## Announcements

Matlab Grader homework,
1 and 2 (of less than 9 ) homeworks Due 22 April tonight, Binary graded.
167, 165,164 has done the homework. (If you have not done HW talk to me/TA!)
Homework 3 due 5 May
Homework 4 (SVM +DL) due ~24 May
Jupiter "GPU" home work released Wednesday. Due 10 May

Projects: 41 Groups formed. Look at Piazza for help.
Guidelines is on Piazza
May 5 proposal due. TAs and Peter can approve.
Email or use dropbox
https://www.dropbox.com/request/XGqCV0qXm9LBYz7J1msS
Format "Proposal"+groupNumber
May 20 presentation

## Today:

- Stanford CNN 11, SVM, (Bishop 7)
- Play with Tensorflow playground before class http://playground.tensorflow.org Solve the spiral problem

Monday

- Stanford CNN 12, K-means, EM (Bishop 9),


## Projects

- 3-4 person groups preferred
- Deliverables: Poster, Report \& main code (plus proposal, midterm slide)
- Topics your own or chose form suggested topics. Some physics inspired.
- April 26 groups due to TA.
- 41 Groups formed. Look at Piazza for help.
- Guidelines is on Piazza
- May 5 proposal due. TAs and Peter can approve.

Email or use dropbox Format "Proposal"+groupNumber
https://www.dropbox.com/request/XGqCV0qXm9LBYz7J1msS

- May 20 Midterm slide presentation. Presented to a subgroup of class.
- June 5 final poster. Upload June ~3
- Report and code due Saturday 15 June.


## Confusion matrix/Wikipedia

If a classification system has been trained to distinguish between cats, dogs and rabbits, a confusion matrix will summarize the test results. Assuming a sample of 27 animals 8 cats, 6 dogs, and 13 rabbits, the confusion matrix could look like the table below:


$$
11+3+2+1
$$

Let us define an experiment from $\mathbf{P}$ positive instances and $\mathbf{N}$ negative instances for some condition. The four outcomes can be formulated in a $2 \times 2$ confusion matrix, as follows:


$F P B=\frac{2}{19}$
Recall

## ROC curve (receiver operating charateristic)




## Other Computer Vision Tasks



## Semantic Segmentation Idea: Fully Convolutional

Downsampling: Pooling, strided convolution


Input:
$3 \times H \times W$

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!


Upsampling:
Unpooling or strided transpose convolution


## In-Network upsampling: "Unpooling"



Input: $2 \times 2$

| 1 | 1 | 2 | 2 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 2 |
| 3 | 3 | 4 | 4 |
| 3 | 3 | 4 | 4 |

Output: $4 \times 4$
"Bed of Nails"

| 1 | 2 |
| :--- | :--- |
| 3 | 4 |

Input: $2 \times 2$

| 1 | 0 | 2 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 3 | 0 | 4 | 0 |
| 0 | 0 | 0 | 0 |

Output: $4 \times 4$

## In-Network upsampling: "Max Unpooling"

## Max Pooling

Remember which element was max!

| 1 | 2 | 6 | 3 |
| :---: | :---: | :---: | :---: |
| 3 | 5 | 2 | 1 |
| 1 | 2 | 2 | 1 |
| 7 | 3 | 4 | 8 |

Input: $4 \times 4$


Output: $2 \times 2$

Max Unpooling
Use positions from pooling layer

$\qquad$ $\longrightarrow$


Output: $4 \times 4$


## Learnable Upsampling: Transpose Convolution

Recall: Normal $3 \times 3$ convolution, stride 2 pad 1


Input: 4 x 4
-



Filter moves 2 pixels in the input for every one pixel in the output

Stride gives ratio between movement in input and output

Output: $2 \times 2$

Other names:
-Deconvolution (bad) -Upconvolution -Fractionally strided convolution
-Backward strided convolution


Output: $4 \times 4$
Input: $2 \times 2$

Sum where
output overlaps

Filter moves 2 pixels in the output for every one pixel in the input

Stride gives ratio between movement in output and

## Transpose Convolution: 1D Example



## Convolution as Matrix Multiplication (1D Example)

We can express convolution in terms of a matrix multiplication


Example: 1D conv, kernel size $=3$, stride $=1$, padding=1

Convolution transpose multiplies by the transpose of the same matrix:
$: X^{T} \vec{x} * T \vec{a}=X^{T} \vec{a}$
$\left[\begin{array}{llll}x & 0 & 0 & 0 \\ y & x & 0 & 0 \\ z & y & x & 0 \\ 0 & z & y & x \\ 0 & 0 & z & y \\ 0 & 0 & 0 & z\end{array}\right]\left[\begin{array}{c}a \\ b \\ c \\ d\end{array}\right]=\left[\begin{array}{c}a x \\ a y+b x \\ a z+b y+c x \\ b z+c y+d x \\ c z+d y \\ d z\end{array}\right]$

When stride $=1$, convolution transpose is just a regular convolution (with different padding rules)


## Convolution as Matrix Multiplication (1D Example)

We can express convolution in terms of a matrix multiplication

$$
\vec{x} * \vec{a}=X \vec{a}
$$

$\left[\begin{array}{llllll}x & y & z & 0 & 0 & 0 \\ 0 & 0 & x & y & z & 0\end{array}\right]\left[\begin{array}{l}0 \\ a \\ b \\ c \\ d \\ 0\end{array}\right]=\left[\begin{array}{c}a y+b z \\ b x+c y+d z\end{array}\right]$
Example: 1D conv, kernel
size $=3$, stride $=2$, padding $=1$

Convolution transpose multiplies by the transpose of the same matrix:

$$
\vec{x} *^{T} \vec{a}=X^{T} \vec{a}
$$

$$
\left[\begin{array}{cc}
x & 0 \\
y & 0 \\
z & x \\
0 & y \\
0 & z \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
a x \\
a y \\
a z+b x \\
b y \\
b z \\
0
\end{array}\right]
$$

When stride>1, convolution transpose is no longer a normal convolution!

## Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background


Dog? NO
Cat? YES
Background? NO

Problem: Need to apply CNN to huge number of locations and scales, very computationally expensive!

## Region Proposals

- Find "blobby" image regions that are likely to contain objects
- Relatively fast to run; e.g. Selective Search gives 1000 region proposals in a few seconds on CPU



## Kernels

We might want to consider something more complicated than a linear model:
Example 1: $\left[x^{(1)}, x^{(2)}\right] \rightarrow \boldsymbol{\Phi}\left(\left[x^{(1)}, x^{(2)}\right]\right)=\left[x^{(1) 2}, x^{(2) 2}, x^{(1)} x^{(2)}\right]$

Information unchanged, but now we have a linear classifier on the transformed points.

With the kernel trick, we just need kernel


Input Space

## Dual representation, Seç6.2

Primal problem: $\min _{\boldsymbol{w}} E(\boldsymbol{w}) \quad W \in R$
$E=\frac{1}{2} \sum_{n}^{N}\left\{\boldsymbol{w}^{T} \boldsymbol{x}_{n}-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\boldsymbol{w}\|^{2}=\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{t}\|_{2}^{2}+\frac{\lambda}{2}\|\boldsymbol{w}\|^{2}$
Solution $\underline{\boldsymbol{w}}=\boldsymbol{X}^{+} \boldsymbol{t}=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}+\lambda \boldsymbol{I}_{\boldsymbol{M}}\right)^{\mathbf{- 1} \boldsymbol{X}^{T} \boldsymbol{t}}$
$=\boldsymbol{X}^{T}\left(\boldsymbol{X} \boldsymbol{X}^{T}+\lambda \boldsymbol{I}_{N}\right)^{-1} \boldsymbol{t}=\boldsymbol{X}^{T}\left(\boldsymbol{K}+\lambda \boldsymbol{I}_{N}\right)^{-1} \boldsymbol{t}=\boldsymbol{X}^{T} \boldsymbol{a}$
The kernel is $\mathbf{K}=\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}$

Dual representation is: $\min _{\boldsymbol{a}} E(\boldsymbol{a})$
$E=\frac{1}{2} \sum_{n}^{N}\left\{\boldsymbol{w}^{T} \boldsymbol{x}_{n}-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\boldsymbol{w}\|^{2}=\|\boldsymbol{K} \boldsymbol{a}-\boldsymbol{t}\|_{2}^{2}+\frac{\lambda}{2} \boldsymbol{a}^{T} \boldsymbol{K} \boldsymbol{a}$

Prediction
$\underline{y}=\boldsymbol{w}^{T} \boldsymbol{x}=\boldsymbol{a}^{T} \boldsymbol{X} \boldsymbol{x}=\sum_{n}^{N} a_{n} \boldsymbol{x}_{n}^{T} \boldsymbol{x}=\underline{\sum_{n}^{N} a_{n} k\left(\boldsymbol{x}_{n}, \boldsymbol{x}\right)}$

## Dual representation, Sec 6.2

Prediction

$$
y=\boldsymbol{w}^{T} \boldsymbol{x}=\boldsymbol{a}^{T} \boldsymbol{X} \boldsymbol{x}=\sum_{n}^{N} a_{n} \boldsymbol{x}_{n}^{T} \boldsymbol{x}=\sum_{n}^{N} a_{n} k\left(\boldsymbol{x}_{n}, \boldsymbol{x}\right)
$$

- Often a is sparse (... Support vector machines)
- We don't need to know $\mathbf{x}$ or $\boldsymbol{\varphi}(\boldsymbol{x})$.Just the Kernel

$$
E(\boldsymbol{a})=\|\boldsymbol{K} \boldsymbol{a}-\boldsymbol{t}\|_{2}^{2}+\frac{\lambda}{2} \boldsymbol{a}^{T} \boldsymbol{K} \boldsymbol{a}
$$

## Lecture 10 Support Vector Machines <br> M-NIST

Non Bayesian!

Features:

- Kernel
- Sparse representations
- Large margins

Regularize for plausibility

- Which one is best?
- We maximize the margin


Regularize for plausibility


## Support Vector Machines

- The line that maximizes the minimum margin is a good bet.
- The model class of "hyper-planes with a margin $m$ " has a low VC dimension if $m$ is big.
- This maximum-margin separator is determined by a subset of the datapoints.
- Datapoints in this subset are called "support vectors,".
- It is useful computationally if only few datapoints are support vectors, because the support vectors decide which side of the separator a test case is on.


## Lagrange multiplier (Bishop App E)

$\max (f(x))$ subject to $\frac{g(x)}{\Gamma}=0$
Taylor expansion $g(\boldsymbol{x}+\boldsymbol{\varepsilon})=g(\boldsymbol{x})+\boldsymbol{\epsilon}^{T} \nabla g(\boldsymbol{x})$

$\square f+\lambda \Delta \dot{q}$ 。
$L(x, \lambda)=f(x)+\lambda g(x)$
$\nabla_{x} L=0$
$\frac{\partial L}{\partial \lambda}=0=g(x)$


## Lagrange multiplier (Bishop App E)

$\max (f(\boldsymbol{x}))$ subject to $g(\boldsymbol{x})>0$ ~

$$
L(x, \lambda)=f(x)+\lambda \bar{g}(x)
$$

Either $\nabla \mathrm{f}(\boldsymbol{x})=\mathbf{0}$
Then $g(x)$ is inactive, $\lambda=0$
Or $g(x)=0$ but $\lambda>0$


Thus optimizing $L(\boldsymbol{x}, \lambda)$ with the Karesh-Kuhn-Trucker (KKT) equations

$$
\left.\begin{array}{c}
g(x) \geq 0 \\
\lambda \geq 0 \\
\lambda g(x)=0
\end{array}\right]
$$



## Testing a linear SVM

- The separator is defined as the set of points for which:


## $W^{\top} x+6$

$y=\mathbf{w} \mathbf{x}+b=0$
so if $\mathbf{w} \cdot \mathbf{x}^{c}+b>0$ say its a positive case and if $\mathbf{w} \cdot \mathbf{x}^{c}+b<0$ say its a negative case




$$
\begin{aligned}
& y=\boldsymbol{w}^{T} \boldsymbol{x}+b \\
& \boldsymbol{x}_{n}=\boldsymbol{x}_{\perp}+r_{n} \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}
\end{aligned}
$$

## Large margin

$\mathbf{x}$ on plane $=>\mathbf{y}=0=>\quad b=-\boldsymbol{w}^{T} \boldsymbol{x}$

$$
\begin{aligned}
& y>0 \\
& y=0 \\
& y<0 \\
& \mathcal{R}_{1} \\
& y
\end{aligned}
$$

$$
\begin{gathered}
r_{n}=\frac{\boldsymbol{w}^{T} \boldsymbol{x}_{n}+b}{\|\boldsymbol{w}\|}=\frac{Y_{n}}{\|\boldsymbol{w}\|} \\
t_{n} y_{n} \geq 1
\end{gathered}
$$

$$
\max _{\boldsymbol{w}} \frac{1}{\|\boldsymbol{w}\|} \min _{n} t_{n} y_{n}
$$



$$
\begin{equation*}
t_{n}\left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)+b\right) \geqslant 1, \quad n=1, \ldots, N \tag{7.5}
\end{equation*}
$$

Lagrange function

$$
\begin{equation*}
L(\mathbf{w}, b, \mathbf{a})=\frac{1}{2}\|\mathbf{w}\|^{2},-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)+{ }_{i}\right)-\underline{1}\right\} \tag{7.7}
\end{equation*}
$$


$\mathrm{w}=\sum_{n=1}^{N} a_{n} t_{n} \phi\left(x_{n}\right)$
$0=\sum_{n=1}^{N} a_{n} t_{t}$
Dual representation

This can be solved $L=\frac{1}{2}\left(\sum a_{n} x_{n} \varphi_{n}\right)^{T}\left(\sum_{m} a_{m} \varphi_{m}\right)-\left(\sum a_{n} t_{n}\right)\left\{a_{m} t_{m} \sigma_{m_{0}} \varnothing_{n}\right.$ with quadratic programming

## Maximum margin (Bishop 7.1)

- KKT conditions

$$
\begin{align*}
a_{n} & \geqslant 0  \tag{7.14}\\
t_{n} y\left(\mathbf{x}_{n}\right)-1 & \geqslant 0  \tag{7.15}\\
a_{n}\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\} & =0 \tag{7.16}
\end{align*}
$$

either $a_{n}=0$ or $t_{n} y\left(\mathbf{x}_{n}\right)=1$.

- Solving for $\mathrm{a}_{\mathrm{n}}$

$$
\begin{equation*}
\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right) \tag{7.8}
\end{equation*}
$$

- Prediction

$$
y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}, \mathbf{x}_{n}\right)+b
$$

$$
k=\varphi(x) \varphi\left(t_{n}\right)
$$

## If there is no separating plane...

- Use a bigger set of features.
- Makes the computation slow? "Kernel" trick makes the computation fast with many features.
- Extend definition of maximum margin to allow non-separating planes.
- Use "slack" variables $\xi=\left|t_{n}-y\left(\boldsymbol{x}_{n}\right)\right|$

$$
\begin{equation*}
t_{n} y\left(\mathbf{x}_{n}\right) \geqslant 1-\xi_{n}, \quad n=1, \ldots, N \tag{7.20}
\end{equation*}
$$

Objective function

$$
\begin{equation*}
C \sum_{n=1}^{N} \xi_{n}+\frac{1}{2}\|\mathbf{w}\|^{2} \tag{7.21}
\end{equation*}
$$



## SVM classification summarized--- Only kernels

- Minimize with respect to $\boldsymbol{w}, \mathrm{w}_{0}$

$$
C \sum_{n}^{N} \zeta_{n}+\frac{1}{2}\|\boldsymbol{w}\|^{2}
$$

(Bishop 7.21)

- Solution found in dual domain with Lagrange multipliers

$$
\text { - } a_{n}, n=1 \cdots N \text { and }
$$

- This gives the support vectors S

$$
\widehat{\boldsymbol{w}}=\sum_{n \in S} a_{n} t_{n} \boldsymbol{\varphi}(x n) \quad \text { (Bishop 7.8) }
$$

- Used for predictions

$$
\begin{aligned}
& \hat{y}=\mathrm{w}_{0}+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\varphi}(x)=\mathrm{w}_{0}+\sum_{n \in S} a_{n} t_{n} \boldsymbol{\varphi}\left(x_{n}\right)^{\mathrm{T}} \boldsymbol{\varphi}(x) \\
& =\mathrm{w}_{0}+\sum_{n \in S} a_{n} t_{n} k\left(x_{n}, x\right) \quad \text { (Bishop 7.13) }
\end{aligned}
$$

## How to make a plane curved

- Fitting hyperplanes as separators is mathematically easy.
- The mathematics is linear.
- Replacing the raw input variables with a much larger set of features we get a nice property:
- A planar separator in high-D feature space is a curved separator in the low-D input space.


A planar separator in a 20-D feature space projected back to the original 2-D space

## SVMs are Perceptrons!

- SVM's use each training case, $x$, to define a feature $K(x,$. where K is user chosen.
- So the user designs the features.
- SVM do "feature selection" by picking support vectors, and learn feature weighting from a big optimization problem.
- =>SVM is a clever way to train a standard perceptron.
- What a perceptron cannot do, SVM cannot do.
- SVM DOES:
- Margin maximization
- Kernel trick
- Sparse


## SVM Code for classification (libsvm)

Part of ocean acoustic data set http://noiselab.ucsd.edu/ECE285/SIO209Final.zip case 'Classify'
\% train
model = svmtrain(Y, X,['-c 7.46-g ' gamma ' -q ' kernel]);
\% predict
[predict_label, $\sim, \sim]=\operatorname{svmpredict(rand([length(Y),1]),~X,~model,'-q');~}$


```
>> modelmodel = struct with fields:
Parameters: [5\times1 double]
nr_class: 2
totalSV: 36 <
rho: 8.3220
Label: [ }2\times1\mathrm{ double]
sv_indices: [ }36\times1\mathrm{ double]
ProbA: [] ProbB: []
nSV: [2\times1 double]
sv_coef:[36x] double]\lessdota
SVs:[36\times2 double]\longleftarrow
```


## Finding the Decision Function

## libsvm

- w: maybe infinite variables
- The dual problem

$$
\begin{aligned}
\min _{\alpha} & \frac{1}{2} \boldsymbol{\alpha}^{T} Q \boldsymbol{\alpha}-\mathbf{e}^{T} \boldsymbol{\alpha} \\
\text { subject to } & 0 \leq \alpha_{i} \leq C, i=1, \ldots, l \\
& \mathbf{y}^{T} \boldsymbol{\alpha}=0
\end{aligned}
$$

## Corresponds to

 (Bishop 7.32)${ }_{T}$ With $\mathrm{y}=\mathrm{t}$
where $Q_{i j}=y_{i} y_{j} \phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$ and $\mathbf{e}=[1, \ldots, 1]^{T}$

- At optimum

$$
\mathbf{w}=\sum_{i=1}^{l} \alpha_{i} y_{i} \phi\left(\mathbf{x}_{i}\right)
$$

- A finite problem: \#variables = \#training data

Using these results to eliminate $\mathbf{w}, b$, and $\left\{\xi_{n}\right\}$ from the Lagrangian, we obtain the dual Lagrangian in the form

$$
\begin{equation*}
\widetilde{L}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right) \tag{7.32}
\end{equation*}
$$

Linear Kernel


Polynomial Kernel

x1

Sigmoid Function Kernel


Radial Basis Function Kernel


## Gaussian Kernels

- Gaussian Kernel

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right)
$$

Diagonal $\Sigma$ : (this gives ARD)

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{2} \sum_{i}^{N} \frac{\left(x_{i}-x_{i}^{\prime}\right)^{2}}{\sigma_{i}^{2}}\right)
$$

Isotropic $\sigma_{i}^{2}$ gives an RBF

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

Can be inner product in infinite dimensional space Assume $x \in R^{1}$ and $\gamma>0$.

$$
\begin{aligned}
& e^{-\gamma\left\|x_{i}-x_{j}\right\|^{2}}=e^{-\gamma\left(x_{i}-x_{j}\right)^{2}}=e^{-\gamma x_{i}^{2}+2 \gamma x_{i} x_{j}-\gamma x_{j}^{2}} \\
= & e^{-\gamma x_{i}^{2}-\gamma x_{j}^{2}}\left(1+\frac{2 \gamma x_{i} x_{j}}{1!}+\frac{\left(2 \gamma x_{i} x_{j}\right)^{2}}{2!}+\frac{\left(2 \gamma x_{i} x_{j}\right)^{3}}{3!}+\cdots\right) \\
= & e^{-\gamma x_{i}^{2}-\gamma x_{j}^{2}}\left(1 \cdot 1+\sqrt{\frac{2 \gamma}{1!}} x_{i} \cdot \sqrt{\frac{2 \gamma}{1!}} x_{j}+\sqrt{\frac{(2 \gamma)^{2}}{2!}} x_{i}^{2} \cdot \sqrt{\frac{(2 \gamma)^{2}}{2!}} x_{j}^{2}\right. \\
& \left.\quad+\sqrt{\frac{(2 \gamma)^{3}}{3!}} x_{i}^{3} \cdot \sqrt{\frac{(2 \gamma)^{3}}{3!}} x_{j}^{3}+\cdots\right)=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right),
\end{aligned}
$$

where

$$
\phi(x)=e^{-\gamma x^{2}}\left[1, \sqrt{\frac{2 \gamma}{1!}} x, \sqrt{\frac{(2 \gamma)^{2}}{2!}} x^{2}, \sqrt{\frac{(2 \gamma)^{3}}{3!}} x^{3}, \cdots\right]^{T}
$$

## Tensorflow Playground

1. Fitting the spiral with default settings fail due to the small training set. The NN will fit to the training data which is not representative of the true pattern and the network will generalize poorly. Increasing the ratio of training to test data to $90 \%$ the NN finds the correct shape ( $1^{\text {st }}$ image).


## Tensorflow Playground

You can fix the generalization problem by adding noise to the data. This allows the small training set to generalize better as it reduce overfitting of the training data (2nd image).


## Tensorflow Playground

Adding an additional hidden layer the NN fails to classify the shape properly. Overfitting once again becomes a problem even after you've added noise. This can be fixed by adding appropriate L2 regularization (third image).


## -NOT USED

