Announcements

Matlab Grader homework, 1 and 2 (of less than 9) homeworks Due 22 April tonight, Binary graded.
For HW1, please get word count <100
167, 165,164 has done the homework. (If you have not done it talk to me/TA!) Homework 3 (released ~tomorrow) due ~5 May

Jupiter "GPU" home work released Wednesday. Due 10 May

Projects: 27 Groups formed. Look at Piazza for help. Guidelines is on Piazza
May 5 proposal due. TAs and Peter can approve.

Today:

- Stanford CNN 9, Kernel methods (Bishop 6),
- Linear models for classification, Backpropagation

Monday

- Stanford CNN 10, Kernel methods (Bishop 6), SVM,
- Play with Tensorflow playground before class http://playground.tensorflow.org

Projects

- 3-4 person groups preferred
- Deliverables: Poster \& Report \& main code (plus proposal, midterm slide)
- Topics your own or chose form suggested topics. Some physics inspired.
- April 26 groups due to TA (if you don't have a group, ask in piaza we can help). TAs will construct group after that.
- May 5 proposal due. TAs and Peter can approve.
- Proposal: One page: Title, A large paragraph, data, weblinks, references.
- Something physical

DataSet

- 80 \% preparation, 20 \% ML
- Kaggle:
https://inclass.kaggle.com/datasets
https://www.kaggle.com
- UCI datasets: http://archive.ics.uci.edu/ml/index.php
- Past projects...
- Ocean acoustics data

In 2017 Many choose the source localization
 - two CNN projects,

Many thanks for the fun projects! Below are the final projects from the class. Only the report is posted, the corresponding code is just as important.

1. Source localization in an ocean waveguide using supervised machine learning, Group 3 , Group $\underline{6}$, Group8, Group10, Group11, Group15
2. Indoor positioning framework for most Wi-Fi-enabled devices, Group1
3. MyShake Seismic Data Classification, Group2
4. Multi Label Image Classification, Group4
5. Face Recognition using Machine Learning, Group7
6. Deep Learning for Star-Galaxy Classification, Group9
7. Modeling Neural Dynamics using Hidden Markov Models, Group12
-8. Star Prediction Based on Yelp Business Data And Application in Physics, Group13
8. Si K edge X-ray spectrum absorption interpretation using Neural Network, Group14
9. Plankton Classification Using VGG16 Network, Group16
10. A Survey of Convolutional Neural Networks: Motivation, Modern Architectures, and Current Applications in the Earth and Ocean Sciences, Group17
11. Use satellite data to track the human footprint in the amazon rainforest, Group18
12. Automatic speaker diarization using machine learning techniques, Group19
13. Predicting Coral Colony Fate with Random Forest, Group20

2018: Best reports 6,10,12 15; interesting 19, 47 poor 17; alone is hard 20.

Group	Topic	Authors	Poster	Report
1	Reimplementation of source localization in an ocean waveguide using supervised learning	Jinzhao Feng, Zhuoxi Zeng, Yu Zhang	Poster	Paper
2	Machine learning methods for ship detection in satelite images	Yifan Li, Huadong Zhang, Xiaoshi Li, Quianfeng Guo	Poster	Paper
3	Transparent Conductor Prediction	Yan Sun, Yiyuan Xing, Xufan Xiong, Tianduo Hao	Poster	Paper
4	Ship identification in sateklite Images	Weilun Zhang, Zhaoliang Zheng, Mingchen Mao,	Poster	Paper
5	Fruit Recognition	Eskil Jarslkog, Richard Wang, Joel Andersson	Poster	Paper
6	RSNA Bone Age Prediction	Juan Camilo Castillo, Yitian Tong, Jiyang Zhao, Fengcan Zhu	Poster	Paper
7	Facial Expression Classification into Emotions	David Orozco, Christopher Lee, Yevgeniy Arabadzhi, Deval Gupta	Poster	Paper
8	Urban Scene Segmentation for Autonomous Vehicles	Hsiao-Chen Huang, Eddie Tseng, Ping-Chun Chiang, ChihYen Lin	Poster	Paper
	Face Detection Using Deep Learning	Yu Shen, Kuan-Wei Chen, Yizhou Hao, Min Hsuan Wu	Poster	Paper
	Understanding the Amazon Rainforest using Neural Networks	Naveen Dharshana Ketagoda, Christian Jonathan Koguchi, Niral Lalit Pathak, Samuel Sunarjo	Poster	Paper
11	Mercedes-Benz Bench Test Time Estimation	Lanjihong Ma, Kexiong Wu, Bo Xiao, Zihang Yu	Poster	Paper
	Vegetation Classification in Hyperspectral Image	Osman Cihan Kilinc, Kazim Ergun, Yuming Qiao, Fengjunyan Li	Poster	Paper
13	Threat Detection Using AlexNet on TSA scans	Amartya Bhattacharyya, Christine H Lind, Rahul Shirpurkar	Poster	Paper
14	Flagellates Classification via Transfer Learning	Eric Ho, Brian Henriquez, Jeffrey Yeung	Poster	Paper
15	Biomedical Image Segmentation	Lucas Tindall, Amir Persekian, Max Jiao	Poster	Paper
16	"Deep Fakes" using Generative Adversarial Networks (GAN)	Tianxiang Shen, Ruixian Liu, Ju Bai, Zheng Li	Poster	Paper
17	Dog Breed Classification via Convolutional Neural Network	Yizhou Chen; Xiaotong Chen; Xuanzhen Xu	Poster	Paper
18	Dog Breed Identification	Wenting Shi, Jiaquan Chen, Fangyu Liu, Muyun Liu	Poster	Paper
19	Impact of Skewed Distributions on an Automated Plankton Classifier	Will Chapman, Emal Fatima, William Jenkins, Steven Tien, Shawheen Tosifian	Poster	Paper

Bayes and Softmax (Bishop p. 198)

- Bayes:

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}=\frac{p(y \mid x) p(x)}{\sum_{y \in Y} p(x, y)}
$$

- Classification of N classes:

$$
\begin{aligned}
p\left(\mathcal{C}_{n} \mid \mathbf{x}\right) & =\frac{p\left(\mathbf{x} \mid \mathcal{C}_{n}\right) p\left(\mathcal{C}_{n}\right)}{\sum_{k=1}^{N} p\left(\mathbf{x} \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right)} \\
& =\frac{\exp \left(a_{n}\right)}{\sum_{k=1}^{N} \exp \left(a_{k}\right)}
\end{aligned}
$$

with
Parametric Approach: Linear Classifier

$$
a_{n}=\ln \left(\underset{\text { p }}{\left.\left(\underset{x}{\mathbf{x}} \mid \mathcal{C}_{n}\right) p\left(\mathcal{C}_{n}\right)\right)} \underset{\substack{\text { lilelz ked }}}{\text { phior }}\right.
$$

Softmax to Logistic Regression (Bishop p. 198)

$$
\begin{aligned}
p\left(\mathcal{C}_{1} \mid \mathbf{x}\right) & =\frac{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)}{\sum_{k=1}^{2} p\left(\mathbf{x} \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right)} \\
& =\frac{\exp \left(a_{1}\right)}{\sum_{k=1}^{2} \exp \left(a_{k}\right)}=\frac{1}{1+\exp (-a)} \quad \text { sismoistis hey } \\
\text { with } & =\frac{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)}{=\exp \left(a_{1}\right)+\exp \left(\boldsymbol{c}_{2}\right)}
\end{aligned}
$$

- $a_{1}=\ln \left[p\left(\boldsymbol{x} \mid C_{1}\right) p\left(C_{1}\right)\right]$

$$
\sum_{n}^{2} p\left(c_{n} \mid x\right)=1
$$

- $a=a_{1}-a_{2}$
- $p\left(C_{1} \mid x\right)=\frac{1}{1+\exp \left(a_{2}-a_{1}\right)}$

The Kullback-Leibler Divergence

P true distribution, q is approximating distribution

$$
\left.\begin{array}{rl}
\mathrm{KL}(p \| q) & =-\int p(\mathbf{x}) \ln q(\mathbf{x}) \mathrm{d} \mathbf{x}-\left(-\int p(\mathbf{x}) \ln p(\mathbf{x}) \mathrm{d} \mathbf{x}\right) \\
= & -\int p(\mathbf{x}) \ln \left\{\frac{q(\mathbf{x})}{p(\mathbf{x})}\right\} \mathrm{d} \mathbf{x}
\end{array}\right] \begin{aligned}
& \mathrm{KL}(p \| q) \simeq \frac{1}{N} \sum_{n=1}^{N}\left\{-\ln q\left(\mathbf{x}_{n} \mid \boldsymbol{\theta}\right)+\ln p\left(\mathbf{x}_{n}\right)\right\} \\
& \mathrm{KL}(p \| q) \geqslant 0 \quad \mathrm{KL}(p \| q) \not \equiv \mathrm{KL}(q \| p)
\end{aligned}
$$

Cross entropy

- KL divergence (p true q approximating)

$$
\begin{aligned}
D_{\{K L\}}(p \| q)= & \sum_{n}^{N} p_{n} \ln \left(p_{n}\right)-\sum_{n}^{N} p_{n} \ln \left(q_{n}\right) \\
& =-\frac{-H(p)}{}+\frac{H(p, q)}{\text { crossentop }}
\end{aligned}
$$

- Cross entropy

$$
H(p, q)=H(q)+D_{\{K L\}}(p \| q)=-\sum_{n}^{N} p_{n} \ln \left(q_{n}\right)
$$

- Implementations

$$
=-p_{k} \ln \left(q_{k}\right)=-\ln \left(q_{q_{k}}\right)
$$

$t f$.keras. losses. CategoricalCrossentropy () : \leftarrow tf.losses.sparse_softmax_cross_entropy \leftarrow torch.nn.CrossEntropyLoss()

Cross-entropy or "softmax" function for multi-class classification

The output units use a non-local non-linearity:

$$
\begin{gathered}
y_{i}=\frac{e^{z_{i}}}{\sum_{j} e^{z_{j}}} \\
\frac{\partial y_{i}}{\partial z_{i}}=y_{i}\left(1-y_{i}\right)
\end{gathered}
$$

target value
The natural cost function is the negative log prob of the right answer

Reminder: 1×1 convolutions

preserves spatial
dimensions, reduces depth!

Projects depth to lower dimension (combination of feature maps)
$\xrightarrow[\begin{array}{l}\text { (each filter has size } \\ 1 \times 1 \times 64, \text { and performs a }\end{array}]{\substack{1 \times 1 \text { CONV } \\ \text { with } 32 \\ 32 \\ \text { filters }}}$ 64-dimensional dot product)

56

Summary: CNN Architectures

Case Studies

- AlexNet
- VGG
- GoogLeNet
- ResNet

Case Study: ResNet

[He et al., 2015]
Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57\% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

Case Study: ResNet

[He et al., 2015]
What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Iterations

56-layer model performs worse on both training and test error -> The deeper model performs worse, but it's not caused by overfitting!

Hypothesis: the problem is an optimization problem, deeper models are harder to optimize

Case Study: ResNet

[He et al., 2015]
Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

$H(x) \approx \underline{x}+\underline{F(x)}$

Kernels

We might want to consider something more complicated than a linear model:
Example 1: $\left[x^{(1)}, x^{(2)}\right] \rightarrow \boldsymbol{\Phi}\left(\left[x^{(1)}, x^{(2)}\right]\right)=\left[x^{(1) 2}, x^{(2) 2}, x^{(1)} x^{(2)}\right]$

Information unchanged, but now we have a linear classifier on the transformed points.

With the kernel trick, we just need kernel

Feature Space

$$
k(\boldsymbol{a}, \boldsymbol{b})=\boldsymbol{\Phi}(\boldsymbol{a})^{T} \boldsymbol{\Phi}(\boldsymbol{b})
$$

$$
\begin{equation*}
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}^{\prime}\right) . \tag{6.1}
\end{equation*}
$$

Basis expansion

$$
x_{1}=x_{2}^{2}+2
$$

$$
\begin{array}{ll}
W^{\top} \phi(x)>0 & \quad \varphi=\left[x_{1} x_{1}, x_{2}^{2}-2=0\right. \\
<0 & W=[-2,1,0,0,-1,0] \\
W^{\top} \phi(x)=0 & =x_{1},-x_{2}^{2}-2
\end{array}
$$

Gaussian Process (Bishop 6.4, Murphy15)

$$
\begin{gathered}
t_{n}=y_{n}+\epsilon_{n} \\
f(\mathbf{x}) \sim G P\left(m(\mathbf{x}), \kappa\left(x, x^{\prime}\right)\right)
\end{gathered}
$$

This is what a Gaussian process posterior looks like with 4 data points and a squared exponential covariance function. The bold blue line is the predictive mean, while the light blue shade is the predictive uncertainty (2 standard deviations). The model uncertainty is small near the data, and increases as we move away from the data points.

Figure 15.2 Left: some functions sampled from a GP prior with SE kernel. Right: some samples from a GP posterior, after conditioning on 5 noise-free observations. The shaded area represents $\mathbb{E}[f(\mathbf{x})] \pm 2 \operatorname{std}(f(\mathbf{x})$. Based on Figure 2.2 of (Rasmussen and Williams 2006). Figure generated by gprDemoNoiseFree.

Dual representation, Sec 6.2

Primal problem: $\min E(\boldsymbol{w})$
$E=\frac{1}{2} \sum_{n}^{N}\left\{\boldsymbol{w}^{T} \boldsymbol{x}_{n}-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\boldsymbol{w}\|^{2}=\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{t}\|_{2}^{2}+\frac{\lambda}{2}\|\boldsymbol{w}\|^{2} \sim \sim^{M}$
Solution $\boldsymbol{W}_{\boldsymbol{V}}=\boldsymbol{X}^{+} \boldsymbol{t}=\left(\boldsymbol{X}^{T} \boldsymbol{X}+\lambda \boldsymbol{I}_{M}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{t}$
$=\boldsymbol{X}^{T}\left(\underline{\boldsymbol{X}} \boldsymbol{X}^{\boldsymbol{T}}+\lambda \cdot \boldsymbol{\boldsymbol { I } _ { N }}\right)^{-1} \boldsymbol{t}=\boldsymbol{X}^{T}\left(\underline{\boldsymbol{K}}+\lambda \boldsymbol{I}_{\boldsymbol{N}}\right)^{-1} \boldsymbol{t}=\boldsymbol{X}^{T} \boldsymbol{a}$

$N>M$
The kernel is $K=\boldsymbol{X} \boldsymbol{X}^{T} \in \mathbb{R}^{N \not N}$

$$
a=\left(\kappa+\lambda I_{N}\right)_{t}^{-1}
$$

$x^{\top} x \in R^{\mu x / 4}$
$\times x^{\top} \subset R^{N+x}$
Dual representation is: $\min E(\boldsymbol{a}) ¢ \mathbb{R}^{N}$
$E=\frac{1}{2} \sum_{n}^{N}\left\{\boldsymbol{w}^{T} \boldsymbol{x}_{n}-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\boldsymbol{w}\|^{2}=\|\boldsymbol{K} \boldsymbol{a}-\boldsymbol{t}\|_{2}^{2}+\frac{\lambda}{2} \boldsymbol{a}^{T} \boldsymbol{K} \boldsymbol{a}$
a is found inverting $N \times N$ matrix
w is found inverting MxM matrix
Only kernels, no feature vectors

Dual representation, Sec 6.2

Dual representation is: $\min E(\boldsymbol{a})$
$E=\frac{1}{2} \sum_{n}^{N}\left\{\boldsymbol{w}^{T} \boldsymbol{x}_{n}-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\boldsymbol{w}\|^{2}=\|\boldsymbol{K} \boldsymbol{a}-\boldsymbol{t}\|_{2}^{2}+\frac{\lambda}{2} \boldsymbol{a}^{T} \boldsymbol{K} \boldsymbol{a} \unlhd$ Prediction
$\underline{y=\boldsymbol{w}^{T} \boldsymbol{x}}=\boldsymbol{a}^{T} \boldsymbol{X} \boldsymbol{x}=\sum_{n}^{N} a_{n} \underline{\boldsymbol{x}}_{n}^{T} \boldsymbol{x},=\sum_{n}^{N} a_{n} k\left(\boldsymbol{x}_{n}, \boldsymbol{x}\right)$

- Often a is sparse (... Support vector machines) SVM
- We don't need to know \mathbf{x} or $\varphi(x)$ Just the Kernel

$$
E(\boldsymbol{a})=\|\boldsymbol{K} \boldsymbol{a}-\boldsymbol{t}\|_{2}^{2}+\frac{\lambda}{2} \boldsymbol{a}^{T} \boldsymbol{K} \boldsymbol{a}
$$

$$
\exp \left(-8 \frac{\left\|\underline{x}_{1}-x_{2}\right\|}{2}\right)
$$

Gaussian Kernels

- Gaussian Kernel

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)^{T} \underline{\boldsymbol{\Sigma}^{-1}}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right)
$$

Diagonal Σ : (this gives ARD)

$$
\left.k\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{2} \sum_{i}^{N} \frac{\left(x_{i}-x_{i}^{\prime}\right)^{2}}{\underline{\sigma_{i}^{2}}}\right)^{\lfloor } \quad \ddots \sigma^{2}\right]
$$

Isotropic σ_{i}^{2} gives an RBF

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}\right) \sum-\sigma^{2} I
$$

Commonly used kernels

Polynomial: $K(\mathbf{x}, \mathbf{y})=(\mathbf{x . y}+1)^{p}$

Gaussian

Neural net: $K(\mathbf{x}, \mathbf{y})=\tanh (k \mathbf{x} . \mathbf{y}-\delta)$
For the neural network kernel, there is one "hidden unit" per support vector, so the process of fitting the maximum margin hyperplane decides how many hidden units to use. Also, it may violate Mercer's condition.

Example 4:

$$
\begin{aligned}
\underset{\kappa(\mathbf{x}, \mathbf{z})}{k} & \left.=\underset{\left(\mathbf{x}^{T} \mathbf{z}+c\right.}{ }\right)^{2}=\left(\sum_{j=1}^{n} x^{(j)} z^{(j)}+c\right)\left(\sum_{\ell=1}^{n} x^{(\ell)} z^{(\ell)}+c\right) \\
& =\sum_{j=1}^{n} \sum_{\ell=1}^{n} x^{(j)} x^{(\ell)} z^{(j)} z^{(\ell)}+2 c \sum_{j=1}^{n} x^{(j)} z^{(j)}+c^{2} \\
& =\sum_{j, \ell=1}^{n}\left(x^{(j)} x^{(\ell)}\right)\left(z^{(j)} z^{(\ell)}\right)+\sum_{j=1}^{n}\left(\sqrt{2 c} x^{(j)}\right)\left(\sqrt{2 c} z^{(j)}\right)+c^{2}
\end{aligned}
$$

and in $n=3$ dimensions, one possible feature map is:

$$
\longmapsto \Phi(\mathbf{x})=\left[x^{(1) 2}, x^{(1)} x^{(2)}, \ldots, x^{(3) 2}, \sqrt{2 c} x^{(1)}, \sqrt{2 c} x^{(2)}, \sqrt{2 c} x^{(3)}, c\right]
$$

and c controls the relative weight of the linear and quadratic terms in the inner product.

Even more generally, if you wanted to, you could choose the kernel to be any higher power of the regular inner product.

- FINISHED HERE 30 April 2018
- Showed also http://playground.tensorflow.org/ in the last 10 min .

