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Beamforming / DOA estimation  
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We can’t model everything…

Back scattering from fish school

Reflection from 
complex geology

Detection of mines. Navy uses dolphins to 
assist in this.
Dolphins = real ML!

Predict acoustic field in turbulence

Weather prediction

so



Machine Learning for physical Applications 
noiselab.ucsd.edu

8

Murphy: “…the best way to make machines that can learn from 
data is to use the tools of probability theory, which has been 
the mainstay of statistics and engineering for centuries.“



DOA estimation with sensor arrays
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The DOA estimation is formulated as a linear problem
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Compressive beamforming

min $ 0 subject to . − 0$ < 2

[Edelman,2011; Xenaki 2014; Fortunati 2014; Gerstoft 2015]

In compressive beamforming 3 is given by sensor position

.:measurement vector
;: Transformmatrix

x: desired sparse vector

3: selection matrix
A: measurement matrix

Sparse: N>A

Often N>>M

O

O



Conventional Beamforming
Solving 
. = 0$ 0 = CD,… , CG CDHCD = 1
Gives

$ = 0K. = (0H 0H)MN0H. ≈ 0H. =
CDH.
⋮

CGH.

With L snapshots we get the power
QRS = CDHTCD
With the sample covariance matrix

U = 1
VWXYD

Z
.X.X[

More advanced beamformers exists that 
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CS has no side lobes!
CS provides high-resolution imaging
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Off-the-grid versus on-the-grid

Physical	parameters	_ are	often	continuous

. = 0 ` $ + b . ≈ 0grid$ + b

Grid-mismatch effects: Energy of an off-grid source is spread among 
on-grid source locations in the reconstruction

Basis mismatch

Spatial spectral leakage due to inadequate discretization of the angular space
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Fine angular resolution requires dense discretization (N � M)

Root-CS o↵ers super-resolution in practical applications through the dual problem

A. Xenaki (DTU/UCSD) 5 / 18

[Xenaki, JASA, 2015]

A fine angular resolution can ameliorate this problem
Continuous grid methods are being developed 

=>[Angeliki Xenaki; Yongmin Choo; Yongsung Park] 

Discretize

Basis mismatch

Spatial spectral leakage due to inadequate discretization of the angular space
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SWellEx-96 Event S59:
Source 1 (S1) at 50 m depth (blue) 
Surface Interferer (red)
14*3=42 processed frequencies: 

- 166 Hz (S1 SL at 150 dB re 1 μPa) 
- 13 freq. ranging from 52-391 Hz

(S1 SL at 122-132 dB re 1 μPa)
- +/- 1 bin each

FFT Length: 4096 samples rec. at 1500 
Hz

21 Snapshots @ 50% overlap 
135 segments

30 min

55 min

Experiment site (near San Diego) with 
Source (blue) and Interferer (red) 
track. 



• Simulation
• Source 1 (50 m)
• Surface Interferer
• Freq. = 204 Hz
• SNR = 10 dB
• Int/S1 = 10 dB
• Stationary noise

SBL1

Bartlett

WNC -3dB

CBF

i

i

0



Ship localization using machine learning

(b)

(a)

(c)

Ship range is extracted underwater noise  from array
Sample covariance matrix (SCM) has range-dependent signature
Averaging SCM overcomes noisy environments

Old method: Matched-Field Processing or (MFP)
Need environmental parameters for  prediction

D = 152 m

Zs = 5 m

R = 0:1! 2:86 km

Zr = 128! 143 m

"z = 1 m

Layer
Cp = 1572! 1593 m=s

; = 1:76 g=cm3 ,p = 2:0 dB=6
24 m

Halfspace Cp = 5200 m=s

; = 1:8 g=cm3 ,p = 2:0 dB=6

(a)

Niu 2017a, JASA
Niu 2017b, JASA
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Matched-Field Processing on test data 1 

120

synthetic replicas.                        measured replicas

Frequencies [300:10:950]Hz 

Mean Absolute Percentage Error error of MFPs:   55% and 19%

D = 152 m

Zs = 5 m

R = 0:1! 2:86 km

Zr = 128! 143 m

"z = 1 m

Layer
Cp = 1572! 1593 m=s

; = 1:76 g=cm3 ,p = 2:0 dB=6
24 m

Halfspace Cp = 5200 m=s

; = 1:8 g=cm3 ,p = 2:0 dB=6

(a)

c = p[Cp

fi
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ti
G



DOA estimation as a classification problem 
DOA estimation can formulated as an classification with I classes
Discretize the whole DOA into a set I discrete values Θ = { D̀, … , `G}
Each class corresponds to a potential DOA. 

© AudioLabs, 2017 

Soumitro Chakrabarty 
Multi-speaker Localization with CNN 

7 

§  Multi-speaker DOA estimation is formulated as an I class multi-label 
classification problem 

§  Discretize the whole DOA range into I discrete values to obtain a set 
of possible DOA values: 

§  Each class corresponds to a possible DOA value in the set  

Problem Formulation 
DOA estimation as classification 
 

⇥ = {✓1, . . . , ✓I}

...
...

I classes

i ≈ θi ∈ Θ = {θ1, . . . , θI}

Θ = {θ1, . . . , θI}

D = 152 m

Zs = 5 m

R = 0:1! 2:86 km

Zr = 128! 143 m

"z = 1 m

Layer
Cp = 1572! 1593 m=s

; = 1:76 g=cm3 ,p = 2:0 dB=6
24 m

Halfspace Cp = 5200 m=s

; = 1:8 g=cm3 ,p = 2:0 dB=6

(a)
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Soumitro Chakrabarty 
Multi-speaker Localization with CNN 

7 

§  Multi-speaker DOA estimation is formulated as an I class multi-label 
classification problem 

§  Discretize the whole DOA range into I discrete values to obtain a set 
of possible DOA values: 

§  Each class corresponds to a possible DOA value in the set  

Problem Formulation 
DOA estimation as classification 
 

⇥ = {✓1, . . . , ✓I}

...
...

I classes

i ≈ θi ∈ Θ = {θ1, . . . , θI}

Θ = {θ1, . . . , θI}

N source ranges
R = {iD, … , iG}

re



Supervised learning framework 

© AudioLabs, 2017 

Soumitro Chakrabarty 
Multi-speaker Localization with CNN 

9 

System overview 
Supervised learning framework 
 

STFT Input feature

True DOA Labels

DOA classifier

Training data

STFT Input feature
Test data

Train
DOA classifier

Training

Inference/Test

Posterior
probabilities

DOA estimate

Trained parameters

True range labels

Range estimate

Range 
classifier

Range 
classifier

Train

µ
r



Input: preprocessed sound pressure data
Output (softmax function): probability distribution of the possible ranges 
Connections between layers: Weights and biases

20

Input 
layer L1

Hidden 
layer L2

Output 
layer L3

(a)

!"#

!"$

!"%
&'$
(#) &*'

(+)
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From layer1 to layer2:

Output layer:

Sigmoid 
function

Softmax

p



Pressure data preprocessing

21

Sound 
pressure

Source term

Normalize pressure 
to reduce the effect 
of            

Number of 
sensors

Sample Covariance 
Matrix to reduce effect 
of source phase 

Number of 
snapshots

Input vector X: the real and imaginary parts of the entries of diagonal and 
upper triangular matrix in 

SCM is a conjugate symmetric matrix.

i r
n n

BL
a

C
4



Classification versus regression 

D = 152 m

Zs = 5 m

R = 0:1! 2:86 km

Zr = 128! 143 m

"z = 1 m

Layer
Cp = 1572! 1593 m=s

; = 1:76 g=cm3 ,p = 2:0 dB=6
24 m

Halfspace Cp = 5200 m=s

; = 1:8 g=cm3 ,p = 2:0 dB=6

(a)

© AudioLabs, 2017 
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7 

§  Multi-speaker DOA estimation is formulated as an I class multi-label 
classification problem 

§  Discretize the whole DOA range into I discrete values to obtain a set 
of possible DOA values: 

§  Each class corresponds to a possible DOA value in the set  

Problem Formulation 
DOA estimation as classification 
 

⇥ = {✓1, . . . , ✓I}

...
...

I classes

i ≈ θi ∈ Θ = {θ1, . . . , θI}

Θ = {θ1, . . . , θI} N potential source ranges
R = {iD, … , iG}

Regression:

D = 152 m

Zs = 5 m

R = 0:1! 2:86 km

Zr = 128! 143 m

"z = 1 m

Layer
Cp = 1572! 1593 m=s

; = 1:76 g=cm3 ,p = 2:0 dB=6
24 m

Halfspace Cp = 5200 m=s

; = 1:8 g=cm3 ,p = 2:0 dB=6

(a)
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§  Multi-speaker DOA estimation is formulated as an I class multi-label 
classification problem 

§  Discretize the whole DOA range into I discrete values to obtain a set 
of possible DOA values: 

§  Each class corresponds to a possible DOA value in the set  

Problem Formulation 
DOA estimation as classification 
 

⇥ = {✓1, . . . , ✓I}

...
...

I classes

i ≈ θi ∈ Θ = {θ1, . . . , θI}

Θ = {θ1, . . . , θI}
one source continuous range

3. Classification vs regression
Example: feed-forward neural network

Classification: E(!!!) = � 1
N

NP
n=1

LP
`=1

tn`lnyn`

Regression: E(!!!) = 1
2

NP
n=1

|y(xxxn,!)� rn|2

tn` is the true label.

Input 
layer L1

Hidden 
layer L2

Output 
layer L3
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Classification (a)

(a) Classification in an FNN
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Regression (b)

(b) Regression in an FNN
24 / 46

Input 
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Hidden 
layer L2

Output 
layer L3
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Classification:

Regression is harder

Number of parameters 
MFP: O(10)
ML: 400*1000+ 1000*1000+1000*100

= O(1000000)

o
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ML source range classification

Range predictions on Test-Data-1 (a, b, c) 
and Test-Data-2 (d, e, f) by 
FNN, SVM and RF for 300–950Hz with 10Hz 
increment, i.e., 66 frequencies. 

(a),(d) FNN classifier,

(b),(e) SVM classifier, 

(c),(f) RF classifier. 

Test-Data-1    Test-Data-2



Other parameters: FNN

1 snapshot

5 snapshot

20 snapshot

13 Output

690 Output

138 Output
Conclusion
- Works better than MFP
- Classification better than 

regression
- FNN, SVM, RF works.
- Works for:

- multiple ships,
- Deep/shallow water
- Azimuth from VLA

e



So far…

Ship range localization using (a,c) MFP
and (b,d) SVM (rbf kernel).

(c) (d)

• Can machine learning learn a  nonlinear noise-range relationship? 
– Yes: Niu et al. 2017, “Source localization in an ocean waveguide using machine 

learning.”

• We  can use different ships for training and testing ?
– Yes: Niu et a. 2017, “Ship localization in Santa Barbara Channel using machine 

learning classifiers.” (see figure)

NN, SVM, and random forest
Perform about similar

60s Science
Scientfic Am

py
NFP sun

ship1 r

Ship2



Can we use CNN instead of FNN?
CNN uses much less weights!
CNN relies on local features
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Rsnet and CNN for range estimation

1×1, 64 

3×3, 64 

1×1, 256 

Relu 

Relu 

Relu 

Identity mapping

x

x

F(x)

F(x)+x

e
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Preprocessed 
signals
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Output 
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Conventional Beamforming

• Linearize:

• Real, linear beam-function with vector inputs

B θk( ) =Tr (WR )TPR + (W I )TP I{ }
= vec(WR )T vec(PR )+ vec(W I )T vec(P I )

B θk( ) = weff θk( )
T
peff

weff θk( ) = vec(WR ),vec(W I )⎡
⎣

⎤
⎦ peff θk( ) = vec(PR ),vec(P I )⎡

⎣
⎤
⎦

Beamforming is now a linear problem in weights
with real-valued input from sample covariance matrix

EQUIVALENCE OF BEAMFORMING AND SUPERVISED MACHINE LEARNING

Emma Ozanich⇤, Peter Gerstoft

Scripps Institution of Oceanography
University of California San Diego

La Jolla, CA 92093

Haiqiang Niu

Institute of Acoustics
Chinese Academy of Sciences

Beijing 100190, People’s Republic of China

ABSTRACT

This paper derives an equivalence of conventional beamform-
ing (CBF) to the linear feed–forward neural network (FNN)
and support vector machine learning methods. Examples of
degraded scenarios are provided to contextualize these ma-
chine learning approaches in terms of CBF and demonstrate
how data–driven methods may aid angle–of–arrival prediction
for unknown array positions or environmental conditions.

Index Terms— beamforming, supervised machine learn-
ing, support vector machine, feed-forward neural network

1. INTRODUCTION

Machine learning has gained increasing attention in recent
years due in large part to improved learning algorithms [1],
[2] and to the notable success of deep learning in classifica-
tion problems [3].

In the last couple years, interest in machine learning has
spread to applications, e.g. in the field of underwater acous-
tics [4], [5], [6], [7], [8]. However, the development of these
applications may be hindered by differences in terminology
between research communities.

Our objective is to theoretically connect CBF with ma-
chine learning to promote the similarities and differences.
There are a number of excellent examples for nonlinear SVM
applications to beamforming [9], [10], [11], [12], [13], how-
ever, this paper considers only the linear formulations of
SVM and FNN in order to directly compare them to CBF.

In Section 2, CBF is rewritten as a real, linear problem. In
Sections 3.2 and 3.1, the theory of SVM and FNN are briefly
covered and the similarity of the linear problem discussed. In
Section 4, examples of degraded CBF scenarios are provided
to demonstrate the strength of data–driven approaches when
a representative training set is available.

2. CONVENTIONAL BEAMFORMING

Conventional beamforming (CBF) is a popular method for
leveraging signal diversity across an array. The method com-

⇤This work was funded under ONR Grant N00014-18-1-2065.

monly applies a plane wave assumption. One application is
angle–of–arrival estimation, in which the optimal match is
found between measured p 2 CN⇥1 and replica w 2 CN⇥1

signals on an N–element array.

w(✓) =
1

N
ei

!
c n�x·sin(✓), n = 1, ..., N. (1)

p =
KX

k=1

Skw(✓k) + CN (0,�2), (2)

K represents the number of independent sources with fre-
quency !, phase speed c, array spacing �x, and array index n
(n = 0 at first element). The noise is assumed to be complex
Gaussian CN (0,�2) with variance �2. In angle–of–arrival
estimation, plane waves are simulated at ✓m, m = 1, ...,M
candidate angles. An ambiguity curve is created from the
magnitude squared coherence of the replica and real data:

B(✓m) =
LX

l=1

|wH(✓m)pl|2 =
LX

l=1

Tr{wH(✓m)plp
H

l
w(✓m)}

=
LX

l=1

Tr{w(✓m)wH(✓m)plp
H

l
}=LTr{WHP}.

(3)

✓̂ = argmax
✓m

B(✓m) (4)

where ✓̂ is the predicted angle, and (·)H is the complex con-
jugate. W 2 CN⇥N and P 2 CN⇥N are given by

W = w(✓m)wH(✓m), P =
1

L

LX

l=1

plp
H

l
. (5)

Note that P is the spatial correlation matrix estimate, with
L chosen empirically for the application, depending on the
variability of the environment.

For convenience, we define the real and imaginary com-
ponents of (5):

W = WR + iWI , P = PR + iPI . (6)

Snapshots

se n

tf v



Machine Learning: Feed-forward neural network

• xi = peff( j̀) (data covariance)

•

• klj,mnop : output for class m

• FNN linear model:

• No hidden layer

klj,mnop = q1, l = r
0, l ≠ r , l = 1,… ,t.

klj,vnpw = xyz $ = W
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Machine Learning: Feed-forward neural network
• Encourage similarity between true and predicted outputs

• Recall, 

• Cost function:

argmin
xj

−W
jYD

z
W
yYD

~
kj,mnopy kj,vnpwy

= argmin
xj

−∑jYDz xj
Ä$�

klj,mnop = q1, l = r
0, l ≠ r , l = 1,… ,t.F

n



Machine Learning and Conventional Beamforming
• Compare:

CBF FNN

• Assume xi = peff wi = weff ( `m )

• Thus, linear FNN converges to CBF if trained on plane waves

→
argmin

xj

−xj
z$� ∀�

argmax
x���

−xpÜÜ `y z�pÜÜ
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Conventional Beamforming and Machine Learning

• Conventional beamforming (CBF) 
is written as linear function

• 2-Layer Feed-forward neural 
network (FNN), same linear 
function

• Support Vector Machine (SVM) is 
a linear classifier, differs from 
CBF

Ozanich 2019?



Fully connected FNN
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Coherent vs incoherent sources
FIG. 6. (a) Perturbed array element locations, (b) ambiguity

surface at ✓m = 80� for CBF, linear FNN and SVM with

C = 0.0001, and (c) predictions at all angles. Linear FNN is

identical to and covers SVM in this example.

peff . In general, the relationship between peff and the
true angle ✓̄m is nonlinear and will require nonlinear ma-
chine learning models.

In the following section, the problem of localizing
two sources is addressed using FC-FNN and SBL-I. The
CBF solution is given for comparison, which is analogous
to using the linear FNN.

The ambiguity surface shown and used for peak se-
lection are

FC-FNN : yi=
ez

i

P
M

i=1
ezi

, i = 1, ...,M. (58)

SBL : p(Y) =
LY

l=1

CN (yl;0,�
2I+A�AH), (59)

CBF : B(✓i) = ŵ>
eff

(✓i)peff (✓t), i = 1, ...,M. (60)

where A is the replica matrix from (40).
The FC-FNN weights are trained using Keras20 with

Tensorflow backend and the Adam19 optimizer with ini-
tial learning rate of 0.01. On noiseless test data, 20,000
training epochs were required for ideal performance,
where one epoch represents one cycle through all training

data. We use full batch training, where the gradient is
computed from all training samples simultaneously.

A. Simulations

Training and validation sets were generated by sim-
ulating plane waves impinging on an N = 20 element
array with elements spaced equally at 2.5 m. We set
! = (2⇡ ⇥ 200) rad/s and c = 1500 m/s (�/3 = 2.5m).
The training signal is noiseless and includes every in-
stance of ✓1, ✓2 for ✓ = [�90�, 90�),�✓ = 1�. The data
are thus fixed to a grid with equal spacing in ✓.

The validation set is generated using 1000 Monte
Carlo simulations of two sources, ✓1, ✓2, selected at
uniform random from a grid such that ✓1, ✓2 2

U{�90�, 89�},�✓ = 1�. The signal is constructed ac-
cording to (2). Gaussian random noise is added with
variance �2 according to the signal–to–noise ratio (SNR)

SNR = 10 log
10

⇣
kp1k

2

2

�2

⌘
,

�2 = kp1k
2

2
⇥ 10�

SNR
10 . (61)

The covariance matrix is averaged for L snapshots
according to (5) before generating the FNN inputs as in
(11).

B.Multi–source error measurement

The mean accuracy is determined between the esti-
mated peaks, ✓̂1

t
and ✓̂2

t
, and the true source angles, ✓t,1

and ✓t,2, using

Ej,t =
���✓t,j � ✓̂j

t

��� , j = 1, ..,m, t = 1, .., T (62)

Accuracy =
1

mT

mX

j=1

TX

t=1

1
h
Ej,t  1�

i
(63)

where m = 2 is number of sources, 1[x] is the indica-
tor function, which evaluates True if x =True and False
otherwise.

C. Source coherence

Two plane wave sources, Sk = |Sk|ei�k , k = 1, 2, as
in (2) are incoherent if they contain a random phase �1 6=
�2, �k 2 U [�⇡,⇡], with U() the uniform distribution. If
�1 = �2, then the sources will be coherent. The FC-FNN
inputs derived from (5) are directly a↵ected by the source
coherence,

PR

n,m
=

1

N

h 2X

k=1

|Sk|
2 cos

⇣!
c
(n�m)` sin(✓k)

⌘
+

2S1S2 cos
⇣!
c
(n sin(✓1)�m sin(✓2))`+��

⌘i

P I

n,m
=

1

N

h 2X

k=1

|Sk|
2 sin

⇣!
c
(n�m)` sin(✓k)

⌘i
(64)
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Coherent vs incoherent sources

FIG. 7. Validation accuracy as a function of SNR for FC-

FNN trained on coherent and incoherent sources. The val-

idation set is generated from 1000 random simulations of 2

sources with L = 1 snapshot. The FC-FNN input features

depend on the relative source phases (Eqs. (64),(65)).

where n,m = 1, ..., N and �� = �1 � �2.
The real components, which comprise half the FC-

FNN input features, thus depend on�� when the sources
are incoherent and L is small. When L � 1, snapshot
averaging reduces the e↵ect of the cross–term such that

PR

n,m
=

1

N

h 2X

k=1

|Sk|
2 cos

⇣!
c
(n�m)` sin(✓k)

⌘
+

LX

i=1

2S1S2 cos
⇣!
c
(n sin(✓1)�m sin(✓2))`+��i

⌘i

PR

n,m
!

1

N

h 2X

k=1

|Sk|
2 cos

⇣!
c
(n�m)` sin(✓k)

⌘i
, (65)

L ! 1, ��i 2 U{⇡,⇡}.

The cross-term with �� term therefore disappears for
su�cient snapshot averaging. When �� = 0 (coher-
ent), the cross–term S1S2 cos(

w

c
(n sin(✓1)�m sin(✓2))`)

is present.
Based on (64) and (65), we trained the FC-FNN on

noiseless coherent and incoherent sets (Figure 7). We
also trained the FC-FNN on 5 noiseless incoherent sets
to simulate the feature variability caused by ��. Fig-
ure 7 shows that the coherently trained FC-FNN (tested
on coherent) achieves an accuracy of 1 for noiseless val-
idation data because the input features for the training
and validation are identical; the incoherently trained FC-
FNN will not achieve an accuracy of 1 due to features
di↵erences in (64). By increasing the number of incoher-
ent training sets from 1 to 5, the incoherent model can
achieve 0.99 accuracy at high SNR.

FIG. 8. Validation accuracy vs number of FC-FNN hidden

layers, with 512 hidden nodes. The training and validation

sets use incoherent sources, with L = 1 snapshot for valida-

tion.

D. Hidden layers

We examined the validation accuracy as a function
of number of FC-FNN hidden layers for coherent sources
with single–snapshot (Figure 8). Each additional hidden
layer introduces (S + 1)S fully connected model param-
eters (weights and biases) for S hidden nodes. For low
SNR test data, the model therefore risks overfitting on
the training data, or decreased performance as the num-
ber of hidden layers grows.

Figure 8 suggests that a minimum of two to three
FC-FNN hidden layers improves the FC-FNN inference
within our training conditions. Overfitting is evident for
0 dB and 10 dB, where the mean accuracy decreases for
FC-FNN models with more than 5 hidden layers. In
this example, each hidden layer adds 512⇥ 513 or about
260,000 model parameters. For a 5–layer FC-FNN with
512 hidden nodes at each layer, there are 1.3 million un-
known model parameters to solve in total for a 5–layer
model.

E. Hidden nodes

The number of hidden nodes in each hidden layer
may be varied for the FC-FNN model. Figure 9 shows
the validation accuracy for an FC-FNN with 5 hidden
layers, all with S hidden nodes.

For an FC-FNN with 5 hidden layers, an increase of
one hidden node at each hidden layer adds [(D+ 1)(S +
1)�(D+1)S]+4[(S+1+1)(S+1)�(S+1)S]+[(S+2)M�

(S + 1)M ] ⇡ (D + 10S + M) model parameters, where
D is the input dimension and M the output dimension.
Thus a new hidden layer introduces O(S2) parameters
while a new hidden node introduces O(S).

8 J. Acoust. Soc. Am. / 3 June 2019



FNN hidden layers

• Two DOAs `D, `S: 0-180 deg.
• Training all combinations
• Validation 1000 Uniformly 

random DOA

• Each Hidden layers add 
S(S+1)

• 512 nodes in each layer



FNN hidden layers

• Two DOAs `D, `S: 0-180 deg.
• Training all combinations
• Validation 1000 Uniformly 

random DOA

• Each Hidden layers add O(S)



Localizing two sources from SW06
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f = 750 Hz
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Location 1: Prince - “Sign o’ the times”

Location 1: Otis Redding - “Hard to 
handle”

Spectral coherence between i and j

i j

(Normalization: |X(f,t)|2=1)

30-microphone array



Statistically significant 
entries => Connectivity 

matrix

|Cij|

Magnitude of spectral 
coherence for 30 

sensors
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f = 750 Hz

Each group is spatially 
coherent. But no temporal 

correlation between groups 
(i.e. different source)

• Each sensor is a node in the graph.
• If nodes i and j are significantly correlated 

|Cij|>ξ, then they share an edge.



=> Two sources in the network

44

Statistically significant 
entries => Connectivity 

matrix

Connected subgraphs:
5 nodes and 9 edges

8 nodes and 20 edges

Graph with 30 nodes

• Each sensor is a node in the graph.
• If nodes i and j are significantly correlated 

|Cij|>ξ, then they share an edge.
• A subgraph has high spatial coherence 

across a subarray (=> likely a source 
nearby).
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Eijsupport of Cij

Asymptotic case

Reinterpret Cij as connectivity matrix Eij of network with N vertices.

N

N

N

N

connected components is a basic task in graph analysis [25] and is an
example of spectral clustering for non-overlapping clusters. In this
context the connected components are found using the eigen-vectors of
the graph Laplacian, which is derived from the connectivity matrix E
[21]. We assume now that there are K fully connected components Uk

in G, i.e. each vertex in Uk connects to all other vertices in Uk. Let
u uu = [ ,…, ]k k

N
k T

1 be the vertex indicator vector of Uk (u = 1i
k if v U∈i

k k

and 0 otherwise). The connectivity matrix of G is then (see Appendix
A):

∑E u u= ,
k

k k
T

(7)

where k indexes the set of connected components of G. Note that any
graph where the same vertices are connected in groups has the same or
a smaller support than E.

Finally, consider the random, unweighted graph G N p( , )0 with N
vertices where all pairs of vertices have the same probability p of being
connected. The mean vertex degree in G N p( , )0 is therefore
γ N p= ( −1) because every vertex can connect with all N −1 other
vertices with equal probability. A large fraction of vertices in a random
graph tend to be connected when γ > 1 with about 90% being
connected when γ > 2.5 [24]. Such a high connectivity, e.g. 90%, will
thus occur above a threshold probability of

p N= 2.5/( −1),0 (8)

i.e. for an edge probability above p0 most vertices will be connected.
This upper limit decreases as the graph grows larger. For a graph with
N=300 vertices this threshold is already below 0.01. As we will see
later, preventing large clusters from forming by chance is important
because the clusters will be used to detect sources within a sensor
network.

2.3. Constructing an array graph

Armed with the hypothesis test in Section 2.1.2 we construct a
coherence graph G0 with the following connectivity matrix:

l⎧⎨⎩E C c= 1 if >
0 otherwise,ij

ij α0

(9)

i.e. two vertices are connected if the corresponding signals exhibit
significant coherence. This straight-forward construction of an array
graph, however, is insufficient because of the statistical fluctuations of
the hypothesis test. Even if the array is sensing N uncorrelated noise
signals the probability of observing lC c>ij α is α for all receiver pairs.
This means that G0 is a random graph G N α( , )0 . As seen in Eq. (8) a

Fig. 1. (A) The PDF of the sample coherence (4) for uncorrelated signals xi and xj. A
stationary and two heteroscedastic scenarios are considered (see Table 1). (B) The pdf of
sample coherence (5) for the same three scenarios (lines overlap).

Fig. 2. The PDF (blue) of the magnitude sample coherence lCij (5) for uncorrelated noise,

Γ = 0ij , for M=19. The decision threshold cα=0.484 is exceeded with probability α=0.01.

The PDF (orange) of lCij for the case of Γ ≠0ij with a common signal present in the noise

of the two recordings (SNR = 3). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

Fig. 3. The decision threshold cα (α = 0.01) as a function of number of snapshots M. For
M=19 we have c = 0.484α .

Fig. 4. A sample graph G with N=9 vertices (circles) and four edges (lines). The
connected component U consists of the vertices and edges within the dashed area. Vertex
vj has degree dj=3 and vi degree dj=2. The mean vertex degree
γ = (5*0 + 1 + 2*2 + 3)/9 = 8/9.
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describes how a graph is constructed from the array coherence matrix.
In Section 3 a proof is given that within-array sources induce clusters
in that graph in the asymptotic case assuming sufficient spatial signal
decay. We verify and test the reliability of finding sources using these
clusters on simulated data in Section 4. This is followed in Section 5 by
an application to real data from a 5200 sensor geophone array that
covered 70 km2 of the city of Long Beach (CA) with a sensor spacing of
about 100 m.

2. Coherence matrix defines a graph

Consider a large aperture array with N sensors distributed densely
over spatial locations r{ }i i N=1, …, . The arrays we consider are quasi-
uniform, but different configurations are applicable. This section first
describes a hypothesis test to find the support of the coherence matrix
of these sensors and then describes how to use this support to construct
a graph and find its clusters. Finally, we investigate the clustering
behavior in a source-free network.

2.1. Coherence hypothesis test

2.1.1. Robust coherence
We compare the behavior of two definitions of magnitude of

coherence for uncorrelated and heteroscedastic signals, i.e. stochastic
signals with time-varying variance. Consider a zero-mean signal uj(t)
observed at location rj and captured by a window of Q samples at
intervals tΔ . Its discrete Fourier transform over a period T Q t= ΔW
during the m-th window (snapshot) is defined as:

∑x m f w u mQ t q t e( , ) = ( Δ + Δ ) ,j
q

Q

q j π q t f

=0

−1
−ı2 ( Δ )

(1)

where the frequencies are discretized f k Q= , = 0,…, /2k
TW

and the
weights wq control spectral leakage [22]. All the considerations in this
paper are made in the Fourier domain.

Let xi(m) and xj(m) be a sequence of snapshots of two such signals
in the frequency domain, m M= 1,…, . The sample covariance is
defined as

l ∑Γ M x m x m= 1 ( ) *( ),ij
m

M

i j
=0

−1

(2)

with the actual covariance reached for infinite snapshots:

lΓ Γ⎯ →⎯⎯⎯⎯⎯ .ij
M

ij
→∞

(3)

The sample covariance estimate will be affected by the variances in xi
and xj that are unrelated to any physical relation between the two
sensors. A customary attempt to reduce the impact of such variations is
to compute the coherence as a normalized covariance. We compare two
definitions of magnitude of coherence. A full-sample normalized
coherence:

l ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

C M x m x m

M x m M x m
=

1 ∑ ( ) *( )

1 ∑ | ( ) | 1 ∑ | ( ) |
,ij

c m
M

i j

m
M

i m
M

j

=0
−1

=0
−1 2

1/2

=0
−1 2

1/2

(4)

and a version relying only on phase-information:

l ∑C M
x m
x m

x m
x m= 1 ( )

| ( ) |
*( )

| ( ) | .ij
m

M
i

i

j

j=0

−1

(5)

The coherence (5) only relies on phase information and is invariant
against heteroscedasticity, i.e. signals with time-varying intensity [23].
This is important because such signals are common in seismic and
acoustic time-series. To illustrate the effect of heteroscedasticity we
consider three scenarios for xi and xj as shown in Table 1, where xi and

xj are uncorrelated and each i.i.d. complex Gaussian with a variance
that depends on the snapshot index. Fig. 1A shows the simulated pdf of
lCij

c
for the three scenarios (based on 106 realizations). The pdf of the

sample coherence lCij
c
substantially deviates from the stationary case for

the two non-stationary scenarios considered. This instability with
respect to heteroscedasticity makes lCij

c
a poor choice for a hypothesis

test against independence. Fig. 1B shows the pdf of lCij for the same
scenarios as before and demonstrates how the distribution of this
statistic is invariant for the considered heteroscedasticity scenarios.

2.1.2. Hypothesis test
We describe a hypothesis test with robust test-statistics to establish

the support of the array coherence matrix Γij Eq. (3). We test for the
two alternative hypotheses:

H Γ H Γ: = 0, : ≠0,ij ij0 1 (6)

i.e. the signals observed at locations ri and rj are uncorrelated (H0) or
correlated (H1). We use the magnitude of the robust sample coherence
lCij Eq. (5) to test the hypothesis. If H0 is true, then lCij will be
distributed according to a pre-computable PDF (Fig. 2 shows the
PDF for M=19 derived by simulation). The hypothesis H0 is accepted if
lC c≤ij α and rejected otherwise. The threshold coherence magnitude cα
is set such that the probability of falsely rejecting the hypothesis is α,
formally c α= cdf (1 − )α −1 , where cdf (·)−1 is the inverse of the cumula-
tive distribution function of lCij estimated by simulation (blue plot in
Fig. 2).

Fig. 3 shows how cα decreases monotonically with increasing
number of snapshots M. For M = 19 we have c = 0.484α . Note that if
the travel time difference between two sensors exceeds TW then the
contribution of that source to the coherence is zero. While a large M is
preferred for statistical reasons, due to the non-stationary sources M
cannot be too large.

To provide an idea about the likelihood of falsely accepting the null-
hypothesis (e.g. a misdetection) Fig. 2 also shows the simulated PDF of
lCij for the case where there is a signal present: x s n= +i i and
x s n= +j j where P s= var( )s and P n n= var( ) = var( )n i j and
SNR P P= / = 3s n , i.e. H1 is true. The false acceptance probability for
H1 is 0.0768 (area under orange curve below cα).

2.2. Graph preliminaries

An undirected (symmetric) and unweighted graph G consists of N
vertices v{ }i i N=1… and edges e{ } ∈{0, 1}ij j i≥ where e = 1ij means that vi
and vj are connected. The edges define a binary and symmetric
connectivity matrix E with E e=ij ij. The number of edges connecting
to vertex vi is its degree di. The mean vertex degree γ of a graph is the
average over the vertex degrees of all its vertices. If γ approaches a
constant as N increases the graph is sparse [24].

A connected componentU G⊂ is a subset of vertices and edges in G
for which every pair of vertices v v U, ′ ∈ is connected directly or
indirectly through a sequence of edges in U (see Fig. 4). Finding

Table 1
Three scenarios considered for M=19 snapshots of the noise processes xi and xj (see
Fig. 1). xi(q) refers to the q-th snapshot of process xi.

Scenario Variance xi Variance xj

Stationary σ (1⋯19) = 1i
2 σ (1⋯19) = 1j

2

Heteroscedastic 1 σ (1⋯5) = 10i
2 σ (1⋯5) = 10j

2

σ (6⋯19) = 1i
2 σ (6⋯19) = 1j

2

Heteroscedastic 2 σ (1⋯5) = 10i
2 σ (1⋯14) = 1j

2

σ (6⋯19) = 1i
2 σ (15⋯19) = 10j

2
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describes how a graph is constructed from the array coherence matrix.
In Section 3 a proof is given that within-array sources induce clusters
in that graph in the asymptotic case assuming sufficient spatial signal
decay. We verify and test the reliability of finding sources using these
clusters on simulated data in Section 4. This is followed in Section 5 by
an application to real data from a 5200 sensor geophone array that
covered 70 km2 of the city of Long Beach (CA) with a sensor spacing of
about 100 m.

2. Coherence matrix defines a graph

Consider a large aperture array with N sensors distributed densely
over spatial locations r{ }i i N=1, …, . The arrays we consider are quasi-
uniform, but different configurations are applicable. This section first
describes a hypothesis test to find the support of the coherence matrix
of these sensors and then describes how to use this support to construct
a graph and find its clusters. Finally, we investigate the clustering
behavior in a source-free network.

2.1. Coherence hypothesis test

2.1.1. Robust coherence
We compare the behavior of two definitions of magnitude of

coherence for uncorrelated and heteroscedastic signals, i.e. stochastic
signals with time-varying variance. Consider a zero-mean signal uj(t)
observed at location rj and captured by a window of Q samples at
intervals tΔ . Its discrete Fourier transform over a period T Q t= ΔW
during the m-th window (snapshot) is defined as:

∑x m f w u mQ t q t e( , ) = ( Δ + Δ ) ,j
q

Q

q j π q t f

=0

−1
−ı2 ( Δ )

(1)

where the frequencies are discretized f k Q= , = 0,…, /2k
TW

and the
weights wq control spectral leakage [22]. All the considerations in this
paper are made in the Fourier domain.

Let xi(m) and xj(m) be a sequence of snapshots of two such signals
in the frequency domain, m M= 1,…, . The sample covariance is
defined as

l ∑Γ M x m x m= 1 ( ) *( ),ij
m

M

i j
=0

−1

(2)

with the actual covariance reached for infinite snapshots:

lΓ Γ⎯ →⎯⎯⎯⎯⎯ .ij
M

ij
→∞

(3)

The sample covariance estimate will be affected by the variances in xi
and xj that are unrelated to any physical relation between the two
sensors. A customary attempt to reduce the impact of such variations is
to compute the coherence as a normalized covariance. We compare two
definitions of magnitude of coherence. A full-sample normalized
coherence:
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and a version relying only on phase-information:
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The coherence (5) only relies on phase information and is invariant
against heteroscedasticity, i.e. signals with time-varying intensity [23].
This is important because such signals are common in seismic and
acoustic time-series. To illustrate the effect of heteroscedasticity we
consider three scenarios for xi and xj as shown in Table 1, where xi and

xj are uncorrelated and each i.i.d. complex Gaussian with a variance
that depends on the snapshot index. Fig. 1A shows the simulated pdf of
lCij

c
for the three scenarios (based on 106 realizations). The pdf of the

sample coherence lCij
c
substantially deviates from the stationary case for

the two non-stationary scenarios considered. This instability with
respect to heteroscedasticity makes lCij

c
a poor choice for a hypothesis

test against independence. Fig. 1B shows the pdf of lCij for the same
scenarios as before and demonstrates how the distribution of this
statistic is invariant for the considered heteroscedasticity scenarios.

2.1.2. Hypothesis test
We describe a hypothesis test with robust test-statistics to establish

the support of the array coherence matrix Γij Eq. (3). We test for the
two alternative hypotheses:

H Γ H Γ: = 0, : ≠0,ij ij0 1 (6)

i.e. the signals observed at locations ri and rj are uncorrelated (H0) or
correlated (H1). We use the magnitude of the robust sample coherence
lCij Eq. (5) to test the hypothesis. If H0 is true, then lCij will be
distributed according to a pre-computable PDF (Fig. 2 shows the
PDF for M=19 derived by simulation). The hypothesis H0 is accepted if
lC c≤ij α and rejected otherwise. The threshold coherence magnitude cα
is set such that the probability of falsely rejecting the hypothesis is α,
formally c α= cdf (1 − )α −1 , where cdf (·)−1 is the inverse of the cumula-
tive distribution function of lCij estimated by simulation (blue plot in
Fig. 2).

Fig. 3 shows how cα decreases monotonically with increasing
number of snapshots M. For M = 19 we have c = 0.484α . Note that if
the travel time difference between two sensors exceeds TW then the
contribution of that source to the coherence is zero. While a large M is
preferred for statistical reasons, due to the non-stationary sources M
cannot be too large.

To provide an idea about the likelihood of falsely accepting the null-
hypothesis (e.g. a misdetection) Fig. 2 also shows the simulated PDF of
lCij for the case where there is a signal present: x s n= +i i and
x s n= +j j where P s= var( )s and P n n= var( ) = var( )n i j and
SNR P P= / = 3s n , i.e. H1 is true. The false acceptance probability for
H1 is 0.0768 (area under orange curve below cα).

2.2. Graph preliminaries

An undirected (symmetric) and unweighted graph G consists of N
vertices v{ }i i N=1… and edges e{ } ∈{0, 1}ij j i≥ where e = 1ij means that vi
and vj are connected. The edges define a binary and symmetric
connectivity matrix E with E e=ij ij. The number of edges connecting
to vertex vi is its degree di. The mean vertex degree γ of a graph is the
average over the vertex degrees of all its vertices. If γ approaches a
constant as N increases the graph is sparse [24].

A connected componentU G⊂ is a subset of vertices and edges in G
for which every pair of vertices v v U, ′ ∈ is connected directly or
indirectly through a sequence of edges in U (see Fig. 4). Finding

Table 1
Three scenarios considered for M=19 snapshots of the noise processes xi and xj (see
Fig. 1). xi(q) refers to the q-th snapshot of process xi.

Scenario Variance xi Variance xj

Stationary σ (1⋯19) = 1i
2 σ (1⋯19) = 1j

2

Heteroscedastic 1 σ (1⋯5) = 10i
2 σ (1⋯5) = 10j

2

σ (6⋯19) = 1i
2 σ (6⋯19) = 1j

2

Heteroscedastic 2 σ (1⋯5) = 10i
2 σ (1⋯14) = 1j

2

σ (6⋯19) = 1i
2 σ (15⋯19) = 10j

2
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heteroscedastic 1
heteroscedastic 2

Robust to heteroscedastic noise
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We limit this by  testing just the 
8-nearest neighbors:

α
=
1

Prohibit long-range 
coherences

graph with, say, 300 sensors will likely have a giant connected
component if α > 2.5/(300 − 1) = 0.008. For graphs constructed with
a less conservative threshold any attempt to find smaller connected
components that are not due to chance is thus futile.

We modify (9) to define a localized coherence graph G c( )α with
connectivity matrix:

Nl⎧⎨⎩E C c i j= 1 if > and ∈ ( )
0 otherwise,ij

ij α

(10)

where N j( ) is the index set of the nearest neighbors of sensor j. For a
regular lattice, the nearest neighbors are here limited to eight sensors
as shown in Fig. 5. Besides being coherent any two connected sensors
are thus also required to be spatial neighbors.

Enforcing spatially short connections limits the number of neigh-
bors any vertex can connect to in a way that is independent of the
global graph size and the graph therefore remains sparse for large
arrays. The criterion equation (10) thus reduces the chance of forming
clusters by chance, even for values of α that are above the threshold
suggested by (8). Sensor clusters can still have a spatial extent beyond
that given by the nearest neighbors as long as the vertices in the cluster
are contiguous in space.

To characterize the spatial extent of each connected component Uk

a two-dimensional Gaussian probability density function is estimated
from the sensor locations of the vertices of Uk with mean and
covariance, respectively:

∑ ∑U Um r Σ r m r m= 1
| | = 1

| | ( − )( − ) ,k k
i U

i k k
i U

i k i k T

∈ ∈k k (11)

where U| |k is the number of vertices in Uk. The source area is the region
where the point source is likely located and is here defined as the ellipse
that contains a probability mass p of the Gaussian defined in (11):

Ω p χ pr r m Σ r m( ) = { |( − ) ( − ) < ( )},k k T
k k I
−1 2 (12)

where χI
2 is the cumulative inverse χ2-distribution with two degrees of

freedom (because the Gaussian is 2D). An effective source diameter deff
of a disk with the same area A Ω( )k as the source ellipse Ωk is defined
as:

d A Ω π= 2 ( )/ .keff (13)

For a source within the array aperture Ω is the geographic area within
which the source is estimated to be.

As will be seen in Section 4 this definition of source area works well
for the simulation considered, but source directionality, physical
obstacles or attenuation heterogeneities in the propagation medium
can cause Ω to be not centered around a source. Sensor geometry such
as array gaps and boundaries will also cause a cluster to move away
from its source. In those special cases the identified clusters can,
however, still serve to select a data subset for follow-up analysis with
other array processing methods since by definition its sensors contain
significant signal levels from a common source. E.g. conventional
beamforming using just the data from the vertices in Uk.

2.4. Size of connected components in noise-only array

As discussed before the distance constraint in (10) prevents
connected components to form by chance even in large arrays. We
demonstrate this for a rectangular array of size 2.8 × 2.8 km with sensor
spacing of ∼100 m and 841 sensors (gray triangles in Fig. 6). We
consider M = 19 snapshots of random complex Fourier coefficients, as
this is the number of snapshots also used later in the analysis, Sections
4 and 5. For each vertex, the M=19 snapshots are simulated as random
complex numbers drawn from the complex Gaussian distribution and
the sample coherence matrix lCij Eq. (5) is formed. The corresponding
array graph G c( )α=0.01 is constructed and the number of vertices and
edges of the connected component with the most vertices is stored. The

procedure is repeated 200,000 times. Fig. 7 gives the fraction of
simulations where the vertices exceeded a given number. For the later
analysis for noise affected array data we are interested in a minimum
size criterion that rejects as many random components as possible
while not being overly conservative. Note that large values for these
criteria will increase the cluster size and hence the resolution with
which sources can be localized.

Requiring a minimum of seven vertices seems a safe criterion
because none of the simulations gave rise to such large components.
But this would unduly limit the size of the smallest resolvable cluster.
The smallest tolerable minimum cluster size is four vertices, which
occurred in 10.8% of simulations. This fraction seems high at first, but
upon closer scrutiny we find that of the clusters in these simulations
only 9.3% contained four or more edges, with all the others having
three edges. We therefore settle on a minimum criterion of four vertices
and four edges, in which case only 10.8% × 9.3 %= 1.0% of random
simulations would pass the criterion.

3. Sources induce graph clusters

The relation between sources within an array and the clusters of a
graph constructed from the array data has been presumed so far.
Combining signal features for clustering purposes to analyze sources
was used implicitly in a heuristic approach in [26] for the difficult case
of an ad hoc and dynamic sensor network with communication
constraints. In this section we make the relation between sources and
network clusters explicit for the asymptotic case of infinite observation
time without communications constraints but under the assumption
that source-to-receiver coherence is insignificant after some physical
distance.

Consider again a large aperture array with N sensors distributed
densely over spatial locations r{ }i i N=1, …, . It is assumed that there are
weak sources within the aperture that produce signals that propagate
through space. For a given frequency the channel between any such
source location ρ and sensor location ri is characterized by a Green's
function, ρg r( , )i . Let the vector &ρ ρ ρg gg r r( ) = [ ( , ),…, ( , )] ∈N T N1 be
the frequency domain response of the array to a source at location ρ.
Consider then ρk to be the location of K sources ρ{ }k k K=1, …, with an
associated response ρg g( ) ≡k k and source signals sk. The measured
signal at the N array sensors is thus modeled as:

∑ sx g n= + ,
k

K

k k
=1 (14)

Fig. 5. Connections between a sensor are only allowed to its nearest neighbors. The eight
nearest neighbors (red open triangles) are shown for two example sensor locations (red
triangles). (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)
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Connectivity matrix
=> Band structure

If α>2.5/(N-1) the network almost surely 
has a giant connected component, i.e., most 
sensors are linked [Erdös & Rényi, 1959].
Bad for cluster search!
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-A cluster is formed if
>4 nodes are connected with >4edges

Connectivity matrix
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Long Beach array 

Thursday, March 10th

250 Hz sampling rate
FFT sample size 256 (≈1 sec)
Block-averaging over 19 windows
Window advances by 10 sec.

7 km

10 
k
m

−35

−30

−25

−20

−15

−10

−5

d
B

Long Beach

118.20˚W

118.20˚W

118.17˚W

118.17˚W

118.14˚W

118.14˚W

33.75˚N 33.75˚N

33.78˚N 33.78˚N

33.81˚N 33.81˚N

33.84˚N 33.84˚N

2 km

N

Downtown LB

Anaheim
 St

Pacific
 Cst H

wy

Willo
w St

Wardlow

M
e
tr

o

Runway

I−405



UTME [km]
389 390 391 392 393 394 395

U
TM

N

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

05:53:09--05:55:06h

50

Aliased 
energy

12 Hz

Helicopter rotor noise (seismo-acoustic coupling)
Several peaks consistent with helicopter rotor harmonics 
(20-100 Hz). 
Doppler shift 
fhigh/flow=(v0+v)/(v0-v)≈1.4 i.e. v≈250 km/h
Speed over ground 7km/2min=210km/h

✓ Rotor frequencies
✓ Doppler frequency shift
✓ Movement in map

47 Hz
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10-19Hz 40-49Hz

Clusters on March 10

Based on 9400 time windows x 10 frequency bins.
Each dot is the center of a cluster. 90% of the clusters cover <1.5% of the area.
Few false detections

pump jacks and drill rigs
2: Pumping facility

Long Beach light rail
(Blue Line Metro)

airport

Golfcourse


