
Project discussion, 22 May: Mandatory but ungraded. We split into 6 
sub-classes. The purpose is to make sure your project is on track, 
good progress and good goals. The discussion following your 
presentation is the most important.

Each group gives a ~10 min presentation by all members (each person 
talks for ~2 min, ~1 slide)

1) Motivation & background, which data?
2) small Example, 
3) final outcome, (focused on method and data)
4) difficulties, 

Timing: There are upto 8 Groups in each sub-class, thus we have 15 min 
in total/group, with 2 min/person 10min presentation time/group. 
The discussion following a presentation might be the most important.

June 5,  5-8pm: Poster and Pizza
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Generative Models

17

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Addresses density estimation, a core problem in unsupervised learning
Several flavors: 

- Explicit density estimation: explicitly define and solve for pmodel(x) 
- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it 
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Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Taxonomy of Generative Models

20

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Today: discuss 3 most 
popular types of generative 
models today



Bayes summary
Bayes p 𝑥 𝑦 = % 𝑦 𝑥 %(')

%())

Optimizing posterior  p 𝑥 𝑦

You can also optimize the evidence (type II likelihood) p(x)
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Fully visible belief network

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Then maximize likelihood of training data
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Fully visible belief network

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Will need to define 
ordering of “previous 
pixels”

Complex distribution over pixel 
values => Express using a neural 
network!Then maximize likelihood of training data
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PixelRNN

28

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]

Drawback: sequential generation is slow!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

PixelCNN

30

[van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region

Training: maximize likelihood of training 
images

 

 

Figure copyright van der Oord et al., 2016. Reproduced with permission. 

Softmax loss at each pixel
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PixelRNN and PixelCNN
Improving PixelCNN performance

- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 

(PixelCNN++)

Pros:
- Can explicitly compute likelihood 

p(x)
- Explicit likelihood of training 

data gives good evaluation 
metric

- Good samples

Con:
- Sequential generation => slow



Bayes rule
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Some background first: Autoencoders

40

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?

A: Want features to 
capture meaningful 
factors of variation in 
data
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Some background first: Autoencoders

44

Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv
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Some background first: Autoencoders

46

Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Doesn’t use labels!
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Some background first: Autoencoders

47

Encoder

Input data

Features

Decoder

Reconstructed 
input data

After training, 
throw away decoder
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Some background first: Autoencoders

48

Encoder

Input data

Features

Classifier

Predicted Label

Fine-tune
encoder
jointly with
classifier

Loss function 
(Softmax, etc)

Encoder can be 
used to initialize a 
supervised model

plane
dog deer

bird
truck

Train for final task 
(sometimes with 

small data)
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Some background first: Autoencoders

49

Encoder

Input data

Features

Decoder

Reconstructed 
input data

Autoencoders can reconstruct 
data, and can learn features to 
initialize a supervised model

Features capture factors of 
variation in training data. Can we 
generate new images from an 
autoencoder?



Variational Bayes summary
Bayes p 𝑥 𝑦 = % 𝑦 𝑥 %(')

%())

Optimizing posterior  p 𝑥 𝑦

You can also optimize the evidence (type II likelihood) p(y)

-------
Observations 𝑋 = 𝑥-,… , 𝑥0
With latent parameter 𝑍 = 𝑧-,… , 𝑧0
And probability p X, Z
We like to find an approximation  to p X, Z and the evidence p Z
A good guess is a factorized distribution 
p X, Z = ∏67-

0 𝑧6

Bishop Ch 10 Approximate inference
Variational inference
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from underlying unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian.

Conditional p(x|z) is complex (generates 
image) => represent with neural network

 

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

 

How to train the model?

Remember strategy for training generative 
models from FVBNs. Learn model parameters         
to maximize likelihood of training data

Q: What is the problem with this?

Intractable!

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from underlying unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractible to compute 
p(x|z) for every z!

ʰ ✔ ✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
ʰ

✔

✔

Posterior density also intractable:
ʰ✔

✔

Solution: In addition to decoder network modeling pθ(x|z), define additional 
encoder network qɸ(z|x) that approximates pθ(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that is 
tractable, which we can optimize
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Variational Autoencoders

69

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z

Encoder network Decoder network

(parameters ɸ) (parameters θ)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201779

Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling. (Sampling differentiable 
through reparam. trick, see paper.)Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 201782

Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Variational lower bound (“ELBO”) Training: Maximize lower bound

Reconstruct
the input data

Make approximate 
posterior distribution 
close to prior
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Variational lower bound (“ELBO”) Training: Maximize lower bound

Reconstruct
the input data

Make approximate 
posterior distribution 
close to prior
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Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Maximize 
likelihood of 
original input 
being 
reconstructed
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior! Data manifold for 2-d z

Vary z1

Vary z2Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Figure 13.2 The simplest approach to
modelling a sequence of ob-
servations is to treat them
as independent, correspond-
ing to a graph without links.

x1 x2 x3 x4

pendent of all but the most recent observations.
Although such models are tractable, they are also severely limited. We can ob-

tain a more general framework, while still retaining tractability, by the introduction
of latent variables, leading to state space models. As in Chapters 9 and 12, we shall
see that complex models can thereby be constructed from simpler components (in
particular, from distributions belonging to the exponential family) and can be read-
ily characterized using the framework of probabilistic graphical models. Here we
focus on the two most important examples of state space models, namely the hid-
den Markov model, in which the latent variables are discrete, and linear dynamical
systems, in which the latent variables are Gaussian. Both models are described by di-
rected graphs having a tree structure (no loops) for which inference can be performed
efficiently using the sum-product algorithm.

13.1. Markov Models

The easiest way to treat sequential data would be simply to ignore the sequential
aspects and treat the observations as i.i.d., corresponding to the graph in Figure 13.2.
Such an approach, however, would fail to exploit the sequential patterns in the data,
such as correlations between observations that are close in the sequence. Suppose,
for instance, that we observe a binary variable denoting whether on a particular day
it rained or not. Given a time series of recent observations of this variable, we wish
to predict whether it will rain on the next day. If we treat the data as i.i.d., then the
only information we can glean from the data is the relative frequency of rainy days.
However, we know in practice that the weather often exhibits trends that may last for
several days. Observing whether or not it rains today is therefore of significant help
in predicting if it will rain tomorrow.

To express such effects in a probabilistic model, we need to relax the i.i.d. as-
sumption, and one of the simplest ways to do this is to consider a Markov model.
First of all we note that, without loss of generality, we can use the product rule to
express the joint distribution for a sequence of observations in the form

p(x1, . . . ,xN ) =
N∏

n=1

p(xn|x1, . . . ,xn−1). (13.1)

If we now assume that each of the conditional distributions on the right-hand side
is independent of all previous observations except the most recent, we obtain the
first-order Markov chain, which is depicted as a graphical model in Figure 13.3. The
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Figure 13.3 A first-order Markov chain of ob-
servations {xn} in which the dis-
tribution p(xn|xn−1) of a particu-
lar observation xn is conditioned
on the value of the previous ob-
servation xn−1.

x1 x2 x3 x4

joint distribution for a sequence of N observations under this model is given by

p(x1, . . . ,xN ) = p(x1)
N∏

n=2

p(xn|xn−1). (13.2)

From the d-separation property, we see that the conditional distribution for observa-Section 8.2
tion xn, given all of the observations up to time n, is given by

p(xn|x1, . . . ,xn−1) = p(xn|xn−1) (13.3)

which is easily verified by direct evaluation starting from (13.2) and using the prod-
uct rule of probability. Thus if we use such a model to predict the next observationExercise 13.1
in a sequence, the distribution of predictions will depend only on the value of the im-
mediately preceding observation and will be independent of all earlier observations.

In most applications of such models, the conditional distributions p(xn|xn−1)
that define the model will be constrained to be equal, corresponding to the assump-
tion of a stationary time series. The model is then known as a homogeneous Markov
chain. For instance, if the conditional distributions depend on adjustable parameters
(whose values might be inferred from a set of training data), then all of the condi-
tional distributions in the chain will share the same values of those parameters.

Although this is more general than the independence model, it is still very re-
strictive. For many sequential observations, we anticipate that the trends in the data
over several successive observations will provide important information in predict-
ing the next value. One way to allow earlier observations to have an influence is to
move to higher-order Markov chains. If we allow the predictions to depend also on
the previous-but-one value, we obtain a second-order Markov chain, represented by
the graph in Figure 13.4. The joint distribution is now given by

p(x1, . . . ,xN ) = p(x1)p(x2|x1)
N∏

n=3

p(xn|xn−1,xn−2). (13.4)

Again, using d-separation or by direct evaluation, we see that the conditional distri-
bution of xn given xn−1 and xn−2 is independent of all observations x1, . . .xn−3.

Figure 13.4 A second-order Markov chain, in
which the conditional distribution
of a particular observation xn

depends on the values of the two
previous observations xn−1 and
xn−2.

x1 x2 x3 x4
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in predicting if it will rain tomorrow.
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I.I.D model

Markov model

First order Markov chain
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Figure 13.3 A first-order Markov chain of ob-
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joint distribution for a sequence of N observations under this model is given by
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Figure 13.5 We can represent sequen-
tial data using a Markov chain of latent
variables, with each observation condi-
tioned on the state of the corresponding
latent variable. This important graphical
structure forms the foundation both for the
hidden Markov model and for linear dy-
namical systems.

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Each observation is now influenced by two previous observations. We can similarly
consider extensions to an M th order Markov chain in which the conditional distri-
bution for a particular variable depends on the previous M variables. However, we
have paid a price for this increased flexibility because the number of parameters in
the model is now much larger. Suppose the observations are discrete variables hav-
ing K states. Then the conditional distribution p(xn|xn−1) in a first-order Markov
chain will be specified by a set of K −1 parameters for each of the K states of xn−1

giving a total of K(K − 1) parameters. Now suppose we extend the model to an
M th order Markov chain, so that the joint distribution is built up from conditionals
p(xn|xn−M , . . . ,xn−1). If the variables are discrete, and if the conditional distri-
butions are represented by general conditional probability tables, then the number
of parameters in such a model will have KM−1(K − 1) parameters. Because this
grows exponentially with M , it will often render this approach impractical for larger
values of M .

For continuous variables, we can use linear-Gaussian conditional distributions
in which each node has a Gaussian distribution whose mean is a linear function
of its parents. This is known as an autoregressive or AR model (Box et al., 1994;
Thiesson et al., 2004). An alternative approach is to use a parametric model for
p(xn|xn−M , . . . ,xn−1) such as a neural network. This technique is sometimes
called a tapped delay line because it corresponds to storing (delaying) the previous
M values of the observed variable in order to predict the next value. The number
of parameters can then be much smaller than in a completely general model (for ex-
ample it may grow linearly with M ), although this is achieved at the expense of a
restricted family of conditional distributions.

Suppose we wish to build a model for sequences that is not limited by the
Markov assumption to any order and yet that can be specified using a limited number
of free parameters. We can achieve this by introducing additional latent variables to
permit a rich class of models to be constructed out of simple components, as we did
with mixture distributions in Chapter 9 and with continuous latent variable models in
Chapter 12. For each observation xn, we introduce a corresponding latent variable
zn (which may be of different type or dimensionality to the observed variable). We
now assume that it is the latent variables that form a Markov chain, giving rise to the
graphical structure known as a state space model, which is shown in Figure 13.5. It
satisfies the key conditional independence property that zn−1 and zn+1 are indepen-
dent given zn, so that

zn+1 ⊥⊥ zn−1 | zn. (13.5)

Second order Markov chain
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strictive. For many sequential observations, we anticipate that the trends in the data
over several successive observations will provide important information in predict-
ing the next value. One way to allow earlier observations to have an influence is to
move to higher-order Markov chains. If we allow the predictions to depend also on
the previous-but-one value, we obtain a second-order Markov chain, represented by
the graph in Figure 13.4. The joint distribution is now given by

p(x1, . . . ,xN ) = p(x1)p(x2|x1)
N∏

n=3

p(xn|xn−1,xn−2). (13.4)

Again, using d-separation or by direct evaluation, we see that the conditional distri-
bution of xn given xn−1 and xn−2 is independent of all observations x1, . . .xn−3.

Figure 13.4 A second-order Markov chain, in
which the conditional distribution
of a particular observation xn

depends on the values of the two
previous observations xn−1 and
xn−2.

x1 x2 x3 x4

With K states, how many parameters?

State space model
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The joint distribution for this model is given by

p(x1, . . . ,xN , z1, . . . , zN ) = p(z1)

[
N∏

n=2

p(zn|zn−1)

]
N∏

n=1

p(xn|zn). (13.6)

Using the d-separation criterion, we see that there is always a path connecting any
two observed variables xn and xm via the latent variables, and that this path is never
blocked. Thus the predictive distribution p(xn+1|x1, . . . ,xn) for observation xn+1

given all previous observations does not exhibit any conditional independence prop-
erties, and so our predictions for xn+1 depends on all previous observations. The
observed variables, however, do not satisfy the Markov property at any order. We
shall discuss how to evaluate the predictive distribution in later sections of this chap-
ter.

There are two important models for sequential data that are described by this
graph. If the latent variables are discrete, then we obtain the hidden Markov model,
or HMM (Elliott et al., 1995). Note that the observed variables in an HMM maySection 13.2
be discrete or continuous, and a variety of different conditional distributions can be
used to model them. If both the latent and the observed variables are Gaussian (with
a linear-Gaussian dependence of the conditional distributions on their parents), then
we obtain the linear dynamical system.Section 13.3

13.2. Hidden Markov Models

The hidden Markov model can be viewed as a specific instance of the state space
model of Figure 13.5 in which the latent variables are discrete. However, if we
examine a single time slice of the model, we see that it corresponds to a mixture
distribution, with component densities given by p(x|z). It can therefore also be
interpreted as an extension of a mixture model in which the choice of mixture com-
ponent for each observation is not selected independently but depends on the choice
of component for the previous observation. The HMM is widely used in speech
recognition (Jelinek, 1997; Rabiner and Juang, 1993), natural language modelling
(Manning and Schütze, 1999), on-line handwriting recognition (Nag et al., 1986),
and for the analysis of biological sequences such as proteins and DNA (Krogh et al.,
1994; Durbin et al., 1998; Baldi and Brunak, 2001).

As in the case of a standard mixture model, the latent variables are the discrete
multinomial variables zn describing which component of the mixture is responsible
for generating the corresponding observation xn. Again, it is convenient to use a
1-of-K coding scheme, as used for mixture models in Chapter 9. We now allow the
probability distribution of zn to depend on the state of the previous latent variable
zn−1 through a conditional distribution p(zn|zn−1). Because the latent variables are
K-dimensional binary variables, this conditional distribution corresponds to a table
of numbers that we denote by A, the elements of which are known as transition
probabilities. They are given by Ajk ≡ p(znk = 1|zn−1,j = 1), and because they
are probabilities, they satisfy 0 ! Ajk ! 1 with

∑
k Ajk = 1, so that the matrix A

Hidden Markov chain
Linear dynamical systems





Product(of(Gaussians=Gaussian:(

260

Example: Measuring the mass of an object 
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The Model

Consider the discrete, linear system,

xk+1 = Mkxk + wk , k = 0, 1, 2, . . . , (1)

where
• xk 2 Rn is the state vector at time tk
• Mk 2 Rn⇥n is the state transition matrix (mapping from time tk

to tk+1) or model
• {wk 2 Rn; k = 0, 1, 2, . . .} is a white, Gaussian sequence, with

wk ⇠ N(0,Qk ), often referred to as model error
• Qk 2 Rn⇥n is a symmetric positive definite covariance matrix

(known as the model error covariance matrix).

4 of 32
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The Observations
We also have discrete, linear observations that satisfy

yk = Hkxk + vk , k = 1, 2, 3, . . . , (2)

where
• yk 2 Rp is the vector of actual measurements or observations

at time tk
• Hk 2 Rn⇥p is the observation operator. Note that this is not in

general a square matrix.
• {vk 2 Rp; k = 1, 2, . . .} is a white, Gaussian sequence, with

vk ⇠ N(0,Rk ), often referred to as observation error.
• Rk 2 Rp⇥p is a symmetric positive definite covariance matrix

(known as the observation error covariance matrix).
We assume that the initial state, x0 and the noise vectors at each
step, {wk}, {vk}, are assumed mutually independent.
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The Prediction and Filtering Problems

We suppose that there is some uncertainty in the initial state, i.e.,

x0 ⇠ N(0,P0) (3)

with P0 2 Rn⇥n a symmetric positive definite covariance matrix.

The problem is now to compute an improved estimate of the
stochastic variable xk , provided y1, . . . yj have been measured:

bxk |j = bxk |y1,...,yj . (4)

• When j = k this is called the filtered estimate.
• When j = k � 1 this is the one-step predicted, or (here) the

predicted estimate.
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• The Kalman filter (Kalman, 1960) provides estimates for the
linear discrete prediction and filtering problem.

• We will take a minimum variance approach to deriving the filter.
• We assume that all the relevant probability densities are

Gaussian so that we can simply consider the mean and
covariance.

• Rigorous justifcation and other approaches to deriving the filter
are discussed by Jazwinski (1970), Chapter 7.
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Prediction

𝒙9:-|9 = 𝑴9𝒙9 + 𝜹9= 𝒙′9 + 𝜹9

𝒙′9 ∼

𝜹9 ∼
𝒙9:-|9 ∼

A𝒙9:-|9=
𝑷9:-|9 =



Prediction step

We first derive the equation for one-step prediction of the mean
using the state propagation model (1).

bxk+1|k = E [xk+1|y1, . . . yk ] ,

= E [Mkxk + wk ] ,

= Mkbxk |k (5)
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The one step prediction of the covariance is defined by,

Pk+1|k = E
h
(xk+1 � bxk+1|k )(xk+1 � bxk+1|k )

T |y1, . . . yk

i
. (6)

Exercise: Using the state propagation model, (1), and one-step
prediction of the mean, (5), show that

Pk+1|k = MkPk |kM
T
k + Qk . (7)
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Filtering Step

At the time of an observation, we assume that the update to the
mean may be written as a linear combination of the observation
and the previous estimate:

bxk |k = bxk |k�1 + Kk (yk � Hkbxk |k�1), (8)

where Kk 2 Rn⇥p is known as the Kalman gain and will be derived
shortly.
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But first we consider the covariance associated with this estimate:

Pk |k = E
h
(xk � bxk |k )(xk � bxk |k )

T |y1, . . . yk

i
. (9)

Using the observation update for the mean (8) we have,

xk � bxk |k = xk � bxk |k�1 � Kk (yk � Hkbxk |k�1)

= xk � bxk |k�1 � Kk (Hkxk + vk � Hkbxk |k�1),

replacing the observations with their model equivalent,
= (I � KkHk )(xk � bxk |k�1)� Kkvk . (10)

Thus, since the error in the prior estimate, xk � bxk |k�1 is
uncorrelated with the measurement noise we find

Pk |k = (I � KkHk )E
h
(xk � bxk |k�1)(xk � bxk |k�1)

T
i
(I � KkHk )

T

+KkE
h
vkv

T
k

i
K

T
k . (11)
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Simplification of the a posteriori error covariance
formula

Using this value of the Kalman gain we are in a position to simplify
the Joseph form as

Pk |k = (I�KkHk )Pk |k�1(I�KkHk )
T +KkRkK

T
k = (I�KkHk )Pk |k�1.

(15)
Exercise: Show this.

Note that the covariance update equation is independent of the
actual measurements: so Pk |k could be computed in advance.
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Summary of the Kalman filter
Prediction step
Mean update: bxk+1|k = Mkbxk |k
Covariance update: Pk+1|k = MkPk |kMT

k + Qk .

Observation update step
Mean update: bxk |k = bxk |k�1 + Kk (yk � Hkbxk |k�1)
Kalman gain: Kk = Pk |k�1HT

k (HkPk |k�1HT + Rk )
�1

Covariance update: Pk |k = (I � KkHk )Pk |k�1.
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Bayes’ Theorem for Gaussian Variables, Lecture 3
Given

we have

where



Bayes update

𝑝 𝒙9 𝒚9, 𝒙9|9E- = 𝑝(𝒚9|𝒙9)𝑝 𝒙9 𝒙9|9E-

𝑷9E- =
𝑷9 = (𝐈 − 𝐊𝐇J)𝑷9|9E-

𝑲 = 𝑷9|9E-𝑯9
M 𝑯9 𝑷9|9E-𝑯9

M + 𝑹9
E-
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. . .
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Figure 18.2 Illustration of graphical model underlying SLAM. Li is the fixed location of landmark i, xt

is the location of the robot, and yt is the observation. In this trace, the robot sees landmarks 1 and 2 at
time step 1, then just landmark 2, then just landmark 1, etc. Based on Figure 15.A.3 of (Koller and Friedman
2009).

Robot pose

(a) (b)

Figure 18.3 Illustration of the SLAM problem. (a) A robot starts at the top left and moves clockwise in a
circle back to where it started. We see how the posterior uncertainty about the robot’s location increases
and then decreases as it returns to a familar location, closing the loop. If we performed smoothing, this
new information would propagate backwards in time to disambiguate the entire trajectory. (b) We show the
precision matrix, representing sparse correlations between the landmarks, and between the landmarks and
the robot’s position (pose). This sparse precision matrix can be visualized as a Gaussian graphical model,
as shown. Source: Figure 15.A.3 of (Koller and Friedman 2009) . Used with kind permission of Daphne
Koller.
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Graphical model underlying SLAM. Li is the 
fixed location of landmark i, xt is the robot 
location, and yt is the observation. In this 
trace, the robot sees landmarks 1 and 2 at 
time 1, then just landmark 2, then just 
landmark 1, etc. 

Illustration of the SLAM problem. (a) A robot starts 
at the top left and moves clockwise in a circle back 
to where it started. We see how the posterior 
uncertainty about the robot’s location increases 
and then decreases as it returns to a familar
location, closing the loop. If we performed 
smoothing, this new information would propagate 
backwards in time to disambiguate the entire 
trajectory. 



Constant velocity model
Using a constant velocity CV track model for the source, the the state 

equation is given by 

𝒙9:- =
𝑑9:-
𝑣9:-

= 𝑴9𝒙9+𝑩9𝜀9 =
1 ∆
0 1

𝑑9
𝑣9

+
-
V
∆V

1
𝜀9

Note that the noise term on velocity is now an acceleration in the 
location-term.



Predict N steps ahead
SLAM (Simultaneous Location and Mapping)
Kalman smoother
RLS (Recursive least squares)

Advanced KF: 
• Ensample KF (EnKF)   non Gaussian
• Extended KF (EKF)  non-linear
• Unscented KF (UKF) well chosen control points
• … Particle Filter Nonlinear, non Gaussian
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Figure 18.10 An example of the unscented transform in two dimensions. Source: (Wan and der Merwe
2001). Used with kind permission of Eric Wan.

We see that the only difference from the regular Kalman filter is that, when we compute the
state prediction, we use g(ut,µt−1) instead of Atµt−1 + Btut, and when we compute the
measurement update we use h(µt|t−1) instead of Ctµt|t−1.

It is possible to improve performance by repeatedly re-linearizing the equations around µt

instead of µt|t−1; this is called the iterated EKF, and yields better results, although it is of
course slower.

There are two cases when the EKF works poorly. The first is when the prior covariance is
large. In this case, the prior distribution is broad, so we end up sending a lot of probability
mass through different parts of the function that are far from the mean, where the function has
been linearized. The other setting where the EKF works poorly is when the function is highly
nonlinear near the current mean. In Section 18.5.2, we will discuss an algorithm called the UKF
which works better than the EKF in both of these settings.

18.5.2 Unscented Kalman filter (UKF)

The unscented Kalman filter (UKF) is a better version of the EKF (Julier and Uhlmann 1997).
(Apparently it is so-called because it “doesn’t stink”!) The key intuition is this: it is easier
to approximate a Gaussian than to approximate a function. So instead of performing a linear
approximation to the function, and passing a Gaussian through it, instead pass a deterministically
chosen set of points, known as sigma points, through the function, and fit a Gaussian to the
resulting transformed points. This is known as the unscented transform, and is sketched in
Figure 18.10. (We explain this figure in detail below.)
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Figure 18.1 Illustration of Kalman filtering and smoothing. (a) Observations (green cirles) are generated
by an object moving to the right (true location denoted by black squares). (b) Filtered estimated is shown
by dotted red line. Red cross is the posterior mean, blue circles are 95% confidence ellipses derived from
the posterior covariance. For clarity, we only plot the ellipses every other time step. (c) Same as (b), but
using offline Kalman smoothing. Figure generated by kalmanTrackingDemo.

The LG-SSM is important because it supports exact inference, as we will see. In particular,
if the initial belief state is Gaussian, p(z1) = N (µ1|0,Σ1|0), then all subsequent belief states
will also be Gaussian; we will denote them by p(zt|y1:t) = N (µt|t,Σt|t). (The notation µt|τ
denotes E [zt|y1:τ ], and similarly for Σt|t; thus µt|0 denotes the prior for z1 before we have
seen any data. For brevity we will denote the posterior belief states using µt|t = µt and
Σt|t = Σt.) We can compute these quantities efficiently using the celebrated Kalman filter,
as we show in Section 18.3.1. But before discussing algorithms, we discuss some important
applications.

18.2 Applications of SSMs

SSMs have many applications, some of which we discuss in the sections below. We mostly
focus on LG-SSMs, for simplicity, although non-linear and/or non-Gaussian SSMs are even more
widely used.

18.2.1 SSMs for object tracking

One of the earliest applications of Kalman filtering was for tracking objects, such as airplanes
and missiles, from noisy measurements, such as radar. Here we give a simplified example to
illustrate the key ideas. Consider an object moving in a 2D plane. Let z1t and z2t be the
horizontal and vertical locations of the object, and ż1t and ż2t be the corresponding velocity.
We can represent this as a state vector zt ∈ R4 as follows:

zTt =
(
z1t z2t ż1t ż2t

)
. (18.7)

Figure 18.1 Kalman filtering and smoothing. (a) Observations (green cirles) are 
generated by an object moving to the right (true location denoted by black squares). 
(b) Filtered estimated is shown by dotted red line. Red cross is the posterior mean, 
blue circles are 95% confidence ellipses derived from the posterior covariance. For 
clarity, we only plot the ellipses every other time step. (c) Same as (b), but using 
offline Kalman smoothing. Figure generated by kalmanTrackingDemo. 

Kalman smoother



Carrying On…
The book by Murphy has more details on ML.
Many interesting courses online and at UCSD.
Lots of opportunities also outside CS.

For next course, more class interaction (phone questions), more cody
home work, physics better integrated.

Graphical models better integrated, Gaussian processes, sequential 
state models.

Nima Riahi  //  
nriahi@ucsd.edu Tuesday, Feb. 9th, 2016 42

Murphy: “This books adopts the view that the 
best way to make machines that can learn 
from data is to use the tools of probability 
theory, which has been the mainstay of 
statistics and engineering for centuries. “
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4:15-4:30: Bruce Cornuelle, Scripps Institution of Oceanography
“A less grand challenge: How can we merge machine learning with data assimilation? ”

Peter: I propose that if data assimilation is posed “correctly” it is already machine 
leaning. Anyway looking forward to your talk.

Bruce: I agree, but most machine learning I know about doesn't build in prior known 
dynamics or let you understand what the machine has learned. If you have examples 
to the contrary, please give me references. I know about the attempts to "invert" the 
networks, though.
I also want to know the pdfs that the machine learning technique is optimal for, both 
in the data and the unknowns, in the way that L2 is optimal for gaussians and L1 is 
optimal for exponentials.


