2019: 224Students with the following specialization

166 EC,3BE,1BI,1CE,3CH,19CS,1CU, lIR,9MC,1 MA, 1 Na,2RS,5SE6SI1PY,1UN
2018: 116 Students with the following specialization

56 EC, 7BE, 1 CE, 4 CS, 6 CU, 1 MA, 15 MC, 5 MC, 1 PY, 3UN

Sit-in students are welcome, but please email me to be signed up for cody

BOOK:
We use Bishop 2006, relative to last year Kullback-Leibner, (RNN, LSTM,CNN), RF, sequential estimation.
Murphy 2012 has more detail, but is larger.
Online resources: Sign up for Cosera ML or Stanford Statistical Learning
Grade 2017: (A+ 19, A 20, A-13,B+7,S 1,W 1)
2018: (A+21, A 20, A- 20, B+ 4, B5)
*  50% Homework, automatic graded
. 50% Project
. 5 class participation

TA (Siva Prasad Varma Chiluvuri, Harshuk Gupta, Ruixian Liu)
*  Siva coordinate/lead home work (presentation and Cody)
. Harshuk coordinate/lead Piazza, Jupyter, GPU effort

. Ruixian coordinate projects, present ML to discover PDE
*  Office hours on Piazza ECE/SIO, just TA?



Ideal Class 80 min
10 min homework
40 min pre or post homework science.
30 min applications, projects D2 students please give a presentation instead of projects.
Light theory initially
"Partly reverse class. Stanford
(https://www.youtube.com/playlist?list:PL3FW7Lu3i5JvH M8IjYj-zLFQRF3EO8sYv

Homework
Automatic graded by Cody in matlab due ABOUT 1 hour before EVERY class. First
homework April & 2@
Please talk about homework, but don’t copy
Maybe some SciKit Learn on Jupyter Notebook (TA problem)
Piazza help



GPU datahub.ucsd.edu

https://datahub.ucsd.edu/hub/login TA Harshul
Documentation 1-2 Homeworks on this
Plus Final project
Tensorflow gave a factor 10 speedup

DATA SCIENCE / MACHINE LEARNING PLATFORM UC SanDiego

Information Technology Services - Educational Technology Services Help Options ~

: Jjupyter Home  Token

Logout

Spawner Options

py3torch-cuda9 (2 CPU, 8GB RAM)
(Deprecated W1 19- use Scientific Python+ML) Python 3, PyTorch 1.0.0, TensorFlow 1.11.0

Scientific Python + Machine Learning Tools (2 CPU, 8GB RAM)
ucsdets/scipy-ml-notebook: Python 3, PyTorch 1.0.1, TensorFlow 1.12.0 (replaces ets-pytorch)

Data Science: Base Notebook (2 CPU, 4GB RAM)
ucsdets/datascience: Julia, R, Python 3 (based on jupyter/datascience-notebook)

ECE228_SP19_A00: Scientific Python + Machine Learning Tools (2 CPU, 8GB RAM)
ucsdets/scipy-ml-notebook: Python 3, PyTorch 1.0.1, TensorFlow 1.12.0 (replaces ets-pytorch)

ECE228_SP19_A00: Scientific Python + Machine Learning Tools (1 GPU, 4 CPU, 16GB RAM)
ucsdets/scipy-ml-notebook: Python 3, PyTorch 1.0.1, TensorFlow 1.12.0 (replaces ets-pytorch)



Projects

3-4 person groups
Deliverables: Poster & Report & main code (plus proposal, midterm slide)
Topics your own or chose form suggested topics

Week 4 groups due to TA Ruixian (if you don’t have a group, ask in week 3
and we can help).

May 5 proposal due. TAs and Peter can approve.

Proposal: One page: Title, A large paragraph, data, weblinks, references.
Something physical

May 20 Midterm slide presentation. Presented to a subgroup of class.
June 5 final poster. Uploaded June 3

Report and code due Saturday 15 June.



Final Projects

2018

Group |Topic Authors Poster|Report
| Reunplt'ement?tmn of source locall.zatlon o an ocean Jinzhao Feng, Zhuoxi Zeng, Yu Zhang Poster |Paper
waveguide using supervised learning
2 mcglrsne ! ng methods for ship detection in satelite Yifan Li, Huadong Zhang, Xiaoshi Li, Quianfeng Guo Poster |Paper
3 Transparent Conductor Prediction Yan Sun, Yiyuan Xing, Xufan Xiong, Tianduo Hao Poster |Paper
4 Ship identification in sateklite Images Weilun Zhang, Zhaoliang Zheng, Mingchen Mao, Poster |Paper
5 Fruit Recognition Eskil Jarslkog, Richard Wang, Joel Andersson Poster |Paper
6 RSNA Bone Age Prediction glhal? Camilo Castillo, Yitian Tong, Jiyang Zhao, Fengcan Poster |Paper
7 Facial Expression Classification into Emotions ga;lt: Orozco, Christopher Lee, Yevgeniy Arabadzhi, Deval Poster |Paper
8 Urban Scene Segmentation for Autonomous Vehicles g::la;)‘-ighen Huang, Eddie Tseng, Ping-Chun Chiang, Chih- Poster |Paper
9 Face Detection Using Deep Learning Yu Shen, Kuan-Wei Chen, Yizhou Hao, Min Hsuan Wu Poster |Paper
10 Understanding the Amazon Rainforest using Neural Naveen Dharshana Ketagoda, Christian Jonathan Koguchi, Poster [Paper
Networks Niral Lalit Pathak, Samuel Sunarjo Losler (raper
11 Mercedes-Benz Bench Test Time Estimation Lanjihong Ma, Kexiong Wu, Bo Xiao, Zihang Yu Poster Paper
. . . o Osman Cihan Kilinc, Kazim Ergun, Yuming Qiao,
12 Vegetation Classification in Hyperspectral Image Fengjunyan Li Poster |Paper
13 Threat Detection Using AlexNet on TSA scans Amartya Bhattacharyya, Christine H Lind, Rahul Shirpurkar |Poster [Paper
14 Flagellates Classification via Transfer Learning Eric Ho, Brian Henriquez, Jeffrey Yeung Poster |Paper
15 Biomedical Image Segmentation Lucas Tindall, Amir Persekian, Max Jiao Poster [Paper
16 (‘(l});;;;)Fakes using Generative Adversarial Networks Tianxiang Shen, Ruixian Liu, Ju Bai, Zheng Li Poster |Paper
17 g:fwl(;)rk Classification via Convolutional Neural Yizhou Chen; Xiaotong Chen; Xuanzhen Xu Poster |Paper
18 Dog Breed Identification Wenting Shi, Jiaquan Chen, Fangyu Liu, Muyun Liu Poster |Paper
19 Impact of Skewed Distributions on an Automated Will Chapman, Emal Fatima, William Jenkins, Steven Tien, Poster [Paver
Plankton Classifier Shawheen Tosifian OsIel (Laper
20 Blood Cell Detection using Single shot MultiBox Detector |Inyoung Huh Poster |Paper




2017 projects:

Source localization in an ocean waveguide using supervised machine
learning, Group3, Group6, Group8, Group10, Group11, Groupl5 (from my www)

Indoor positioning framework for most Wi-Fi-enabled devices, Group1l
MyShake Seismic Data Classification, Group2 (from my www)

Multi Label Image Classification, Group4. (Kaggle Use satellite data to track the human footprint
in the Amazon rainforest)

Face Recognition using Machine Learning, Group?7

Deep Learning for Star-Galaxy Classification, Group9

Modeling Neural Dynamics using Hidden Markov Models, Group12

Star Prediction Based on Yelp Business Data And Application in Physics, Group13 (non physics... )
Si K edge X-ray spectrum absorption interpretation using Neural Network, Group14

Plankton Classification Using VGG16 Network, Group16 (from my www)

A Survey of Convolutional Neural Networks: Motivation, Modern Architectures, and Current
Applications in the Earth and Ocean Sciences, Group1l7  (NO data, BAD)

Use satellite data to track the human footprint in the amazon rainforest, Group18 (Kaggle Use
satellite data to track the human footprint in the Amazon rainforest)

Automatic speaker diarization using machine learning techniques, Group19
Predicting Coral Colony Fate with Random Forest, Group20



Qingkai Kong is from Berkeley, | have 3GB of

RESEARCH ARTICLE

data and examples of analysis by students there

EARTH SCIENCES

MyShake: A smartphone seismic network for

earthquake early warning and beyond

Qingkai Kong,'* Richard M. Allen," Louis Schreier,” Young-Woo Kwon?

2016 © The Authers, some rights reserved;
exclusive licensee American Assodiation for
the Advancement of Science. Distributed
under a Creative Commons Attribution
NonCommercial License 4.0 (CC BY-NC).
10.1126/sciadv. 1501055

Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of
people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes
of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other
machinery. The handful of EEW systems operating around the world use traditional seismic and qeodetic networks

RESEARCH ARTICLE
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First principles

Data

Domain expertise

Fidelity/ ¢
Robustness

VS

Small data

High reliance on domain expertise

Q=

Universal link can handle non-
linear complex relations

Complex and time consuming
derivation to use new relations

Adaptability
7Parameters are physical!
Interpretability /
Perceived
Importance. SIO Signal-Proc
b ——

Data driven

Big data to train

Results with little domain

knowledge v

Limited by the range of values
spanned by training data

Rapidly adapt to new problems

Physically agnostic, limited by the
rigidity of the functional form

Peter Google



Volumes of Data

Hybrid model, combining
machine learning and

Peter M. Shearer

F=ma
Introductory knowledge
First order :
Analytic physical models : sical models

.
a .

Amount of Knowledge

[ o

3D spectral elements
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We can’t model everything...

Detection of mines. Navy uses dolphins to
assist in this.

Dolphins = real ML!




Machine Learning for physical Applications
noiselab.ucsd.edu

Murphy: “...the best way to make machines that can learn from data is
to use the tools of probability theory, which has been the mainstay of
statistics and engineering for centuries.”

CHRISTOPHER M. BISHOP

o = ~ay
‘Sﬁj"‘ - ”\’C!/‘ =

Trevor Hastie
Robert Tibshirani
Jerome Friedman

-—
Data Mining, Inference, and Prediction Machine Learning
A Probabilistic Perspective
Kevin P. Murphy

13



Learning:
The view from different fields

e Engineering: signal processing, system identification, adaptive and optimal
control, information theory, robotics, ...

e Computer Science: Artificial Intelligence, computer vision, information retrieval,

e Statistics: learning theory, data mining, learning and inference from data, ...

e Cognitive Science and Psychology: perception, movement control, reinforcement
learning, mathematical psychology, computational linguistics, ...

e Computational Neuroscience: neuronal networks, neural information processing,

e Economics: decision theory, game theory, operational research, ...

Physical science is missing!
ML cannot replace physical understanding.
It might improve or find additional trends

Machine learning is interdisciplinary focusing on both mathematical foundations and
practical applications of systems that learn, reason and act.



What is Machine Learning?

Many related terms:

e Pattern Recognition

e Neural Networks

e Data Mining

e Adaptive Control

e Statistical Modelling

e Data analytics / data science
e Artificial Intelligence

e Machine Learning Big data



Summary

E PHY:,
P"“N Sig, 4,

iy Machine learning in Physical Sciences

3

ABORATORY

Peter Gerstoft, Mike Bianco, Emma Ozanich, Haigiang Niu
http://noiselab.ucsd.edu/. SIO, UCSD

Machine learning, big data, data science, artificial intelligence are about the same.
Data science has lots of opportunities in physics.

Neural networks is one method. Similar are methods are Support Vector Machines (SVM) and
Random Forest (RF). Use the latter for a first implementation.

Unsupervised learning is more challenging than supervised learning

Coding: Matlab OK, Jupyter notebook is nice.
| like graph signal processing methods, dictionary learning, sequential estimation
Following the trend, here we use RF, SVM, FNN, CNN, LSTM, ResNet

Relevant papers ML in ocean acoustics: (FNN)
Niu, Reeves, Gerstoft (2017) JASA 142. (Noise09)
Niu, Ozanich, Gerstoft (2017) JASA-EL 142. (SBC)
Ozanich, Niu Gerstoft (2019?) JASA

Niu, Ozanich, Gerstoft (2019?) JASA.
Michalopoulou, Gerstoft (2019), JOE in press.
Bianco 20197 Review paper

ML in seismics

Riahi 2017 (Graph processing)

Bianco 2017, 2018,2019? (Tomography/ Dictionary Learning)
Kong 2019 Review paper
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o Reorsm Cdassitigation versus regression

'@®Z; =5 m

Zy =128 — 143 m
Q

N potential source ranges

| em——

— - R={r,.., 7y}

]
D =152 m $Az=1m
Qo

94 m Cp=1572—1593 m/s

Layer p =176 g/cm® a,=2.0dB/X\

Regression:

r—\ layer L, layer L, layer ij
(a)

(a) R =10.1—-2.86 km
_

@Z; =5m

Z, =198 — 143 m one source continuous range
o

o
D =152m SAz=1m
[e]

C, = 1572 — 1593 m/s
24 m P
Layer p=1.76 g/em® a, = 2.0 dB/X :>

Regression is harder

Number of parameters
MFP: c@
ML: 400*T000+ 1000*1000+1000*100

= 0(1000000j

Input Hidden Output
layer L, layer L, layer L;




So far...

* Can machine learning learn a nonlinear noise-range relationship?

— Yes: Niu et al. 2017, “Source localization in an ocean waveguide using machine
learning.”

* We can use different ships for training and testing ?

— Yes: Niu et a. 2017, “Ship localization in Santa Barbara Channel using machine
learning classifiers.” (see figure)
J |o o predictions — GPS rangesl
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Other parameters: FNN

Conclusion

Works better than MFP
Classification better than
regression
FNN, SVM, RF works.
Works for:
- multiple ships,
- Deep/shallow water
- Azimuth from VLA

Range (km) Range (km)

Range (km)
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Why we got interested in traffic

Google Earth

Image Landsat

lat 33.813463° lon -118.172662° elev 25m eyealt 4.89 km

March 5—12, 2011




Noise Tracking of Cars/Trains/Airplanes
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"Travel time tomography with adaptive dictionaries"
Bianco and Gerstoft 2018, IEEE Transactions on Computational Imaging

The Earth contains both smooth and discontinuous variations in slowness (e.g. Moho, faults) at
multiple spatial scales

Most existing travel time inversion methods are ad hoc: regularize inversion assuming
exclusively smooth or discontinuous slownesses

Propose locally-sparse 2D travel time tomography (LST) method with three main ingredients:
Sparsity constraint on slowness patches
Dictionary learning (unsupervised machine learning)

Damped least squares regularization on overall slowness map

Slowness (s/km)
0.3 0.35 0.4 0.45 05
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Synthetic checkerboard LST in Long Beach, CA, USA



Latitude

Comparison of LST with Eikonal Tomography (Lin et al
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Polynomial Curve Fitting

y(z, w) = wo + w1z + wex® + ... +wyxM = g w;z’
j=0

0

T
Tn




0 Order Polynomial

M Order Polynomial Fit

15t Order Polynomial

3 Order Polynomial
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Bias-variance tradeoff

Concept: Complex models can learn data-label relationships well, but
may not extrapolate to new cases.

High Bias Low Bias
Low Variance High Variance
A — _—>
Test Sample

Prediction Error

Training Sample >
L4 T

Low High
Model Complexity




Polynomial Coefficients

M=0 M=1 M=3

M=9

0.19 0.82 0.31
-1.27 7.99

-25.43

17.37

0.35
232.37
-5321.83
48568.31
-231639.30
640042.26
-1061800.52
1042400.18
-557682.99
125201.43




Data Set Size:

9t Order Polynomial




Regularization

* Penalize large coefficient values

Bw) = 5 3" {y(wn, w) — 1)’

InA=0




Frus

Regularization:F'rygVs. In A

Training

Test

\

Polynomial Coefficients
In\=—-00 InA=-18 InA=0

-35

-30

In A

—25

0.35 0.35 0.13

232.37 4.74 -0.05
-5321.83 -0.77 -0.06
48568.31 -31.97 -0.05
-231639.30 -3.89 -0.03
640042.26 55.28 -0.02
-1061800.52 41.32 -0.01
1042400.18 -45.95 -0.00
-557682.99 -91.53 0.00
125201.43 72.68 0.01



Curve Fitting Re-visited, Bishop1.2.5

@ y(z, w) ,
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Maximum Likelihood Bishop 1.2.5
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Maximum Likelihood
N
ptx,w,8) = [ [N (taly(an, w), 871) . = (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the

form
B N N
Inp(tix, w, 3) = ~2 2_: (20, W) — tn )2 + -5 (). (1.62)
-
G = Z{y Ty WaL) — tn}” . (1.63)

g ﬁML

Giving estimates of W and beta, we can predict

p(tlz, wyw, fuL) = N (t\y(m,W‘ML),ﬁl\._di) .



Predictive Distribution




MAP: A Step towards Bayes 1.2.5

p(w|a) = N(W\(’), g___lI) = (%)(MH)/Q exp {—%WTW}
—_— _

p(wlx, t, o, B) o p(t|x, w, B)p(w|a)

(FeFede,  [lleked -

2

[e—————

N
~ @ o
BE(w) = 5 Z{y(xmw) —tn )} Sww
n=1
Determine WA P by minimizing regularized sum-of-squares error, E(W)

Regularized sum of squares



Probability Theory

Joint Probability

~ P = 0, = yy) = 2
s @ }?"j Marginal Probability
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Conditional Probability
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Probability Theory

Sum Rule

L
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Product Rule

pX =2,V =y) = —L=-"2.-2



Probability Theory

p(Y) p(X) Joint Probability

P9

Marginal Probability

NS 0 V(f]): ff(k//j)é/é’

Conditional Probability
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The Rules of Probability

e Sum Rule p(X) =) p(X,Y)

* Product Rule
p(X,Y) =p(Y|X)p(X)




Bay es Theorem

ﬂﬂ ls) pCx)
p(Y|X) = (ngm
= > p(X|Y

posterior o likelihood x prior



Bayes Rule

P(data|hypothesis) P(hypothesis)
P(data)

P(hypothesis|data) =

Rev'd Thomas Bayes (1702-1761)

e Bayes rule tells us how to do inference about hypotheses from data.

e Learning and prediction can be seen as forms of inference.



