Topics your own or chose form suggested topics. Some physics/engineering inspired.

April 26 groups due to TA (if you don't have a group, ask in piazza we can help). TAs will construct groups after that.

May 5 proposal due. TAs and Peter can approve.
Proposal: One page: Title, a large paragraph, data, weblinks, references.

May 20 Midterm slide presentation. Presented to a subgroup of class.

June 5 final poster. Uploaded June 3
Report and code due Saturday 15 June.
Q: Can the final project be shared with another class?
If the other class allows it it should be fine. You cannot turn in an identical project for both classes, but you can share common infrastructure/code base/datasets across the two classes.

No cut and paste from other sources without making clear that this part is a copy. This applies to other reports or things from internet. Citations are important.

Last time: Data Preprocessing

Before normalization: classification loss very sensitive to changes in weight matrix;

After normalization: less sensitive to small changes in weights; easier to optimize

Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large
$\frac{\partial L}{\partial w}$

Optimization: Problems with SGD

What if the loss
function has a
local minima or saddle point?

Zero gradient, gradient descent

gets stuck
Saddle points much more common in
high dimension

Optimization: Problems with SGD

Our gradients come from minibatches so they can be noisy!

$$
\begin{aligned}
L(W) & =\frac{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)}{} \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)
\end{aligned}
$$

SGD + Momentum

SGD

$$
x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

```
while True:
    dx = compute_gradient(x)
    x += learning_rate * dx
```

SGD+Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}+\nabla f_{0}\left(x_{t}\right) \\
& \overbrace{t+1}=x_{t}-\alpha v_{t+1}
\end{aligned}
$$

$\mathrm{vx}=0$
while True:
$\mathrm{dx}=$ compute_gradient (x)
$\mathrm{vx}=$ rho * $\mathrm{vx}+\mathrm{dx}$
x += learning_rate * vx

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Adam (full form)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
```

 first_moment = beta1 * first_moment + (1 - beta1) * dx
 second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
 first_unbias = first_moment / (1 - beta1 ** t)
 second_unbias = second_moment / (1 - beta2 ** t)
 x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
 Bias correction for the fact that first and second moment estimates start at zero

Adam with beta 1 $=0.9$, beta 2 $=0.999$, and learning_rate $=1 \mathrm{e}-3$ or $5 \mathrm{e}-4$ is a great starting point for many models!

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter.

=> Learning rate decay over time!
step decay:
e.g. decay learning rate by half every few epochs.
exponential decay:

$$
\alpha=\alpha_{0} e^{-k t}
$$

1/t decay:

$$
\alpha=\alpha_{0} /(1+k t)
$$

How to improve single-model performance?

Regularization

Regularization: Add term to loss

$L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)+\lambda R(W)$

In common use:
L2 regularization $\quad R(W)=\sum_{k} \sum_{l} W_{k, l}^{2} \quad$ (Weight decay)
L1 regularization
$R(W)=\sum_{k} \sum_{l}\left|W_{k, l}\right|$
Elastic net (L1 + L2) $\quad R(W)=\sum_{k} \sum_{l} \beta W_{k, l}^{2}+\left|W_{k, l}\right|$

Regularization: Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Homework

Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

Regularization: Data Augmentation

Data Augmentation

Get creative for your problem!
Random mix/combinations of :

- translation
- rotation
- stretching
- shearing,
+simulated data using physical model.
- lens distortions, ... (go crazy)

Transfer Learning with CNNs

1. Train on Imagenet

2. Small Dataset (C classes)

3. Bigger dataset

Predicting Weather with Machine Learning: Intro to ARMA and Random Forest

Emma Ozanich

PhD Candidate,
Scripps Institution of Oceanography

Background

n Shi et al NIPS 2015 -

- Predicting rain at different time lags
- Shows convolutional Istm vs nowcast models vs fullyconnected Istm
- Used radar echo (image) inputs
- Hong Kong, 2011-2013,
- 240 frames/day
- Selected top 97 rainy days
- Note: <10\% of data used!
- Preprocessing: k-means clustering to denoise
- ConvLSTM has better performance and lower false alarm (lower left)

Figure 1: (Larger Version) Comparison of different models based on four precipitation nowcasting metrics over time.

CSI: hits/(hits+misses+false) FAR: false/(hits+false) POD: hits/(hits+misses) false $=$ false alarm

Background

7McGovern et al 2017 BAM -

- Decision trees used in meteorology since mid-1960s

Fig. I. An example of a decision tree for predicting if hail will occur. A version of this decision tree first appeared in Gagne (2016).

Background

McGovern et al 2017 BAM -

- Green contours = hail occurred (truth)
- Physics based method: Convection-allowing model (CAM)
- Doesn't directly predict hail
- Random forest predicts hail size (Г) distribution based on weather
- HAILCAST = diagnostic measure based on CAMs
- Updraft Helicity = surrogate variable from CAM

CAPS 24-Hour Neighborhood Probability 50 mm Hail 27 May 2015

Random Forest

Updraft Helicity

HAILCAST

Decision Trees

- Algorithm made up of conditional control statements

Decision Trees

McGovern et al 2017 BAM -

Decision trees used in meteorology since mid-1960s

Fig. I. An example of a decision tree for predicting if hail will occur. A version of this decision tree first appeared in Gagne (2016).

Regression Tree

- Divide data into distinct, non-overlapping regions R_{1}, \ldots, R_{J}
- Below $y_{i}=$ color $=$ continuous target (<blue $=1$ and $>$ red $=0$).
- $x_{i}, i=1, \ldots, 5$ samples
- $x_{i}=\left[X_{1}, X_{2}\right]$, with $\mathrm{P}=2$ features.
- $j=1, \ldots, 5$ (5 regions).

Tree-building

- Or, consecutively partition a region into non-overlapping rectangles
- $y_{i}=$ color $=$ continuous target $(<b l u e=1$ and $>r e d=0)$.
- $x_{i}, i=1, \ldots, 5$ samples
- $x_{i}=\left[X_{1}, X_{2}\right]$, with $P=2$ features.
- $j=1, . ., 5$ (5 regions).

Hastie et al 2017, Chap. 9 p 307.

Regression Tree

- How to optimize a regression tree?
- Randomly select t_{1}

$$
\begin{aligned}
& R_{1}\left(j, \mathbf{t}_{1}\right)=\left\{X \mid X_{j} \leq \mathbf{t}_{1}\right\} \\
& R_{2}\left(j, \mathbf{t}_{1}\right)=\left\{X \mid X_{j}>\mathfrak{t}_{1}\right\}, j=1
\end{aligned}
$$

- Assign region labels:

$$
\hat{c}_{m}=\operatorname{ave}\left(y_{i} \mid x_{i} \in R_{m}\right) .
$$

- Example-

$$
\begin{aligned}
& \hat{c}_{1}=\bullet \\
& \hat{c}_{2}=\bullet
\end{aligned}
$$

Regression Tree

- Compute the cost of the tree, $Q_{m}(T)$,
- Minimize $Q_{m}(T)$ by changing t_{l}

$$
\begin{gathered}
N_{m}=\#\left\{x_{i} \in R_{m}\right\}, \\
Q_{m}(T)=\frac{1}{N_{m}} \sum_{x_{i} \in R_{m}}\left(y_{i}-\hat{c}_{m}\right)^{2},
\end{gathered}
$$

X_{1}

Regression Tree

- Algorithm to build tree T_{b}
- In our simple case, $m=1$ and $p=2$
- Daughter nodes are equivalent to regions

1. Select m variables at random from the p variables.
2. Pick the best variable/split-point among the m.
3. Split the node into two daughter nodes. I

Bootstrap samples

- Select a subset of the total samples, $\left(x_{i}^{*}, y_{i}^{*}\right), i=1, \ldots, N$
- Draw samples uniformly at random with replacement
- Example: If I = 5 originally, we could choose $\mathrm{N}=2$
- Samples are drawn assuming equal probability:
- If $x_{i} y_{i}$ is drawn more often, it is more likely

$$
P_{\hat{\mathcal{F}}}\{(X, Y)=(x, y)\}= \begin{cases}\frac{1}{n}, & \text { if }(x, y)=\left(x_{i}, y_{i}\right) \text { for some } i \\ 0 & \text { otherwise }\end{cases}
$$

- (X, Y) are the expectations of the underlying distributions

Random Forest

- Example of binary classification tree from Hastie et al 2017
- Orange: trained on all data
- Green: trained from different bootstrap samples
- Then, average the (green) trees

Hastie et al 2017, Chap. 8 p. 284

Random Forest

- Bootstrap + bagging => more robust RF on future test data
- Train each tree T_{b} on bootstrap sampling

Algorithm 15.1 Random Forest for Regression or Classification.

1. For $b=1$ to B :
(a) Draw a bootstrap sample \mathbf{Z}^{*} of size N from the training data.
(b) Grow a random-forest tree T_{b} to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size $n_{\text {min }}$ is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.
2. Output the ensemble of trees $\left\{T_{b}\right\}_{1}^{B}-$

To make a prediction at a new point x :
Regression: $\hat{f}_{\mathrm{rf}}^{B}(x)=\frac{1}{B} \sum_{b=1}^{B} T_{b}(x) . \leftarrow$

Timeseries (TS)

- Timeseries: one or more variables sampled in the same location at successive time steps

Windspeed in Hveravellir, Iceland

ARMA

- Autoregressive moving-average :
- (weakly) stationary stochastic process
- Polynomials model process and errors as polynomial of prior values
- Autogressive (order p)
- Linear model of past (lagged) and future values
- plags

$$
\underset{\underline{t}}{X_{t}}=c+\sum_{i=1}^{p} \mathscr{C} X_{t-i}+\varepsilon_{t}
$$

- φ_{i} are (weights) parameters
- c is constant
- ε_{+}is white noise (WGN)
- Note, for stationary processes, $\left|\varphi_{\mathrm{i}}\right|<1$.
- Moving-average (order q)
- Linear model of past errors
- q lags
- Below, assume $<X_{t}>=0$ (expectation is 0)

$$
X_{t}=c+\sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}+\varepsilon_{t}
$$

ARMA

- Autoregressive moving-average :
- (weakly) stationary stochastic process
- Linear model of prior values = expected value term + error term + WGN

ARMA: AR(p) + MA(q)

$$
X_{t}=c+\sum_{i=1}^{n} \varphi_{i} X_{\underline{t-i}}+\sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}+\varepsilon_{\underline{t}}
$$

Data retrieval

Just a few public data sources for physical sciences...

- NOAA:
- Reanalysis/model data, research cruises, station observations, gridded data products, atmospheric \& ocean indices timeseries, heat budgets, satellite imagery
- NASA:
- EOSDIS, gridded data products (atmospheric), satellite imagery, reanalysis/model data, meteorological stations, DAAC's in US
- IMOS:
- ocean observing hosted by Australian Ocean Data Network
- USGS Earthquake Archives
- CPC/NCEI:
- gridded and raw meteorological and oceanographic
- ECMWF
- global-scale weather forecasts and assimilated data

Possible data formats:

- CSV
- NetCDF
- HDF5/HDF-EOS
- Binary
- JPEG/PNG
- ASCII text

Basic data cleaning

- "[ML for physical sciences] is 80% cleaning and 20% models" ~ paraphrased, Dr. Gerstoft
- Basic cleaning for NOAA GSOD to HW - necessary
- Remove unwanted variables (big data is slow) $\boldsymbol{\rho}$
- Replaced "9999" filler values with NaN r
- Converted strings to floats (i.e. for wind speed) r
- Created a DateTime index
- Physical data needs cleaning, reorganizing
- Quality-controlled data still causes bugs .
- Application-specific

Data for HW

\Rightarrow BigQuery:

- Open-source database hosted by Google
- Must have Google account
- 1 TB data free/ month

Data for HW

- How to get BigQuery data?
- bigquery package in Jupyter Notebook (SQL server)

\because ⓤpyter			BigQuery Tutorial Last Checkpoint: 04/05/2019 (autosaved)										
File	Edit		ew	Ins		Cell	Kerr			idgets	Help		
ㄷ	\%	©	\square	\uparrow	\downarrow	M Run	\square	C	H	Code	$\stackrel{4}{7}$	囫	Validate

Logout	Control Panel
Not Trusted \| Python 3 O Memory: CPU: GPU:	

```
In [1]: from google.cloud import bigquery
client = bigquery.client()
import time
import numpy as np
```

```
Yearly
years =$2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018}
for y in years:
    sql = f%"
    SELECT *
    FROM 'bigquery-public-data.noaa_gsod.gsod{0}
        \longleftrightarrow Simple SQL query
        |
                            t0=time.time()
                            df = client.query(sql).to_dataframe()
Pickle
    # print(time.time()-t0)
    & print(time.time()-t0)
    print(time.time()-t0) DF
the DF
```

- More complex queries may include dataframe joins, aggregations, or subsetting

Tutorial Notebook

- Open "In-Class Tutorial"
- We will do:

1. Load preprocessed data
2. Define timeseries index
3. Look at data
4. Visualize station
5. Detrend data
6. Smooth data
7. Try ARMA model

Tutorial Notebook

- Load packages, (pre-processed) data with Pandas
import pandas as pd
import numpy as np
from numpy. random import randint
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import time
from mpl_toolkits.basemap import Basemap
 import scipy.signal as sig
from statsmodels.tsa.arima_model import ARMA
from pandas.plotting import autocorrelation_plot

Load our pre-processed data.

```
In [2]: to = time.time()
```

 dataset_path = '/datasets/NOAA_SST/'
 |data \(=\) pd.read_pickle(dataset_path + 'noaa_gsod/Combined_noaa_gsod') \# load weather data
 stations = pd.read_pickle(dataset_path + 'noaa_gsod.stations') \# load station data
 \# \# USE ONLY 2008-2018 \#\#
 data \(=\) data.loc[data.index \(>=\) pd.Timestamp(2008, 1, 1)]
 data \(=\) data.drop(columns=['yr','year','da','mo']) \# don't need these anymore
 print(time.time()-t0)
 22.46479368209839
 find where data is after 2008

Timeseries processing

- We may be missing data, but that's ok for now
- Replace with neighbor data, smooth, fill with mean

Windspeed in Hveravellir, Iceland

Tutorial Notebook

Where is my station located?

In [5]: my_station = stations.loc[stations['usaf'] == my_station_number] my_station.head()

Out [5]:

	usaf	wban	name	country	state	call	lat	lon	elev	begin	end
18673	041560	99999	HVERAVELLIR	IC	None	None	64.867	-19.567	+0641.0	20080115	20190401

In [6]: fig = plt.figure(figsize=(15,7))
\#Create a Basemap projection, cylindrical centered at 0 $\mathrm{m}=$ Basemap(projection='cyl', llcrnrlat=-90, urcrnrlat=90, llcrnrlon=-180, urcrnrlon=180, resolution='1')
\# draw the oceans and countries and lines
m.drawmapboundary(fill_color='xkcd:lightblue')
m.fillcontinents(color='xkcd:green', lake color='xkcd:lightblue')
m.drawmeridians (np.arange (0., 350.,30.), labels=[True,False,False,True])
m.drawparallels(np.arange(-90.,90,30.), labels=[False,True,True,False])
\# show my station
A pl, = plt.plot(my_station['lon'],my_station['lat'],'rp', markersize=10) plt.show()

Basemap is handy but some problems if running on your laptop

Timeseries processing

- Remove mean (slope $=0$) or linear (slope $\neq 0$)? (linear)
- What can we learn from trend?

Timeseries processing

- Smoothing: median filter

Windspeed in Hveravellir, Iceland

Tutorial Notebook

- Shortened timeseries - Y2018 (final 10\%)
- ARMA most effective predicting one step at a time

Hveravellir, Iceland
Detrended Windspeed, 2018

Tutorial Notebook

- Is ARMA a machine learning technique? (I think so..)
- Filtering method (like Kalman filter)
- Data-driven
- Maximum likelihood
- Conclusion: statistics-based

Hveravellir, Iceland
Detrended Windspeed, 2018

Tutorial Notebook

- Autocorrelation:
- A statistical method to find temporal (or spatial) relations in data
- When can reject the null hypothesis that the data is statistically similar?
- E.g. How many time steps before the data is decorrelated

Tutorial Notebook

- Median filter increases decorrelation scale
- By averaging neighbor samples
- Raw series is more random
- Use raw timeseries

Tutorial Notebook

- ARMA algorithm:

1. Train on all previous data
2. Predict one time step
3. Add next value to training data
4. Repeat

Hveravellir, Iceland
Detrended Windspeed, 2018

Homework

- How to load and preview data with Pandas

Predict rain based on other weather variables

This notebook will use time lags to train a machine learning model for predicting temprature.
First, we select a random station. The data is kept at daily resolution. Then, we generate a lagged feature matrix.

	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array}$	```import pandas as pd import numpy as np from numpy.random import randint from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomPorestRegressor import matplotlib.pyplot as plt import matplotlib.dates as mdates import time import glob from mpl_toolkits.basemap import Basemap```										
load data find where		```t0 = time.time() data = pd.read_pickle('noaa_gsod/Combined_noaa_gsod') fload weather data stations = pd.read_pickle('noaa_gsod.stations') % load station data USE ONLY 2008-2018 ** data = data.loc[data.index >m pd.Timestamp(2008, 1, 1)] data = data.drop(columns=["yr","year",'da",'mo"]) % don't need these anymore print(time.time()-t0)```										
	22.778506994247437											
	1	stations.head()										
Out[4]:		usaf	wban	name	country	state	call	lat	lon	elev	begin	end
	0	007018	99999	WXPOD 7018	None	None	None	0.00	0.000	+7018.0	20110309	20130730
	1	007026	99999	WXPOD 7026	AF	None	None	0.00	0.000	+7026.0	20120713	20170822
	2	007070	99999	WXPOD 7070	AF	None	None	0.00	0.000	+7070.0	20140923	20150926
\bigcirc	3	008268	99999	WXPOD8278	AF	None	None	32.95	65.567	+1156.7	20100519	20120323
	4	008307	99999	WXPOD 8318	AF	None	None	0.00	0.000	+8318.0	20100421	20100421

Homework

- How to load and preview data with Pandas

Homework

- Randomly select a station
- Check if the station has enough data
- May reduce "3650" to lower number, i.e. 1000, but be aware you may have nans in data - just look at it!

```
# SELECT RANDOM STATION ##
np.random.seed(3)
rs = np.unique(data['stn'].values) find unique stations with data
rand_stat = rs[randint(len(rs))] # pick a random station
## ideally we should check < len(np.unique(data.index)), but many are shorter
while (len(data.loc[data['stn'] == rand_stat]) < 3650): #f If not enough data
```

 if len(stations.loc[stations['usaf'] \(=\) rand_stat]): If station info available
 if (stations.loc[stations['usaf'] m= rand_stat].iloc[0]['wban'] 1= '99999'): \# If station number not uniqui
 rand_stat \(=r s[r a n d i n t(l e n(r s))]\) get a new station
 else:
 rand_stat \(=r s[r a n d i n t(l e n(r s))]\) get a new station
 select_station $=$ stations.loc[stations['usaf'] =" rand_stat] get location, etc,
features = data.loc[data['stn'] =m rand_stat] pick weather at random
features $=$ features.drop(columns='stn')
features $=$ features.drop(columns='max')
features $=$ features.drop(columns='min')
features $=$ features.sort_index()
select_station.head() see where it is

Out [7]:

Homework

- Manually time-delay data
- Pandas "shift()"

Time-shift the data

Homework

- (Map is supposed to show red " X " for station)

```
Show the position of the station
fig = plt.figure(figsize=(18.5, 10.5))
m = Basemap(projection='cyl',llernrlat=-90,urcrnrlat=90,
    llernrlon=-180, urernrlon=180, resolution='1')
m.drawmapboundary(fill_color='xkcd:lightblue')
m.fillcontinents(color='xkcdrgreen',lake_color='xkodrlightblue')
m.drawmeridians (np. arange(-180.,180.,30.), labels=[True,False,False,True])
m.drawparallels(np. arange(-90.,90,30.),1abels=[False,True,True,False])
lon = select station["lon'].tolist()
lat = select_station["lat'].tolist()
m.plot(lon, lat, 'r+')
plt.show()
```


Homework

- Snapshots from "timeseries_prediction_Temp.ipynb"

Create train/val/test

```
ylabel = features['temp'] use today's&mperature as tme tameting training label=
* Use 20% test split (80% training + validation)
temperature
ntrain = int(len(features)*0.B)
x_test = features.iloc[ntrain:, ;
y_test = ylabel[ntrain:]
* Split remaining 80% into training-validation sets (of original data)
x_train, x_val, y_train, y_val = train_test_split(features.iloc[0intrain,i], ylabel[0intrain], \
    test_size=0.2, random_state=1)
```

* Scale features. Fit scaler on training only.
scaler = MinMaxScaler() \#scale features between 0 and 1
x_train $=$ scaler.fit_transform(x_train)
$x_{\text {_val }}=$ scaler.transform(x_val)
$x_{\text {_test }}=$ scaler.transform(x_test)
scaling features train/test with the
improves learning

Homework

- Random forest model in a couple lines
- You may want to write a "plot.py" function

Predict with Random Forest

```
clf = RandomForestRegressor(n_estimators=100, max_depth=10, random_state=0) # define Random Forest object
clf.fit(x_train, y_train) train Random Forest
y = clf.predict(x_test) % predict temperature
# plot predictions
plt.figure(figsize=(15,7))
plt.subplot(1, 2,1)
plt.plot(features.iloc[ntrain:].index,y_test) #% plot actual temperature
Define, train, and predict
plt.plot(features.iloc[ntrain:].index, y) # plot predicted temperature
with random forest
```



```
myFmt = mdates.DateFormatter( "&b-8d-8y')
plt.gca().xaxis.set_major_formatter(myFmt)
plt.ylabel('Daily Temperature (degree Fahrenheit)', fontsize=12)
plt.legend(('Temperature', 'Random Forest Prediction'), fontsize=12, loc=1) {plt.show()
# Plot the feature importances ## *
predicted temperature
nfeatures = 10
fi = clf.feature_importances_ get feature importances
fi_sort = np.argsort(fi)[t:=\overline{1}] sort importances most to least
plt.subplot(1,2,2)
plt.bar(range(nfeatures), fi[fi_sort[0infeatures]], width=1, \
            tick_label=features.columns.values[[fi_sort[0:nfeatures]]]) # plot features
plt.ylabel('Feature Importance (avg across trees)', fontsize=12)
plt.xticks(rotation = 45)
plt.show()
```


Homework

- Congratulations!
- We showed that tomorrow's temperature is usually similar to today's (at this Canada station)

Takeaway for your projects and beyond:

 Have some dataset of interest but it has $<\sim 1 \mathrm{M}$ images?1. Find a very large dataset that has similar data, train a big ConvNet there
2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own
Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision

