
AnnouncementsClass is  170.

Matlab Grader homework, 
1 and 2 (of less than 9) homeworks Due 22 April tonight, Binary graded.
For HW1, please get word count <100
167, 165,164 has done the homework. (If you have not done it talk to me/TA!)
Homework 3 (released ~tomorrow) due ~5 May

Jupiter “GPU” home work released Wednesday. Due 10 May

Projects: 27 Groups formed. Look at Piazza for help.
Guidelines is on Piazza
May 5 proposal due. TAs and Peter can approve. 

Today: 
• Stanford CNN 9, Kernel methods (Bishop 6), 
• Linear models for classification, Backpropagation

Monday 
• Stanford CNN 10, Kernel methods (Bishop 6), SVM, 
• Play with Tensorflow playground before class http://playground.tensorflow.org

http://playground.tensorflow.org/


Projects

• 3-4 person groups preferred
• Deliverables: Poster & Report & main code (plus proposal, 

midterm slide)

• Topics your own or chose form suggested topics. Some 
physics inspired.

• April 26 groups due to TA (if you don’t have a group, ask in 
piaza we can help). TAs will construct group after that.

• May 5 proposal due. TAs and Peter can approve. 
• Proposal: One page: Title, A large paragraph, data, weblinks, 

references. 
• Something physical



DataSet
• 80 % preparation, 20 % ML
• Kaggle:

https://inclass.kaggle.com/datasets
https://www.kaggle.com

• UCI datasets: http://archive.ics.uci.edu/ml/index.php

• Past projects…

• Ocean acoustics data

https://inclass.kaggle.com/datasets
https://www.kaggle.com/
http://archive.ics.uci.edu/ml/index.php


In 2017 Many choose the source localization 
• two CNN projects, 



2018: Best reports 6,10,12 15;   interesting 19, 47 
poor 17; alone is hard 20.



Bayes and Softmax (Bishop p. 198)
• Bayes:

• Classification of  N classes:

correct, it is at least approximately correct for processes
involving images and sound.15(?)

B. Introduction to probabilities

The best (Or, a theoretically robust?) way to im-
plement machine learning methods is to use the tools of
probability, which have been critical in the development
of modern science and engineering. Bayesian inference,
resampling?

Almost all machine-learning tasks can be formulated
as making inferences about missing or latent data from
the observed data.

1. Bayesian machine learning

Two simple rules are of fundamental importance for
Bayesian ML [Ghahramani 2015]. The sum rule

p(x) =
X

y2Y

p(x, y) , (2)

and the product rule

p(x, y) = p(y|x)p(x) . (3)

Here x and y are unknown observed quantities. The sum
rule states that the marginal p(x) is obtained by summing
the joint p(x, y) over y. The product rule states that the
joint p(x, y) is obtained as a product of the conditional
p(y|x) and the marginal p(x).

Bayes’s rule is obtained from these two rules

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)P
y2Y

p(x, y)
(4)

b) Softmax function

The softmax function is often used in the last step of
a NN for classification. We here demonstrate that it can
be derived from simple Bayesian principles12 (p 198).

The input to node n is xn, with in total N nodes. For
each node we wish to classify whether the data belongs
to class Cn

p(Cn|x) =
p(x|Cn)p(Cn)P
N

k=1 p(x|Ck)p(Ck)
(5)

=
exp(an)P
N

k=1 exp(ak)
(6)

with

an = ln (p(x|Cn)p(Cn)) (7)

Assuming x is Gaussian N (µn,⌃) and p(Cn) is uni-
form, it can be shown that (7) can be expressed in terms
of the weights

an = wT

n
x+ w0

wn = ⌃�1
µn

w0 =
�1

2
µ
T

n
⌃�1

µn + ln(p(Cn)) (8)

Thus, from a Bayesian perspective, it makes sense to use
the softmax criterion.

For the binary classification problem this becomes

p(C1|x) =
p(x|C1)p(C1)P2

k=1 p(x|Ck)p(Ck)
(9)

=
exp(a1)P2
k=1 exp(ak)

=
1

1 + exp(�a)
(10)

with

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
(11)

thus for binary classification we should use logistic sig-
moid (10).

C. Machine learning: Supervised and unsupervised learning

ML methods generally can be categorized as either
supervised or unsupervised learning tasks. In supervised
learning, the task is to learn a predictive mapping from
inputs to outputs given labeled input and output pairs.
Supervised learning is the most widely used ML category,
and includes familiar methods such as linear regression
(a.k.a. ridge regression) and nearest-neighbor classifiers,
as well as more sophisticated support vector machine
(SVM) and neural network (NN) models- sometimes re-
ferred to as artificial NNs, due to their weak relationship
to neural structure in the biological brain. In unsuper-
vised learning, no labels are given and the task is to dis-
cover interesting or useful structure within the data. This
has many useful applications, which include data visual-
ization, exploratory data analysis, and feature learning.
Though the learned features are optimal according to the
desired measure, they may not be useful. Unsupervised
methods such as PCA, K-means,14 and Gaussian mix-
ture models (GMMs) have been used for decades. Newer
methods include t-SNE,24 dictionary learning, and deep
representations (e.g. autoencoders). An important point
is that the results of unsupervised methods can be used
either directly, such as for discovery of latent factors or
data visualization, or as part of a supervised learning
framework, where they supply transformed versions of
the features to improve supervised learning performance.

In the following we discuss in more depth the dis-
tinctions between supervised and unsupervised learning
methods, describe a few specific ML methods in each cat-
egory, and provide illustrative examples of each. For a
more in-depth treatment of these subjects, please refer
to the excellent machine learning textbooks.12,13,16,17

1. Supervised learning

In supervised ML, the task is to learn a predictive
mapping from inputs to outputs given labeled input and
output pairs, where the data may be imperfect

yi = f(xi) + n, (12)

where xi 2 RN is a vector of N input variables called
features. The features can be real, imaginary, or cate-
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Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Parametric Approach: Linear Classifier

54

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b
3072x1

10x1 10x3072
10x1



Softmax to Logistic Regression (Bishop p. 198)

• 𝑎# = ln 𝑝 𝒙 𝐶# 𝑝 𝐶#
• 𝑎 = 𝑎# − 𝑎+

• 𝑝 𝐶# 𝑥 = #
#-./0(23425)

correct, it is at least approximately correct for processes
involving images and sound.15(?)
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The Kullback-Leibler Divergence

P true distribution, q is approximating 
distribution



Cross entropy
• KL divergence (p true q approximating)

𝐷 89 (𝑝||𝑞) = ∑=> 𝑝=ln(𝑝=) -∑=> 𝑝=ln(𝑞=)
= −𝐻 𝑝 +𝐻(𝑝, 𝑞)

• Cross entropy
𝐻 𝑝, 𝑞 = 𝐻 𝑞 + 𝐷 89 (𝑝||𝑞)= -∑=> 𝑝=ln(𝑞=)

• Implementations
tf.keras.losses.CategoricalCrossentropy()
tf.losses.sparse_softmax_cross_entropy
torch.nn.CrossEntropyLoss()

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/losses/CategoricalCrossentropy
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/losses/CategoricalCrossentropy
https://pytorch.org/docs/stable/nn.html


Cross-entropy or “softmax” function for multi-class classification
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Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201751

Reminder: 1x1 convolutions

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201752

Reminder: 1x1 convolutions

64

56

56
1x1 CONV
with 32 filters

32
56

56

preserves spatial 
dimensions, reduces depth!

Projects depth to lower 
dimension (combination of 
feature maps)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017

Summary: CNN Architectures 

10
0

Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....
- NiN (Network in Network)
- Wide ResNet
- ResNeXT
- Stochastic Depth

- DenseNet
- FractalNet
- SqueezeNet
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Case Study: ResNet
[He et al., 2015]

Very deep networks using residual 
connections
 

- 152-layer model for ImageNet
- ILSVRC’15 classification winner 

(3.57% top 5 error)
- Swept all classification and 

detection competitions in 
ILSVRC’15 and COCO’15!

Input

Softmax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

relu

Residual block

conv

conv

X
identity

F(x) + x

F(x)

relu

X
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!

Tr
ai

ni
ng

 e
rr

or

Iterations

56-layer

20-layer

Te
st

 e
rr

or

Iterations

56-layer

20-layer

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201769

Case Study: ResNet
[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to 
optimize
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relu

72

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 
desired underlying mapping

Residual block

conv

conv

X
identity

F(x) + x

F(x)

relu

conv

conv

relu

“Plain” layers
XX

H(x)

Use layers to 
fit residual 
F(x) = H(x) - x 
instead of 
H(x) directly

H(x) = F(x) + x

72



Kernels
• Kernel function

• Kernel trick: substitute the inner product of freatures with 

292 6. KERNEL METHODS

closest example from the training set. These are examples of memory-based methods
that involve storing the entire training set in order to make predictions for future data
points. They typically require a metric to be defined that measures the similarity of
any two vectors in input space, and are generally fast to ‘train’ but slow at making
predictions for test data points.

Many linear parametric models can be re-cast into an equivalent ‘dual represen-
tation’ in which the predictions are also based on linear combinations of a kernel
function evaluated at the training data points. As we shall see, for models which are
based on a fixed nonlinear feature space mapping φ(x), the kernel function is given
by the relation

k(x,x′) = φ(x)Tφ(x′). (6.1)

From this definition, we see that the kernel is a symmetric function of its arguments
so that k(x,x′) = k(x′,x). The kernel concept was introduced into the field of pat-
tern recognition by Aizerman et al. (1964) in the context of the method of potential
functions, so-called because of an analogy with electrostatics. Although neglected
for many years, it was re-introduced into machine learning in the context of large-
margin classifiers by Boser et al. (1992) giving rise to the technique of support
vector machines. Since then, there has been considerable interest in this topic, bothChapter 7
in terms of theory and applications. One of the most significant developments has
been the extension of kernels to handle symbolic objects, thereby greatly expanding
the range of problems that can be addressed.

The simplest example of a kernel function is obtained by considering the identity
mapping for the feature space in (6.1) so that φ(x) = x, in which case k(x,x′) =
xTx′. We shall refer to this as the linear kernel.

The concept of a kernel formulated as an inner product in a feature space allows
us to build interesting extensions of many well-known algorithms by making use of
the kernel trick, also known as kernel substitution. The general idea is that, if we have
an algorithm formulated in such a way that the input vector x enters only in the form
of scalar products, then we can replace that scalar product with some other choice of
kernel. For instance, the technique of kernel substitution can be applied to principal
component analysis in order to develop a nonlinear variant of PCA (Schölkopf et al.,Section 12.3
1998). Other examples of kernel substitution include nearest-neighbour classifiers
and the kernel Fisher discriminant (Mika et al., 1999; Roth and Steinhage, 2000;
Baudat and Anouar, 2000).

There are numerous forms of kernel functions in common use, and we shall en-
counter several examples in this chapter. Many have the property of being a function
only of the difference between the arguments, so that k(x,x′) = k(x − x′), which
are known as stationary kernels because they are invariant to translations in input
space. A further specialization involves homogeneous kernels, also known as ra-
dial basis functions, which depend only on the magnitude of the distance (typicallySection 6.3
Euclidean) between the arguments so that k(x,x′) = k(∥x − x′∥).

For recent textbooks on kernel methods, see Schölkopf and Smola (2002), Her-
brich (2002), and Shawe-Taylor and Cristianini (2004).



Kernels

Information unchanged, but now we 
have a linear classifier on the 
transformed points.

With the kernel trick, we just need kernel
𝑘 𝒂, 𝒃 = 𝜱(𝒂)F 𝜱(𝒃)

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x
(1)

|{z}
house’s list price

, x
(2)

|{z}
estimated worth

, x
(3)

|{z}
length of time on market

, x
(4)

|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x
(1)2

, x
(2)2

, x
(1)
x
(2)
⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x
(1)2

z
(1)2 + x

(2)2
z
(2)2 + x

(1)
x
(2)
z
(1)
z
(2)
.

Example 2:

[x(1), x(2), x(3)] ! �

⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space
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Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x
(1)

|{z}
house’s list price

, x
(2)

|{z}
estimated worth

, x
(3)

|{z}
length of time on market

, x
(4)

|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x
(1)2

, x
(2)2

, x
(1)
x
(2)
⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x
(1)2

z
(1)2 + x

(2)2
z
(2)2 + x

(1)
x
(2)
z
(1)
z
(2)
.

Example 2:

[x(1), x(2), x(3)] ! �

⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space

Image by MIT OpenCourseWare.
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closest example from the training set. These are examples of memory-based methods
that involve storing the entire training set in order to make predictions for future data
points. They typically require a metric to be defined that measures the similarity of
any two vectors in input space, and are generally fast to ‘train’ but slow at making
predictions for test data points.

Many linear parametric models can be re-cast into an equivalent ‘dual represen-
tation’ in which the predictions are also based on linear combinations of a kernel
function evaluated at the training data points. As we shall see, for models which are
based on a fixed nonlinear feature space mapping φ(x), the kernel function is given
by the relation

k(x,x′) = φ(x)Tφ(x′). (6.1)

From this definition, we see that the kernel is a symmetric function of its arguments
so that k(x,x′) = k(x′,x). The kernel concept was introduced into the field of pat-
tern recognition by Aizerman et al. (1964) in the context of the method of potential
functions, so-called because of an analogy with electrostatics. Although neglected
for many years, it was re-introduced into machine learning in the context of large-
margin classifiers by Boser et al. (1992) giving rise to the technique of support
vector machines. Since then, there has been considerable interest in this topic, bothChapter 7
in terms of theory and applications. One of the most significant developments has
been the extension of kernels to handle symbolic objects, thereby greatly expanding
the range of problems that can be addressed.

The simplest example of a kernel function is obtained by considering the identity
mapping for the feature space in (6.1) so that φ(x) = x, in which case k(x,x′) =
xTx′. We shall refer to this as the linear kernel.

The concept of a kernel formulated as an inner product in a feature space allows
us to build interesting extensions of many well-known algorithms by making use of
the kernel trick, also known as kernel substitution. The general idea is that, if we have
an algorithm formulated in such a way that the input vector x enters only in the form
of scalar products, then we can replace that scalar product with some other choice of
kernel. For instance, the technique of kernel substitution can be applied to principal
component analysis in order to develop a nonlinear variant of PCA (Schölkopf et al.,Section 12.3
1998). Other examples of kernel substitution include nearest-neighbour classifiers
and the kernel Fisher discriminant (Mika et al., 1999; Roth and Steinhage, 2000;
Baudat and Anouar, 2000).

There are numerous forms of kernel functions in common use, and we shall en-
counter several examples in this chapter. Many have the property of being a function
only of the difference between the arguments, so that k(x,x′) = k(x − x′), which
are known as stationary kernels because they are invariant to translations in input
space. A further specialization involves homogeneous kernels, also known as ra-
dial basis functions, which depend only on the magnitude of the distance (typicallySection 6.3
Euclidean) between the arguments so that k(x,x′) = k(∥x − x′∥).

For recent textbooks on kernel methods, see Schölkopf and Smola (2002), Her-
brich (2002), and Shawe-Taylor and Cristianini (2004).
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Gaussian Process (Bishop 6.4, Murphy15)
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Figure 6.4 Samples from Gaus-
sian processes for a ‘Gaussian’ ker-
nel (left) and an exponential kernel
(right).
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6.4.2 Gaussian processes for regression
In order to apply Gaussian process models to the problem of regression, we need

to take account of the noise on the observed target values, which are given by

tn = yn + ϵn (6.57)

where yn = y(xn), and ϵn is a random noise variable whose value is chosen inde-
pendently for each observation n. Here we shall consider noise processes that have
a Gaussian distribution, so that

p(tn|yn) = N (tn|yn, β−1) (6.58)

where β is a hyperparameter representing the precision of the noise. Because the
noise is independent for each data point, the joint distribution of the target values
t = (t1, . . . , tN )T conditioned on the values of y = (y1, . . . , yN )T is given by an
isotropic Gaussian of the form

p(t|y ) = N (t|y , β−1IN ) (6.59)

where IN denotes the N ×N unit matrix. From the definition of a Gaussian process,
the marginal distribution p(y ) is given by a Gaussian whose mean is zero and whose
covariance is defined by a Gram matrix K so that

p(y ) = N (y |0,K). (6.60)

The kernel function that determines K is typically chosen to express the property
that, for points xn and xm that are similar, the corresponding values y(xn) and
y(xm) will be more strongly correlated than for dissimilar points. Here the notion
of similarity will depend on the application.

In order to find the marginal distribution p(t), conditioned on the input values
x1, . . . ,xN , we need to integrate over y . This can be done by making use of the
results from Section 2.3.3 for the linear-Gaussian model. Using (2.115), we see that
the marginal distribution of t is given by

p(t) =
∫

p(t|y )p(y ) dy = N (t|0,C ) (6.61)
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x1 x2 x⋆

f 1 f 2 f ⋆

y1 y2 y⋆

Figure 15.1 A Gaussian process for 2 training points and 1 testing point, represented as a mixed directed
and undirected graphical model representing p(y, f |x) = N (f |0,K(x))

∏
i p(yi|fi). The hidden nodes

fi = f(xi) represent the value of the function at each of the data points. These hidden nodes are fully
interconnected by undirected edges, forming a Gaussian graphical model; the edge strengths represent the
covariance terms Σij = κ(xi,xj). If the test point x∗ is similar to the training points x1 and x2, then
the predicted output y∗ will be similar to y1 and y2.

Our presentation is closely based on (Rasmussen and Williams 2006), which should be con-
sulted for futher details. See also (Diggle and Ribeiro 2007), which discusses the related approach
known as kriging, which is widely used in the spatial statistics literature.

15.2 GPs for regression

In this section, we discuss GPs for regression. Let the prior on the regression function be a GP,
denoted by

f(x) ∼ GP (m(x),κ(x,x′)) (15.2)

where m(x) is the mean function and κ(x,x′) is the kernel or covariance function, i.e.,

m(x) = E [f(x)] (15.3)

κ(x,x′) = E
[
(f(x)−m(x))(f(x′)−m(x′))T

]
(15.4)

We obviously require that κ() be a positive definite kernel. For any finite set of points, this
process defines a joint Gaussian:

p(f |X) = N (f |µ,K) (15.5)

where Kij = κ(xi,xj) and µ = (m(x1), . . . ,m(xN )).
Note that it is common to use a mean function of m(x) = 0, since the GP is flexible enough

to model the mean arbitrarily well, as we will see below. However, in Section 15.2.6 we will
consider parametric models for the mean function, so the GP just has to model the residual
errors. This semi-parametric approach combines the interpretability of parametric models with
the accuracy of non-parametric models.



Dual representation, Sec 6.2
Primal	problem: min

𝒘
𝐸(𝒘)

𝐸 = #
+
∑=> 𝒘F𝒙= − 𝑡= 2+ V

+
𝒘 2 = 𝑿𝒘− 𝒕 +

++ V
+
𝒘 2

Solution      𝒘 = 𝑿-𝒕 = (𝑿F𝑿 + 𝜆𝑰𝑴)4𝟏𝑿F𝒕
= 𝑿F(𝑿𝑿𝑻 + 𝜆𝑰𝑵 )4#𝒕 = 𝑿F(𝑲 + 𝜆𝑰𝑵 )4#𝒕 = 𝑿F𝒂

The kernel is 𝐊 = 𝑿𝑿𝑻

Dual representation is : min
𝒂

𝐸(𝒂)

𝐸 = #
+
∑=> 𝒘F𝒙= − 𝑡= 2+ V

+
𝒘 2 = 𝑲𝒂− 𝒕 +

++ V
+
𝒂F𝑲𝒂

a is found inverting NxN matrix
w is found inverting MxM matrix 
Only kernels, no feature vectors



Dual representation, Sec 6.2

• Often a is sparse (… Support vector machines)
• We don’t need to know x or 𝝋 𝒙 . 𝑱𝒖𝒔𝒕 𝒕𝒉𝒆 𝑲𝒆𝒓𝒏𝒆𝒍

𝐸 𝒂 = 𝑲𝒂− 𝒕 +
++
𝜆
2𝒂

F𝑲𝒂

Dual representation is : min
𝒂

𝐸(𝒂)

𝐸 = #
+
∑=> 𝒘F𝒙= − 𝑡= 2+ V

+
𝒘 2 = 𝑲𝒂− 𝒕 +

++ V
+
𝒂F𝑲𝒂

Prediction
𝑦 = 𝒘F𝒙 = 𝒂F𝑿𝒙 = ∑=> 𝑎=𝒙=F𝒙 = ∑=> 𝑎=𝑘(𝒙= , 𝒙)
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Commonly used kernels
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K pPolynomial:

Gaussian 
radial basis 
function

Neural net:

For the neural network kernel, there is one “hidden unit” per support vector, 
so the process of fitting the maximum margin hyperplane decides how many 
hidden units to use. Also, it may violate Mercer’s condition.

Parameters 
that the user 
must choose



So we showed that k is an inner product for n = 2 because we found a feature
space corresponding to it.

For n = 3 we can also find a feature space, namely the 9d feature space from
Example 2 would give us the inner product k.
That is,

�(x) = (x(1)2, x(1)x(2), ..., x(3)2), and �(z) = (z(1)2, z(1)z(2), ..., z(3)2),

h�(x),�(z)iR9 = hx, zi
2
R3.

That’s nice.

We can even add a constant, so that k is the inner product plus a constant
squared.

Example 4:

k(x, z) = (xT
z+ c)2 =

 
nX

j=1

x
(j)
z
(j) + c

! 
nX

`=1

x
(`)
z
(`) + c

!

=
nX

j=1

nX

`=1

x
(j)
x
(`)
z
(j)
z
(`) + 2c

nX

j=1

x
(j)
z
(j) + c

2

=
nX

j,`=1

(x(j)x(`))(z(j)z(`)) +
nX

j=1

(
p

2cx(j))(
p

2cz(j)) + c
2
,

and in n = 3 dimensions, one possible feature map is:

�(x) = [x(1)2, x(1)x(2), ..., x(3)2,
p

2cx(1),
p

2cx(2),
p

2cx(3), c]

and c controls the relative weight of the linear and quadratic terms in the inner
product.

Even more generally, if you wanted to, you could choose the kernel to be any
higher power of the regular inner product.

Example 5: For any integer d � 2

k(x, z) = (xT
z+ c)d,

4



Basic concepts

Can be inner product in infinite dimensional space
Assume x ∈ R1 and γ > 0.

e−γ∥xi−xj∥2

= e−γ(xi−xj)2 = e−γx2
i +2γxixj−γx2

j

=e−γx2
i −γx2

j
(

1 +
2γxixj

1!
+

(2γxixj)2

2!
+

(2γxixj)3

3!
+ · · ·

)

=e−γx2
i −γx2

j
(

1 · 1+

√

2γ

1!
xi ·
√

2γ

1!
xj +

√

(2γ)2

2!
x2
i ·
√

(2γ)2

2!
x2
j

+

√

(2γ)3

3!
x3
i ·
√

(2γ)3

3!
x3
j + · · ·

)

= φ(xi)
Tφ(xj),

where

φ(x) = e−γx2

[

1,

√

2γ

1!
x ,

√

(2γ)2

2!
x2,

√

(2γ)3

3!
x3, · · ·

]T

.

Chih-Jen Lin (National Taiwan Univ.) MLSS 2006, Taipei 12 / 98



• FINISHED HERE 30 April 2018
• Showed also http://playground.tensorflow.org/ in the last 

10 min.

http://playground.tensorflow.org/




Solving a Rank-Deficient System
If A is m-by-n with m > n and full rank n, each of the three statements
x = A\b 
x = pinv(A)*b 
x = inv(A'*A)*A'*b
theoretically computes the same least-squares solution x, although 
the backslash operator does it faster.

However, if A does not have full rank, the solution to the least-squares problem is not 
unique. There are many vectors x that minimize
norm(A*x -b)

The solution computed by x = A\b is a basic solution; it has at most r nonzero 
components, where r is the rank of A. The solution computed by x = pinv(A)*b is the 
minimal norm solution because it minimizes norm(x). An attempt to compute a solution 
with x = inv(A'*A)*A'*b fails because A'*A is singular.

Nice slide, But why?



Lecture 10
Support Vector Machines

Non Bayesian!

Features:
• Kernel
• Sparse representations
• Large margins



Regularize for plausibility
• Which one is best?
• We maximize the margin

Regularize for Plausibility (Generalizability)

Stephen Wright () Big Data Perspective January 2016 11 / 29

Regularize for Plausibility (Generalizability)

Stephen Wright () Big Data Perspective January 2016 11 / 29
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Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.

R1

R0

y = 0

y > 0

y < 0

w

x

r = f(x)
∥w∥

x⊥

− w0
∥w∥

(a)

y = 0

y = 1

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

(b)

Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0 , otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0 .
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).
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Stephen Wright () Big Data Perspective January 2016 11 / 29



Support Vector Machines
• The line that maximizes the minimum 

margin is a good bet.
– The model class of “hyper-planes with a margin m” 

has a low VC dimension if m is big.

• This maximum-margin separator is 
determined by a subset of the datapoints.
– Datapoints in this subset  are called 

“support vectors”.
– It is useful computationally if only few 

datapoints are support vectors, because 
the support vectors decide which side of 
the separator a test case is on.

The support vectors are 
indicated by the circles around 
them.



Lagrange multiplier (Bishop App E)
max 𝑓 𝑥 subject to 𝑔 𝑥 = 0

Taylor	expansion
𝑔 𝒙 + 𝜺 = 𝑔 𝒙 + 𝝐F∇ 𝑔 𝒙

𝐿 𝑥, 𝜆 = 𝑓 𝑥 + 𝜆𝑔(𝑥)



Lagrange multiplier (Bishop App E)
max 𝑓 𝒙 subject to 𝑔 𝒙 > 0

𝐿 𝒙, 𝜆 = 𝑓 𝒙 + 𝜆𝑔(𝒙)

Either ∇ f 𝒙 = 𝟎
Then 𝑔 𝒙 is	inactive,	𝜆=0

Or 𝑔 𝒙 = 0 but	𝜆 >0

Thus optimizing 𝐿 𝒙, 𝜆 with the 
Karesh-Kuhn-Trucker (KKT) 
equations

𝑔 𝒙 ≥ 0
𝜆 ≥ 0

𝜆𝑔 𝒙 = 0



Testing a linear SVM
• The separator is defined as the set of points for which:

casenegativeaitssaybifand

casepositiveaitssaybifso

b

c

c

0.

0.

0.

<+

>+

=+

xw

xw

xw





Large margin
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Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.
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Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0 , otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0 .
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).
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Maximum margin (Bishop 7.1)
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does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w ∥,
is unchanged. We can use this freedom to set

tn
(
w Tφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
w Tφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w ∥−1, which is
equivalent to minimizing ∥w ∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w ∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w ∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w , b,a) =
1
2
∥w ∥2 −

N∑

n=1

an

{
tn(w Tφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

Lagrange function
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respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

Subject to

Differentiation
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does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w ∥,
is unchanged. We can use this freedom to set

tn
(
w Tφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
w Tφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w ∥−1, which is
equivalent to minimizing ∥w ∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w ∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w ∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w , b,a) =
1
2
∥w ∥2 −

N∑

n=1

an

{
tn(w Tφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)
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Eliminating w and b from L(w , b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an ! 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
N∑

n=1

antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.

Dual representation

This can be solved with quadratic programming



Maximum margin (Bishop 7.1)
• KKT conditions

• Solving for an

• Prediction
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In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0or tny(xn) = 1. Any data point for
which an = 0will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w ∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the
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does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w ∥,
is unchanged. We can use this freedom to set

tn
(
w Tφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
w Tφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w ∥−1, which is
equivalent to minimizing ∥w ∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w ∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w ∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w , b,a) =
1
2
∥w ∥2 −

N∑

n=1

an

{
tn(w Tφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)
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Eliminating w and b from L(w , b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize
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N∑

n=1
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with respect to a subject to the constraints
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Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
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ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
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In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
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antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.



If there is no separating plane…
• Use a bigger set of features.

– Makes the computation slow? “Kernel” trick 
makes the computation fast with many features.

• Extend definition of maximum margin to 
allow non-separating planes.
– Use “slack” variables
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Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.
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Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0 , otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0 .
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).
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Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.
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with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0< ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w ∥2 (7.21)

where the parameter C > 0controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w , b,a) =
1
2
∥w ∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)
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and the margin. Because any point that is misclassified has ξn > 1, it follows that∑
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therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
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We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by
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2
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Objective function



SVM classification summarized--- Only kernels
• Minimize with respect to 𝒘,w0

𝐶 ∑=> 𝜁𝑛 +
#
+
𝒘 2 (Bishop 7.21)

• Solution found in dual domain with Lagrange multipliers
– 𝑎𝑛 , 𝑛 = 1⋯𝑁 and 

• This gives the support vectors S
�𝒘 = ∑=∈� 𝑎𝑛 𝑡𝑛𝝋(𝑥𝑛) (Bishop 7.8)

• Used for predictions

�𝑦 = w0 +𝒘�𝝋 𝑥 = w0 +�
=∈�

𝑎𝑛 𝑡𝑛𝝋 𝑥𝑛 T𝝋 𝑥

= w0 +�
=∈�

𝑎𝑛 𝑡𝑛𝑘 𝑥𝑛, 𝑥 (Bishop 7.13)



SVM for regression
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Figure 14.10 (a) Illustration of ℓ2, Huber and ϵ-insensitive loss functions, where ϵ = 1.5. Figure generated
by huberLossDemo. (b) Illustration of the ϵ-tube used in SVM regression. Points above the tube have
ξi > 0 and ξ∗

i = 0. Points below the tube have ξi = 0 and ξ∗
i > 0. Points inside the tube have

ξi = ξ∗
i = 0. Based on Figure 7.7 of (Bishop 2006a).

originally designed for binary classification, but can be extended to regression and multi-class
classification as we explain below.
Note that SVMs are very unnatural from a probabilistic point of view. First, they encode

sparsity in the loss function rather than the prior. Second, they encode kernels by using an
algorithmic trick, rather than being an explicit part of the model. Finally, SVMs do not result in
probabilistic outputs, which causes various difficulties, especially in the multi-class classification
setting (see Section 14.5.2.4 for details).
It is possible to obtain sparse, probabilistic, multi-class kernel-based classifiers, which work as

well or better than SVMs, using techniques such as the L1VM or RVM, discussed in Section 14.3.2.
However, we include a discussion of SVMs, despite their non-probabilistic nature, for two main
reasons. First, they are very popular and widely used, so all students of machine learning should
know about them. Second, they have some computational advantages over probabilistic methods
in the structured output case; see Section 19.7.

14.5.1 SVMs for regression

The problem with kernelized ridge regression is that the solution vector w depends on all the
training inputs. We now seek a method to produce a sparse estimate.
Vapnik (Vapnik et al. 1997) proposed a variant of the Huber loss function (Section 7.4) called

the epsilon insensitive loss function, defined by

Lϵ(y, ŷ) !
{

0 if |y − ŷ| < ϵ
|y − ŷ| − ϵ otherwise

(14.46)

This means that any point lying inside an ϵ-tube around the prediction is not penalized, as in
Figure 14.10.
The corresponding objective function is usually written in the following form

J = C
N∑

i=1

Lϵ(yi, ŷi) +
1

2
||w||2 (14.47)
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originally designed for binary classification, but can be extended to regression and multi-class
classification as we explain below.

Note that SVMs are very unnatural from a probabilistic point of view. First, they encode
sparsity in the loss function rather than the prior. Second, they encode kernels by using an
algorithmic trick, rather than being an explicit part of the model. Finally, SVMs do not result in
probabilistic outputs, which causes various difficulties, especially in the multi-class classification
setting (see Section 14.5.2.4 for details).

It is possible to obtain sparse, probabilistic, multi-class kernel-based classifiers, which work as
well or better than SVMs, using techniques such as the L1VM or RVM, discussed in Section 14.3.2.
However, we include a discussion of SVMs, despite their non-probabilistic nature, for two main
reasons. First, they are very popular and widely used, so all students of machine learning should
know about them. Second, they have some computational advantages over probabilistic methods
in the structured output case; see Section 19.7.

14.5.1 SVMs for regression

The problem with kernelized ridge regression is that the solution vector w depends on all the
training inputs. We now seek a method to produce a sparse estimate.

Vapnik (Vapnik et al. 1997) proposed a variant of the Huber loss function (Section 7.4) called
the epsilon insensitive loss function, defined by

Lϵ(y, ŷ) !
{

0 if |y − ŷ| < ϵ
|y − ŷ| − ϵ otherwise

(14.46)

This means that any point lying inside an ϵ-tube around the prediction is not penalized, as in
Figure 14.10.

The corresponding objective function is usually written in the following form
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N∑
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Lϵ(yi, ŷi) +
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2
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SVMs are Perceptrons!
• SVM’s use each training case, x, to define a feature K(x, .) 

where K is user chosen. 
– So the user designs the features.

• SVM do “feature selection” by picking support vectors, and 
learn feature weighting from a big optimization problem.

• =>SVM is a clever way to train a standard perceptron.
– What a perceptron cannot do, SVM cannot do. 

• SVM DOES:
– Margin maximization
– Kernel trick
– Sparse



SVM  Code for classification (libsvm)
Part of ocean acoustic data set http://noiselab.ucsd.edu/ECE285/SIO209Final.zip

case 'Classify'
% train

model = svmtrain(Y, X,['-c 7.46 -g ' gamma ' -q ' kernel]);
% predict

[predict_label,~, ~] = svmpredict(rand([length(Y),1]), X, model,'-q'); 

>> modelmodel =   struct with fields:   
Parameters: [5×1 double]     
nr_class: 2       
totalSV: 36           
rho: 8.3220         
Label: [2×1 double]    
sv_indices: [36×1 double]         
ProbA: []         ProbB: []           
nSV: [2×1 double]       
sv_coef: [36×1 double]           
SVs: [36×2 double]



libsvm
Basic concepts

Finding the Decision Function

w: maybe infinite variables
The dual problem

min
α

1

2
αTQα − e

Tα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

y
Tα = 0,

where Qij = yiyjφ(xi)Tφ(xj) and e = [1, . . . , 1]T

At optimum

w =
∑l

i=1 αiyiφ(xi)

A finite problem: #variables = #training data
Chih-Jen Lin (National Taiwan Univ.) MLSS 2006, Taipei 10 / 98

Corresponds to 
(Bishop 7.32)
With y=t
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where {an ! 0} and {µn ! 0} are Lagrange multipliers. The corresponding set of
KKT conditions are given byAppendix E

an ! 0 (7.23)
tny(xn) − 1 + ξn ! 0 (7.24)

an (tny(xn) − 1 + ξn) = 0 (7.25)
µn ! 0 (7.26)
ξn ! 0 (7.27)

µnξn = 0 (7.28)

where n = 1, . . . , N .
We now optimize out w , b, and {ξn} making use of the definition (7.1) of y(x)

to give

∂L

∂w
= 0 ⇒ w =

N∑

n=1

antnφ(xn) (7.29)

∂L

∂b
= 0 ⇒

N∑

n=1

antn = 0 (7.30)

∂L

∂ξn
= 0 ⇒ an = C − µn. (7.31)

Using these results to eliminate w , b, and {ξn} from the Lagrangian, we obtain the
dual Lagrangian in the form

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.32)

which is identical to the separable case, except that the constraints are somewhat
different. To see what these constraints are, we note that an ! 0is required because
these are Lagrange multipliers. Furthermore, (7.31) together with µn ! 0implies
an " C. We therefore have to minimize (7.32) with respect to the dual variables
{an} subject to

0" an " C (7.33)
N∑

n=1

antn = 0 (7.34)

for n = 1, . . . , N , where (7.33) are known as box constraints. This again represents
a quadratic programming problem. If we substitute (7.29) into (7.1), we see that
predictions for new data points are again made by using (7.13).

We can now interpret the resulting solution. As before, a subset of the data
points may have an = 0, in which case they do not contribute to the predictive
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Tensorflow Playground
1. Fitting the spiral with default settings fail due to the small training set. The 

NN will fit to the training data which is not representative of the true pattern 
and the network will generalize poorly. Increasing the ratio of training to test 
data to 90% the NN finds the correct shape (1st image). 



Tensorflow Playground

You can fix the generalization problem by adding noise to the data. This allows 
the small training set to generalize better as it reduce overfitting of the training 
data (2nd image).



Tensorflow Playground

Adding an additional hidden layer the NN fails to classify the shape properly. 
Overfitting once again becomes a problem even after you've added noise. This 
can be fixed by adding appropriate L2 regularization (third image).



•NOT USED



Introducing slack variables
• Slack variables are non-negative. When greater than zero they 

“cheat” by putting the plane closer to the datapoint than the 
margin. We minimize the amount of cheating by picking a value 
for lamba.
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The classification rule
• The classification rule is simple:

• The cleverness is in selecting the support vectors maximizing 
the margin and computing the weight for each support vector.

• Need choosing a good kernel function and maybe choosing a 
lambda for non-separable cases.
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Training a linear SVM
• To find the maximum margin separator, solve the optimization 

problem:

• It’s a convex problem. There is one optimum and we can find 
it without fiddling with learning rates or weight decay or early 
stopping.
– Don’t worry about the optimization problem. It has been 

solved. Its called quadratic programming.
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A picture of the best plane with a slack variable



Large margin500 Chapter 14. Kernels

Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.
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Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0 , otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0 .
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).
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is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0 .
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).



Support Vector machines (SVM)

xn ¼ x0 þ d
w

jjwjj
;

wTx0 þ b¼ 0; (16)

where k # k is the l2 norm. From Eq. (16), the distance d is
obtained:

d xnð Þ ¼ sn
wTxn þ b

kwk
; (17)

where sn is added in Eq. (17) to guarantee d> 0. The margin
dM is defined as the distance from the hyperplane to the clos-
est points xs on the margin boundary (support vectors, see
Fig. 2). The optimal w and b are solved by maximizing the
margin dM:

argmax
w;b

dM;

subject to
sn wTxn þ bð Þ
kwk

& dM; n ¼ 1;…;N: (18)

Equation (18) is equivalent to this optimization problem:41

argmin
w;b

1

2
kwk2;

subject to sn wTxn þ b
! "

& 1; n ¼ 1;…;N: (19)

If the training set is linearly non-separable (class over-
lapping), slack variables41 nn & 0 are introduced to allow
some of the training points to be miclassified, corresponding
the optimization problem:

argmin
w;b

1

2
kwk2 þ C

XN

n¼1

nn;

subject to snyn & 1 ' nn; n ¼ 1;…;N: (20)

The parameter C> 0 controls the trade-off between the slack
variable penalty and the margin.

Often the relation between yn and xn is nonlinear. Thus
Eq. (15) becomes

yn ¼ wT/ðxnÞ þ b; (21)

where /(xn) denotes the feature-space transformation. By
substituting /(xn) for xn, Eqs. (16)–(20) are unchanged.

The constrained optimization problem can be rewritten
in terms of the dual Lagrangian form:41

~L að Þ ¼
XN

n¼1

an '
1

2

XN

n¼1

XN

m¼1

anamsnsmk/ xn;xmð Þ;

subject to 0 ( an ( C;

XN

n¼1

ansn ¼ 0; n ¼ 1;…;N; (22)

where an & 0 are Lagrange multipliers and dual variables,
and k/ðxn;xmÞ ¼ /ðxnÞT/ðxmÞ is the kernel function. In this
study, we use the Gaussian radial basis function (RBF)
kernel35

k/ðx;x0Þ ¼ expð' ckx' x0k2Þ; (23)

where c is a parameter that controls the kernel shape.
Support vector regression (SVR) is similar to SVM, but

it minimizes the !–sensitive error function

E!ðyn ' rnÞ ¼
0; if jyn ' rnj < !;
jyn ' rnj ' !; otherwise;

#
(24)

where rn is the true source range at sample n and ! defines a
region on either side of the hyperplane. In SVR, the support
vectors are points outside the ! region.

Because the SVM and SVR models are a two-class
models, multi-class SVM with K classes is created by train-
ing K(K – 1)/2 models on all possible pairs of classes. The
points that are assigned to the same class most frequently are
considered to comprise a single class, and so on until all
points are assigned a class from 1 to K. This approach is
known at the “one-versus-one” scheme,41 although slight
modifications have been introduced to reduced computa-
tional complexity.42

E. Random forests

The random forest (RF) (Ref. 43) classifier is a generali-
zation of the decision tree model, which greedily segments
the input data into a predefined number of regions. The sim-
ple decision tree model is made robust by randomly training
subsets of the input data and averaging over multiple models
in RF.

Consider a decision tree (see Fig. 3) trained on all the
input data. Each input sample, xn, n¼ 1,…, N, represents a
point in D dimensions. The input data can be partitioned into
two regions by defining a cutoff along the ith dimension,
where i is the same for all input samples xn, n¼ 1,…, N:

xn 2 xleft if xni > c;

xn 2 xright if xni ( c; (25)

where c is the cutoff value, and xleft and xright are the left and
right regions, respectively. The cost function, G, that is mini-
mized in the decision tree at each branch is35

FIG. 2. (Color online) A linear hyperplane learned by training an SVM in
two dimensions (D¼ 2).

J. Acoust. Soc. Am. 142 (3), September 2017 Niu et al. 1179

xn ¼ x0 þ d
w

jjwjj
;

wTx0 þ b¼ 0; (16)

where k # k is the l2 norm. From Eq. (16), the distance d is
obtained:

d xnð Þ ¼ sn
wTxn þ b

kwk
; (17)

where sn is added in Eq. (17) to guarantee d> 0. The margin
dM is defined as the distance from the hyperplane to the clos-
est points xs on the margin boundary (support vectors, see
Fig. 2). The optimal w and b are solved by maximizing the
margin dM:

argmax
w;b

dM;

subject to
sn wTxn þ bð Þ
kwk

& dM; n ¼ 1;…;N: (18)

Equation (18) is equivalent to this optimization problem:41

argmin
w;b

1

2
kwk2;

subject to sn wTxn þ b
! "

& 1; n ¼ 1;…;N: (19)

If the training set is linearly non-separable (class over-
lapping), slack variables41 nn & 0 are introduced to allow
some of the training points to be miclassified, corresponding
the optimization problem:

argmin
w;b

1

2
kwk2 þ C

XN

n¼1

nn;

subject to snyn & 1 ' nn; n ¼ 1;…;N: (20)

The parameter C> 0 controls the trade-off between the slack
variable penalty and the margin.

Often the relation between yn and xn is nonlinear. Thus
Eq. (15) becomes

yn ¼ wT/ðxnÞ þ b; (21)

where /(xn) denotes the feature-space transformation. By
substituting /(xn) for xn, Eqs. (16)–(20) are unchanged.

The constrained optimization problem can be rewritten
in terms of the dual Lagrangian form:41

~L að Þ ¼
XN

n¼1

an '
1

2

XN

n¼1

XN

m¼1

anamsnsmk/ xn;xmð Þ;

subject to 0 ( an ( C;

XN

n¼1

ansn ¼ 0; n ¼ 1;…;N; (22)

where an & 0 are Lagrange multipliers and dual variables,
and k/ðxn;xmÞ ¼ /ðxnÞT/ðxmÞ is the kernel function. In this
study, we use the Gaussian radial basis function (RBF)
kernel35

k/ðx;x0Þ ¼ expð' ckx' x0k2Þ; (23)

where c is a parameter that controls the kernel shape.
Support vector regression (SVR) is similar to SVM, but

it minimizes the !–sensitive error function

E!ðyn ' rnÞ ¼
0; if jyn ' rnj < !;
jyn ' rnj ' !; otherwise;

#
(24)

where rn is the true source range at sample n and ! defines a
region on either side of the hyperplane. In SVR, the support
vectors are points outside the ! region.

Because the SVM and SVR models are a two-class
models, multi-class SVM with K classes is created by train-
ing K(K – 1)/2 models on all possible pairs of classes. The
points that are assigned to the same class most frequently are
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where c is a parameter that controls the kernel shape.
Support vector regression (SVR) is similar to SVM, but
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where rn is the true source range at sample n and ! defines a
region on either side of the hyperplane. In SVR, the support
vectors are points outside the ! region.

Because the SVM and SVR models are a two-class
models, multi-class SVM with K classes is created by train-
ing K(K – 1)/2 models on all possible pairs of classes. The
points that are assigned to the same class most frequently are
considered to comprise a single class, and so on until all
points are assigned a class from 1 to K. This approach is
known at the “one-versus-one” scheme,41 although slight
modifications have been introduced to reduced computa-
tional complexity.42

E. Random forests

The random forest (RF) (Ref. 43) classifier is a generali-
zation of the decision tree model, which greedily segments
the input data into a predefined number of regions. The sim-
ple decision tree model is made robust by randomly training
subsets of the input data and averaging over multiple models
in RF.

Consider a decision tree (see Fig. 3) trained on all the
input data. Each input sample, xn, n¼ 1,…, N, represents a
point in D dimensions. The input data can be partitioned into
two regions by defining a cutoff along the ith dimension,
where i is the same for all input samples xn, n¼ 1,…, N:

xn 2 xleft if xni > c;

xn 2 xright if xni ( c; (25)

where c is the cutoff value, and xleft and xright are the left and
right regions, respectively. The cost function, G, that is mini-
mized in the decision tree at each branch is35

FIG. 2. (Color online) A linear hyperplane learned by training an SVM in
two dimensions (D¼ 2).
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For non-linear relations

We can formulate it in terms of kernel functions, say Gaussian



Preventing overfitting when using big sets of features
• Suppose we use a big set of features to ensure 

that two classes are linearly separable. What is 
the best separating line?

• The Bayesian answer is using them all 
(including ones that do not separate the data.)

• Weight each line by its posterior probability (how 
well it fits data and prior).

• Is there an efficient way to approximate the 
Bayesian answer?

• A Bayesian Interpretation: Using the maximum 
margin separator often gives a pretty good 
approximation to using all separators weighted 
by their posterior probabilities.



A potential problem and a magic solution
• Mapping input vectors into a very high-D feature space, surely 

finding the maximum-margin separator is computationally 
intractable?
– The mathematics is all linear, but the vectors have a huge 

number of components.
– Taking the scalar product of two vectors is expensive. 

• The way to keep things tractable is  “the kernel trick”

• The kernel trick makes your brain hurt when you first learn 
about it, but it is actually simple.



Preprocessing the input vectors
• Instead predicting the answer directly from the raw inputs we 

could start by extracting  a layer of “features”.
– Sensible if certain combinations of input values would be 

useful (e.g. edges or corners in an image).
• Instead of learning the features we could design them by hand. 

– The hand-coded features are equivalent to a layer of non-
linear neurons with no need to be learned.

– Using a big set of features for a two-class problem, the 
classes will almost certainly be linearly separable.

• But surely the linear separator gives poor generalization.



What the kernel trick achieves
• Finding the maximum-margin separator is expressed as scalar 

products between pairs of datapoints (in high-D feature space).
• These scalar products are the only part of the computation that 

depends on the dimensionality of the high-D space.
– We need a fast way to do the scalar products to solve the 

learning problem in the high-D space.
• The kernel trick is a magic way of doing scalar products.

– It relies on mapping to the high-D feature space that allows 
fast scalar products.



How to make a plane curved
• Fitting hyperplanes as separators is 

mathematically easy.
– The mathematics is linear.

• Replacing the raw input variables 
with a much larger set of features we 
get a nice property:
– A planar separator in high-D 

feature space is a curved 
separator in the low-D input 
space. A planar separator in a 20-D 

feature space projected back 
to the original 2-D space



Is preprocessing cheating?
• Its cheating if using carefully designed set of task-specific, 

hand-coded features and claim that the learning algorithm 
solved the whole problem. 
– The really hard bit is designing the features.

• Its not cheating if we learn the non-linear preprocessing.
– This makes learning more difficult and more interesting (e.g. 

backpropagation after pre-training)
• Its not cheating if we use a very big set of non-linear features 

that is task-independent. 
– Support Vector Machines do this.
– They  prevent overfitting (first half of lecture)
– They use a huge number of features without requiring as 

much computation as seems to be necessary (second half).



A hierarchy of model classes

• Some model classes can be arranged in a hierarchy of 
increasing complexity.

• How to pick the best level in the hierarchy for modeling a given 
dataset?



A way to choose a model class
• A low error rate on unseen data.

– This is called “structural risk minimization”
• A guarantee of the following form is helpful: 

Test error rate =< train error rate + f(N, h, p)
Where N = size of training set,

h = measure of the model complexity,
p = the probability that this bound fails

We need p to allow for really unlucky test sets.
• Then we choose the model complexity that minimizes the 

bound on the test error rate.



The story so far
• Using a large set of non-adaptive features, we might make the 

two classes linearly separable.
– But just fitting any separating plane, it will not generalize well 

to new cases.
• Fitting the separating plane maximizing the margin (minimum 

distance to any data points), gives better generalization.
– Intuitively, maximizing the margin squeezes the surplus 

capacity that came from using a high-dimensional feature 
space.

• This is justified by a lot of clever mathematics which shows that
– large margin separators have lower VC dimension.
– models with lower VC dimension have a smaller gap between training and test error rates. 



Dealing with the test data
• Choosing a high-D mapping for which the kernel trick works, 

we do not use much CPU time for the high-D when finding the 
best hyper-plane.
– We cannot express the hyperplane by using its normal 

vector in the high-D space because this vector is huge.
– Luckily, we express it in terms of the support vectors.

• What about the test data. We cannot compute the scalar 
product                  because its in the high-D space.)(. xw f

• Deciding which side of the separating hyperplane a test point 
lies on,  requires a scalar product   .

• We  express this scalar product as a weighted average of 
scalar products using stored support vectors
– Could  be slow many support vectors.

)(. xw f



Performance
• SVM work very well in practice. 

– The user must choose the kernel function and its 
parameters, but the rest is automatic.

– The test performance is very good.
• They can be expensive in time and space for big datasets

– The computation of the maximum-margin hyper-plane 
depends on the square of  number of training cases.

– Need storing all the support vectors.
• SVM’s are good if you have no idea about what structure to 

impose.
• The kernel trick can also be used for PCA in a high-D space, 

thus giving a non-linear PCA in the original space.


