
Announcements
Class is now 176.

Matlab Grader homework, emailed Thursday,
1 and 2 (of less than 9) homeworks Due 21 April, Binary graded.
Homework 3 (nor released yet) due 28 April

Jupiter “GPU” home work released Wednesday. First part of class will focus 
on this. Presented by graduate student Emma Ozanich.

Today: 
Stanford CNN
Linear models for regression

Wednesday 10 April
Stanford CNN, Linear models for classification (Bishop 4), 
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Projects

3-4 person groups preferred
Deliverables: Poster & Report & main code (plus proposal, midterm slide)

Topics your own or chose form suggested topics. Some physics inspired.

April 26 groups due to TA (if you don’t have a group, ask in piaza we can 
help). TAs will construct group after that.

May 5 proposal due. TAs and Peter can approve. 
Proposal: One page: Title, A large paragraph, data, weblinks, references. 
Something physical

May 20 Midterm slide presentation. Presented to a subgroup of class.

June 5 final poster. Uploaded June 3
Report and code due Saturday 15 June.
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Activation Functions
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Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Consider what happens when the input to a neuron (x) 
is always positive:

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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RELU
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ReLU 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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DATA CLOUD
active ReLU

dead ReLU
will never activate 
=> never update
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TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don’t expect much
- Don’t use sigmoid
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Step 1: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201758

Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash 
the range if it wants to:

Note, the network can learn:

to recover the identity 
mapping.

Normalize:
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Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer 
functions differently:

The mean/std are not computed 
based on the batch. Instead, a single 
fixed empirical mean of activations 
during training is used.

(e.g. can be estimated during training 
with running averages)
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Babysitting the Learning Process
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Step 1: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)
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Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

input 
layer hidden layer

output layer
CIFAR-10 
images, 3072 
numbers

10 output 
neurons, one 
per class

50 hidden 
neurons

2040M
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Cross-validation strategy
coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

Tip for detecting explosions in the solver: 
If the cost is ever > 3 * original cost, break out early

Hyperparameters
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Hyperparameters to play with:
- network architecture
- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function

This image by Paolo Guereta is licensed under CC-BY 2.0
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Random Search vs. Grid Search

Important Parameter Important Parameter
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Grid Layout Random Layout

Illustration of Bergstra et al., 2012 by Shayne 
Longpre, copyright CS231n 2017

Random Search for 
Hyper-Parameter Optimization
Bergstra and Bengio, 2012
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Monitor and visualize the loss curve
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Summary
We looked in detail at:

- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier init)
- Batch Normalization (use)
- Babysitting the Learning process
- Hyperparameter Optimization

(random sample hyperparams, in log space when appropriate)

TLDRs
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Batch size is important
start simple



Maximum Likelihood and Least Squares (3)
Computing the gradient and setting it to zero yields

Solving for w,  

where
The Moore-Penrose 
pseudo-inverse,       .



Geometry of Least Squares
Consider

S is spanned by                    

wML minimizes the distance between t and its 
orthogonal projection on S, i.e. y.

N-dimensional
M-dimensional
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Least mean squares: An alternative approach for big datasets

This is “on-line“ learning. It is efficient if the dataset is redundant and simple 
to implement.
It is called stochastic gradient descent if the training cases are 
picked randomly.
Care must be taken with the learning rate to prevent divergent 
oscillations. Rate must decrease with tau to get a good fit.
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w.r.t. the weights on the 
training case at time tau.



Bias-variance (from lecture 1)
Bias-variance tradeoff

3. Bias-variance tradeo↵

Concept: Complex models can learn data-label relationships well, but
may not extrapolate to new cases.

	

Test	Sample	

Training	Sample	

High	Bias	
Low	Variance	

Low	Bias	
High	Variance	

Model	Complexity	
Low	 High	
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Parametric Distributions
Basic building blocks:

Need to determine     given 

Representation:        or           ?

Recall Curve Fitting

We focus on Gaussians!
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testcase n trained 
on dataset D

<. > means 
expectation over D

“Bias” term is the squared error of the  average, 
over training datasets D, of the estimates.

Bias: average between prediction  and desired.

“Variance” term: variance over training datasets D, 
of the model estimate.

The bias-variance decomposition
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Regularization parameter affects the bias and variance 

low bias
high bias

low variancehigh variance
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True model
average

20 realizations
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An example of the bias-variance trade-off
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Beating the bias-variance trade-off
Reduce the variance term by averaging lots of models trained on 
different datasets. 

Seems silly. For lots of different datasets it is better to combine 
them into one big training set.

More training data has much less variance.

Weird idea: We can create different datasets by bootstrap 
sampling of our single training dataset. 

This is called “bagging” and it works surprisingly well.
If we have enough computation its better doing it Bayesian: 

Combine the predictions of many models using the posterior 
probability of each parameter vector as the combination 
weight.



Bayesian Linear Regression (Bishop 3.3)
Define a conjugate prior over w

Combining this with the likelihood function and using  results 
for multiplying Gaussians, gives the posterior 

A common simpler prior

Which gives
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From lecture 3:

Bayes for linear model
! = #$ + & &~N(*, ,&) y~N(#$, ,&) prior: $~N(*, ,$)

. $ ! ~. ! $ . $ ~/ $0, ,. mean $0 = ,1#2,345!
0 ,1 = #2,345# + ,345



Interpretation of solution

Draw it 

Sequential, conjugate prior
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Likelihood, prior/posterior Bishop Fig 3.7

With no data we sample 
lines from the prior.

With 20 data points, the 
prior has little effect

! = #0 +#1' +( 0,0.2
Data generated with. w0=-0.3, w1=0.5
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Predictive distributions

marginal

Prior predictive

P Lt w I T pCt Ie T p v.v l T
w

pet
pCt I T JpCt w l T d w

p It 1way

tooptimit



Predictive Distribution 
Predict t for new values of x by integrating over w (Giving the 
marginal distribution of t):

where

training data

precision of output noise
precision of prior



Predictive distribution for noisy sinusoidal data modeled 
by  linear combining 9 radial basis functions.
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A way to see the covariance of predictions for different values of x
We sample models at random from the posterior and show the 
mean  of each model’s predictions



Equivalent Kernel BISHOP 3.3.3

The predictive mean can be written

This is a weighted sum of the training data target values, tn.

Equivalent kernel or 
smoother matrix.
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Equivalent Kernel

Weight of tn depends on distance between x and xn; 
nearby xn carry more weight.



Equivalent Kernel
The kernel as a covariance function: consider

We can avoid the use of basis functions and define the kernel function directly, 
leading to  Gaussian Processes (Chapter 6).
No need to determine weights.

Like all kernel functions, the equivalent kernel can be expressed as an inner 
product:


