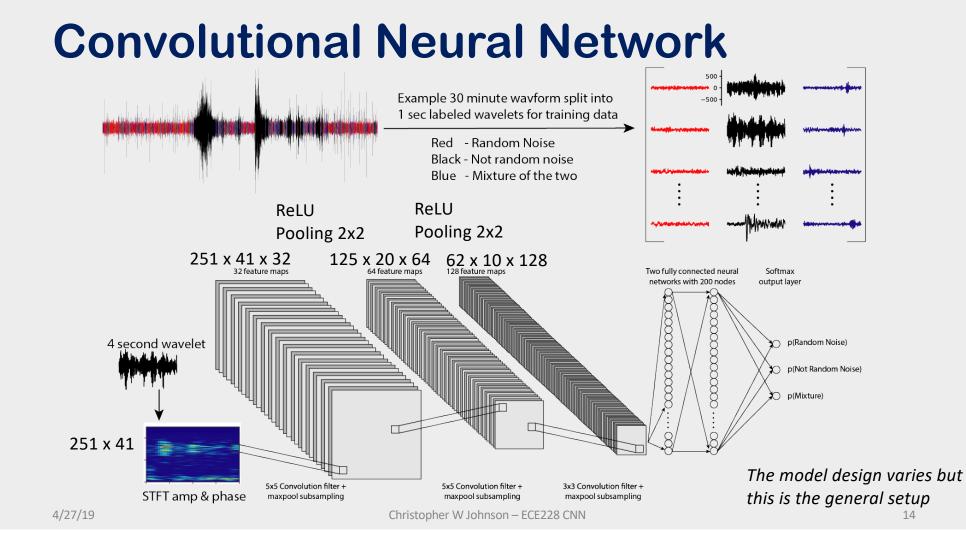
- Build Convolutional Neural Network
 - Filter size, # layers, activation func (ReLU),
 - Pooling, batch normalization
 - FCN, softmax
- Get the model working before fine tuning
 - Hyperparameters
 - Learning rate
 - Good start is 0.01; Adjust up/down by an order of magnitude
 - Test decay
 - Slow the learning rate with each epoch
 - Test model design
 - Improve model by systematically adjusting
 - If too many things change at once, which one helps / hurts
 - Batch size
 - 32-256 is a good start

4/27/19

Software

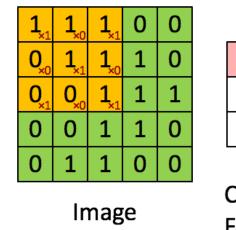
SKlearn

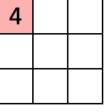
- Data preprocessing
 - Train, Validate, Test
 - Shuffle
- Model performance
 - Classification report
- Keras / Tensorflow
 - Keras uses Tensorflow backend
 - Great place to start learning
- Pytorch
 - Use if familiar with Python and CNN
 - Model is a class
 - Many examples exist



Convolutional

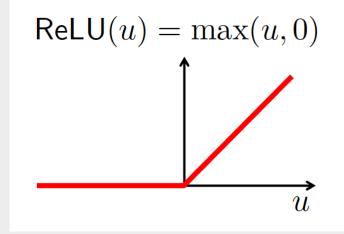
- Scan matrix by translating a mask or template and taking inner product
- Each mask contains filter weights
- Add bias to convolution output
- Repeat for set number of output layers
 all using different weights
- Weights and biases are the only parameters
 - Number of parameters increases to the millions if using multiple hidden layers





Convolved Feature

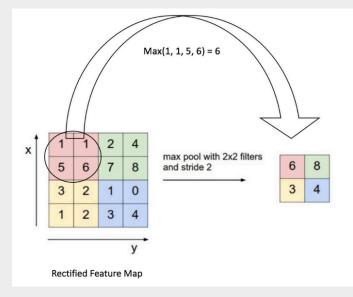
- Rectifier
 - Rectified linear unit (ReLU)
 - Remove negative values
 - Otherwise the problem is linear
 - Can also try
 - tanh, Leaky ReLU, etc



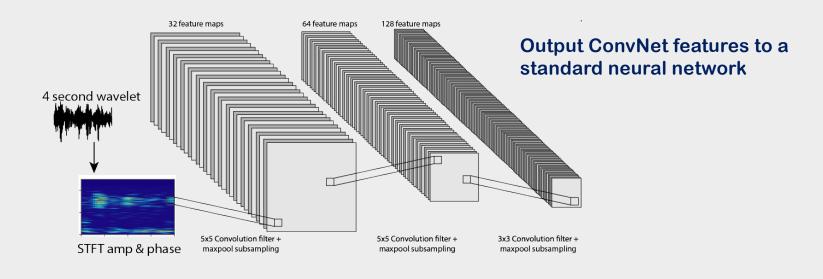
Christopher W Johnson – ECE228 CNN

from algorithmia.com

- Pooling
 - Down sample
 - Reduce dimensionality of subsequent layers
 - Common techniques
 - Max pooling (non-linear)
 - Avg. pooling (linear)
- After each pooling the filter kernel is 'zoomed out' from the input matrix

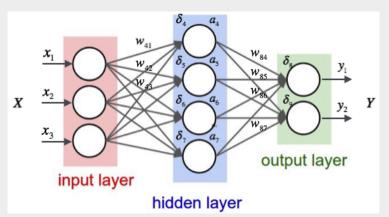


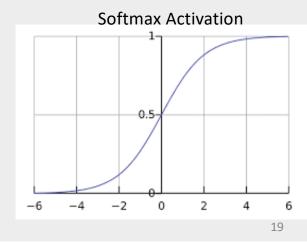
- Advanced feature extraction technique
- Each layer has many filters detecting various features



Christopher W Johnson – ECE228 CNN

- Designed to learn complex neural decision path
 - Hidden layers with ReLU activation
 - Weights are trainable parameters
- Output final layer to softmax activation function
 - sum(output layer) = 1
 - Probability estimate for final layer
- Stochastic gradient descent
 - Adam optimization
 - Variable learning rate
- ConvNet models require >50k LABELED training examples; even more for very complex problems





Christopher W Johnson - ECE228 CNN

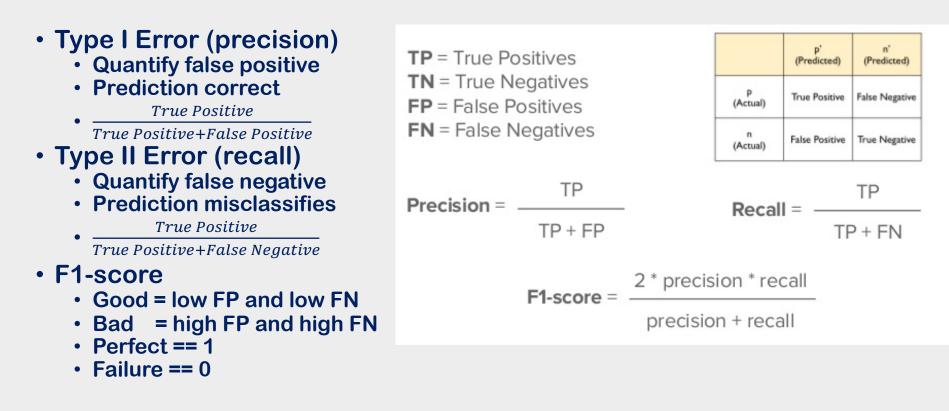
How is that actually done?

```
# Very simple Keras with Tensorflow backend example
model = Sequential()
# First filter
model.add(Conv2D(64, (5, 5), activation='relu', padding='same', input shape=(n, o, p)))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool size=(2, 2)))
# Second filter
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool size=(2, 2)))
# Convolution operators are multi-dimension matrix. Flatten to array
model.add(Flatten())
# Send extracted features from convolutions to fully connected Neural Network
model.add(Dense(1024, activation='relu'))
model.add(BatchNormalization())
# Hidden layer
model.add(Dense(1024, activation='relu'))
model.add(BatchNormalization())
# Output layer with softmax activation
model.add(Dense(3, activation='softmax'))
```

4/27/19

Christopher W Johnson – ECE228 CNN

Model performance (on test data!!)



Deep learning model - Training

Model training w/ ~930,000 2-layer spectral amp and phase

- ~1 hour training time
- Validation and test
 - Good precision on earthquakes
 - Mislabeled noise data is expected
 - Random noise and non-random noise shows 80-88% precision
 - Non-random will contain some earthquakes producing

Training metrics Validation Set # 168587					
	precision		recall	f1-score	support
	EQ	0.99	0.93	0.96	56107
	RN	0.88	0.93	0.91	56298
	NRN	0.86	0.87	0.87	56182
weighted	avg	0.91	0.91	0.91	168587
Test Set # 50000					
precision			recall	f1-score	support

0.85

0.93

0.86

0.88

0.91

0.90

0.83

0.88

0.98

0.87

0.89

NRN 0.80

EQ

RN

weighted avg

16799

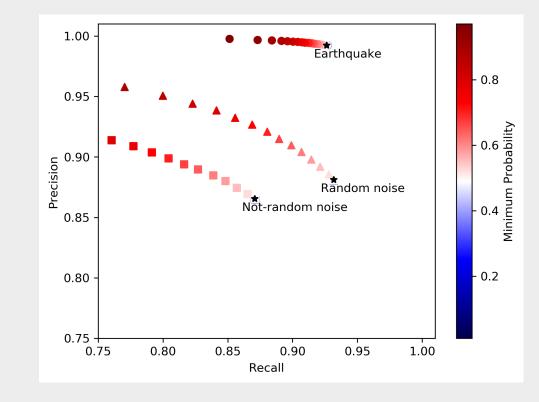
16677

16524

50000

Deep learning model - Training

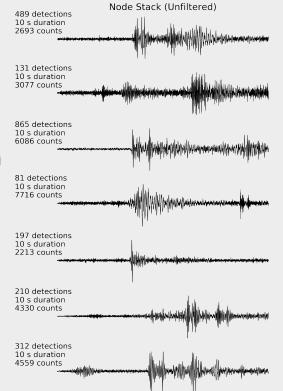
- Earthquakes
 - High precision ~99%
 - Recall ~93%
 - Not-random noise expected to have mislabeled input
- Random noise
 - Precision ~88%
 - Recall ~93%
- Non-random noise
 - Precision ~86%
 - Recall ~87%



Christopher W Johnson - ECE228 CNN

Deep learning model – Eq Detections

- 1.5 minutes to classify 1 s interval for entire daily record
- Results for J-day 149
 - 19 catalog events
 - 64 CNN detections
 - 10 node minimum for detection
 - Node stack average
 - Time shifted to max cc
 - Borehole seismometer comparison
 - Filtered 5-30 Hz
- Similar results for all days
 processed
- Comparable to RF model but faster



Christopher W Johnson - SIO Geophysics Seminar

Remarks

- CNN can classify subtle variations in waveforms
 - Used spectrogram here
 - Time domain waveforms also will perform well if trained correctly
- Advantages
 - Trained model can classify waveforms more efficiently
 - Potential to discover new observations
- Other possible directions
 - Recurrent Neural Networks
 - Incorporate time information
 - Denoise with autoencoders

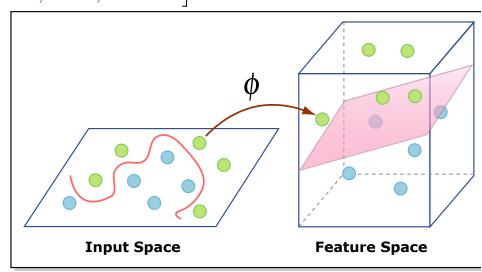
Kernels

We might want to consider something more complicated than a linear model:

Example 1:
$$[x^{(1)}, x^{(2)}] \to \Phi([x^{(1)}, x^{(2)}]) = [x^{(1)2}, x^{(2)2}, x^{(1)}x^{(2)}]$$

Information unchanged, but now we have a **linear** classifier on the transformed points.

With the kernel trick, we just need kernel $k(a, b) = \Phi(a)^T \Phi(b)$



Lecture 10 Support Vector Machines

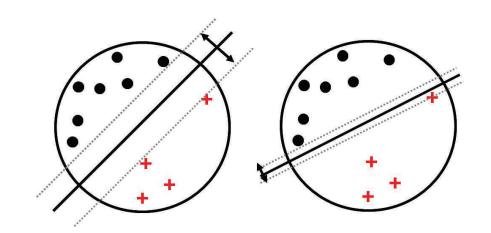
Non Bayesian!

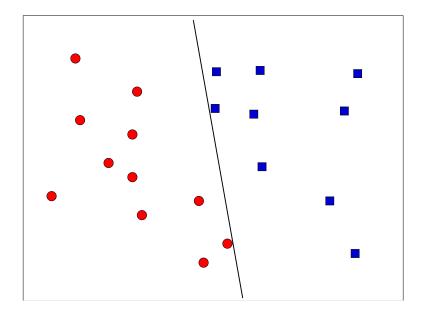
Features:

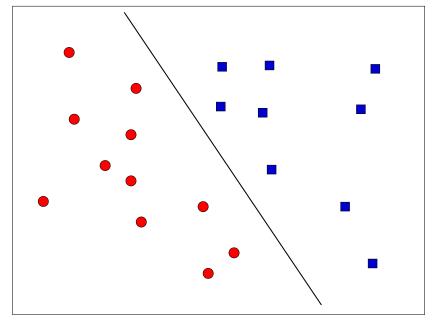
- Kernel
- Sparse representations
- Large margins

Regularize for plausibility

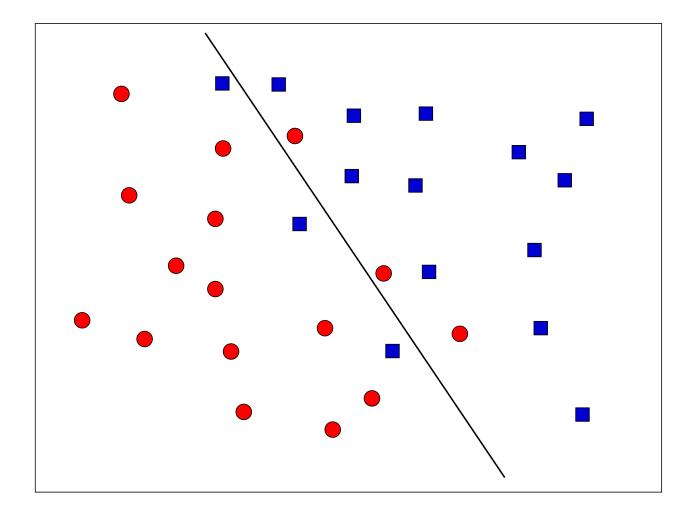
- Which one is best?
- We maximize the margin





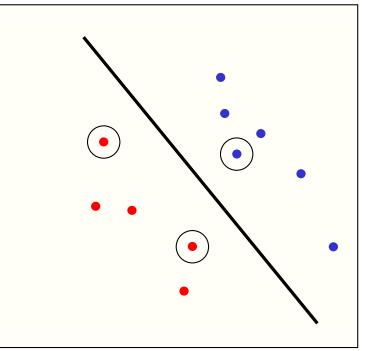


Regularize for plausibility



Support Vector Machines

- The line that maximizes the minimum margin is a good bet.
 - The model class of "hyper-planes with a margin *m*" has a low VC dimension if *m* is big.
- This maximum-margin separator is determined by a subset of the datapoints.
 - Datapoints in this subset are called "support vectors".
 - It is useful computationally if only few datapoints are support vectors, because the support vectors decide which side of the separator a test case is on.

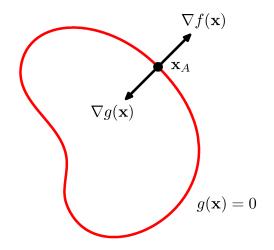


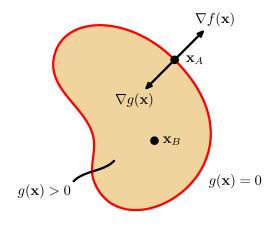
The support vectors are indicated by the circles around them.

Lagrange multiplier (Bishop App E) $\max(f(x))$ subject to g(x) = 0

Taylor expansion $g(\mathbf{x} + \boldsymbol{\varepsilon}) = g(\mathbf{x}) + \boldsymbol{\epsilon}^T \nabla g(\mathbf{x})$

 $L(x,\lambda) = f(x) + \lambda g(x)$





Lagrange multiplier (Bishop App E)

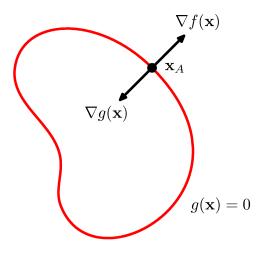
$$\max(f(\mathbf{x})) \text{ subject to } g(\mathbf{x}) > 0$$
$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

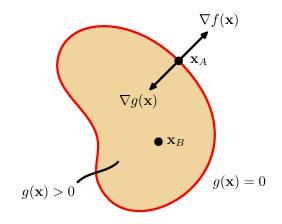
Either $\nabla f(\mathbf{x}) = \mathbf{0}$ Then $g(\mathbf{x})$ is inactive, $\lambda = 0$

 $Org(\mathbf{x}) = 0 \ but \lambda > 0$

Thus optimizing $L(x, \lambda)$ with the Karesh-Kuhn-Trucker (KKT) equations

$$g(\mathbf{x}) \ge 0$$
$$\lambda \ge 0$$
$$\lambda g(\mathbf{x}) = 0$$





Testing a linear SVM

• The separator is defined as the set of points for which:

 $\mathbf{w}.\mathbf{x}+b=0$ so if $\mathbf{w}.\mathbf{x}^{c}+b>0$ say its a positive case
and if $\mathbf{w}.\mathbf{x}^{c}+b<0$ say its a negative case

