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Dictionary learning

 Means of estimating sparse causes for given classes of signals,
e.g. natural images, audio

« QOriginated in neuroscience to estimate structure of V1 visual
cortex cells from natural images

* Useful for regularization of general image denoising inverse
problem, but only recent applications in the geosciences

e Seismic survey image denoising
* Dictionary learning of ocean sound speed profiles (SSPs)
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Background: sparse modeling of arbitrary signal y
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Measurement vector y is expressed as sparse linear combination of columns or
‘atoms” from dictionary D

y could be (for example) segments of speech or vectorized 2D image patches

Dictionary atoms represent elemental patterns that generate y, e.g. wavelets or
learned from the data using dictionary learning -

X is estimated using sparsity inducing constraint, example " £ -norm" regularization:

X = argmin||y — Dx||2 subject to |[|x|lo < T
X

?o- norm "counts" # non-zero coefficients



Background: sparse modeling of arbitrary signal y
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Measurement vector y is expressed as sparse linear combination of columns or
‘atoms” from dictionary D

y could be (for example) segments of speech or vectorized 2D image patches

Dictionary atoms represent elemental patterns that generate y, e.g. wavelets or
learned from the data using dictionary learning
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Background: sparsity and dictionary learning

Dictionary learning obtains "optimal® sparse modeling dictionaries directly from data
\

Dictionary learning was developed in neuroscience (a.k.a. sparse coding) to help
understand mammalian visual cortex structure

Assumes (1) Redundancy in data: image patches are repetitions of a smaller set of
elemental shapes; and (2) Sparsity: each patch is represented with few atoms from
dictionary

"Natural" images, patches shown in magenta Learn dictionary D describing Y = [y1, ..., y1]
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Background: sparsity and dictionary learning

Dictionary learning obtains "optimal® sparse modeling dictionaries directly from data

Dictionary learning was developed in neuroscience (a.k.a. sparse coding) to help
understand mammalian visual cortex structure

Assumes (1) Redundancy in data: image patches are repetitions of a smaller set of
elemental shapes; and (2) Sparsity: each patch is represented with few atoms from
dictionary

"Natural" images, patches shown in magenta Learn dictionary D describing Y = [y1, ..., y1]
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Olshausen and Field 1997: image model with sparse prior

Assume that each image patch described by linear system é KY’, b‘,
Ye = E AnkOn = Pay yr = Pay +n »
— CPE—
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Olshausen and Field 1997- sparse prior induces sparse
coefficients

Sparsity inducing prior

S(Clnk) — 111(1 ~+ ank)Q

"Cauchy distribution”
- —

Derivative of prior induces
sparsity in solution, as we'll

See... ?%.)




Olshausen and Field 1997 - derivation of Error function

Learn basis functions @ by minimizing Kullback-Leibler (KL) divergence
between true images and those reproduced by model

Kl = /p*( ‘l—é p(Yk, ak|®) = p(yr|ak, ®)p(ax)

Since p* (yx) is fixed, KL is minimized by maximizing * ?
log-likelihood (or minimizing negative log-likelihood) of Z/

iImage patches generated from model, hence

{®,4a,} = arg min ‘min E(yg, a;|®)|
P A

E(yk,ar|®) = —Inp(yrlak, ®)plak)

il —||yk—‘i’ak||%
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Olshausen and Field 1997 - derivation of Error function cont'd

Learn basis functions @ by minimizing Kullback-Leibler (KL) divergence
between true images and those reproduced by model
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Olshausen and Field 1997 - derivation of Error function cont'd

Learn basis functions @ by minimizing Kullback-Leibler (KL) divergence
between true images and those reproduced by model

{®,3;,} = argmin imin E(yy, ax|®)]
P ak

E(yk,ar|®) = —Inp(yk|ag, ®)p(ax)
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Given:  pyilar ®) sz = = [ [ p(anx) plan) T Zs .

]3('?9'4’7 = jP \47P7J>(‘4~7. :

ﬁ = ary < < war L f&"‘z b)})(“)
¢ AR

Obtain: E(yx ai®) = lyr — a3 + 2>  S(an)
H



Olshausen and Field 1997 - gradients for network model

Rewriting Error function, take derivatives to find gradient
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From Olshausen '97 method, obtain dictionary atoms that resemble
cells from mammalian visual cortex

Natural image patches

"Hebbian" update
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Nice to have atoms like cells, but what else is dictionary
learning useful for?



Nice to have atoms like cells, but what else is dictionary

Denoising

Noisy Image (22.1307 dB, 6=20)

Denoised Image Using
Adaptive Dictionary (30.8295 dB)
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Elad 2006

learning useful for?

Image restoration tasks

Inpainting (a.k.a. matrix completion)
—————————

Mairal 2009



Olshausen and Field 1997 - gradients for network model

Can be rephrased with Laplacian prior //CAGA C—LZ v

@z&l‘gminzw\@ak—YkHS‘F)‘Hakul} P
Pk R /Lap‘*“.“"

Coefficients calculated using gradient descent, then dictionary updated by

Hlitl) — i) _ 772 (<I>(i)ak ~ yk)a%f
k

This idea of iterative refinement is familiar: solving for
coetficients, then updating basis functions
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Vector Quantization and K-means
&

2D example Vector quantization (VQ): means of compressing a
o / set of data observations Y = [yl, _— yM] using a
Lo A nearest neighbor metric with codebook C = [cl, o cN]

Ry = {i | Yign, [lyi — cull2 < |lyi — cill2}

N
1 fyeR, ~
Sn(Y) = { 4 Yn = E Si(}’m)ci
=1

0 otherwise,

K-means: finds optimal codebook for VQ &

Given: training vectors Y = [y, ..., y,,] € R¥*¥

Initialize: index i =0, codebook C° = [¢?, ...,c3] € RV,
MSE°
I: Update codebook
1. Partition Y into N regions (R;,..., Ry) by

Ry = {il¥in, lly; — €1l < lly; — <ill.}
2. Make code vectors centroids of y; in partitions R,

. |
G = Ri| ZJER;‘, Yj
II. Check error
1. Calculate MSE"™! from updated codebook C'*
2. If IMSE'™! — MSE| < ¢
i=i+ 1, returnto I

else
end




Relationship to sparse coding (4’»

Sparse ~ : :
orocessor | Xm = al%(mm |ym — Qxm||2 subject to ||x;,|j0 < T o
YQ R = {i [ Vign, Iyi —allz < lyi —cill2} 5u-Ssime sy = { L EVER
operators ’ Im =2 Silymles Saly) = { 0 otherwise,
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Background: a basic dictionary learning framework

Given set of patches Y = [y, ...,ys], learn dictionary D describing them
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Patches shown in magenta

Dictionary learning objective

mgn{m)énHY — DX||% subject to |[|x;|lo < TV i}

Obijective solved as simple optimization problem “a ]+. mia . €

— |1. Solve for sparse coefficients X = [Xy, 1, - .- X¢,.1] USING
sparse solver

— |2. Solve for dictionary D using sparse coefficients from step
(1)..... repeat until convergence




MOD algorithm: Extending K-means to dictionary
learning problem

Method of Optimal Directions (MOD) [Engan 2000]

min{min||Y — QX||% subject to Vm, ||xmn|o < T}
Q X —

MOD algorithm:

1. COEFFICIENTS: Solve for coefficients X=[x_1...x_i] for fixed Q
using orthogonal matching pursuit (OMP)
2. DICTIONARY UPDATE: Solve for dictionary Q=[g_1...q_i], by

inverting the coetticient matrix X, and normalizing dictionary
entries to have unit norm.

Q=YX"(XXT)"!
0 e .

‘/?SM S AL

.. repeat until convergence

Simple and flexible but, a few drawbacks: % @ K = Y

* computationally expensive to invert coefficient mafrix X ’) p o x’r Yx
* since keeping coefficients in X fixed during dictiogary update, slow convergence

> Pl 1= (x¥)
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K-SVD algorithm

K-SVD [Aharon 2006]: Learn optimal dictionary for sparse representation

of data
min{min||Y — QX||% subject to Vm, ||xmn|o < T}
Q X e ——
K-SVD algorithm: 2D example
1. Solve for coefficients X=[x_1...x_i] for R \\ | //
fixed Q using OMP \\‘. o /
2. Solve (1) for dictionary Q=[q_1...q_i], N8 \\ o //
updating both Q and X from the SVD of e 8% /"
representation error R WA
Y - Qxe = | (Y- Cad ) -
F

7k

W
SV — @) axi

update q_k, x_k by SVD

E¢ =USV’
qu =U(:,1),x7 = V(,1)S(1,1)
.. repeat until convergence
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Image restoration tasks

Denoising Inpainting (a.k.a. matrix completion)

Noisy Image (22.1307 dB, 6=20)

”;‘ -

Denoised Image Using
Adaptive Dictionary (30.8295 dB)
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Image restoration tasks

Denoising: learning from noisy image patches for specific image

Noisy Image (22.1307 dB, 6=20)

4—2, J\K‘X )’Q\ “’)_\\‘

Sdved TG TIoCR oo
Denoised Image Using

Adspive Dicionay (303295 dB) descent algorithm (also two steps):

(1) aij=amg min juj||ello + ||Da - xii|l5 df

Elad 2006 2 J

1 (.1 -1
5 Crﬁlanx EZ 2||xl Da;|5 st. |Jaillo <s .
€C A€ & <>X +§ R/, +> RIDa;



Why not just use neural networks?

Burger 2012: Multi-layer perceptron competes with state of art denoising algorithms,
using 362 million training samples (~one month of GPU time)

... at least in geoscience (seimsics, ocean acoustics) we rarely have this much training

data —
CE—
Adaptive image denoising-like MLP-like
== Handcrafted Blackbox G
Adhere to existing Deviate from existing
algorithm architecture, few algorithm design, many
learnable parameters learnable parameters
Pros: Pros:
o Likely more generalizable 0 Increased chance of optimal
0 Less training data needed per.fo.rmance given sufficient
o Natural initialization training data
(from standard algorithm Cons:
settings) o Maybe less generalizable
Cons: 0 More training data needed
0 Reduced chance for 0 No algorithm to potentially
optimal performance guide initialization

Wipf 2018



Why not just use neural networks? (cont’d)

VJ,X.,
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Machine Learning;

(Data-driven model)

Simulation/proxy +
Machine Learning

(Physical model augmented
by Data-driven model)

Historical

Volume of

Simulation/ Proxy
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' (Physical model or

approach + possible
early Simulation
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Dictionary learning of ocean sound speed profiles
Bianco and Gerstoft 2017

e Acoustic observations from ocean contain information about
ocean environment

* The inversion of environment parameters is limited by physics
and signal processing assumptions

./ /]
N\ AN

Sound speed

° profile c(z) Hydrophones

Source

(active or noise)
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Sound speed profiles
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e Sound speed profiles (SSPs) in the ocean are often highly variable
with fine scale fluctuations

* Acoustic inversion of SSPs is ill-posed and traditionally regularized
using EOFs (=PCA in this case) T

ﬁ

* Dictionaries obtained via unsupervised learning may provide better
representation of SSP dynamics
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Dictionary learning of sound speed profiles
Bianco and Gerstoft JASA 2017 (published)
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Example: Denoising alphabet with K-SVD algorithm

Q0 True alphabet %ecovered alphabet (no noise, K-SVD)




SSP reconstruction error using Dictionary Learning

Based on 1000 profiles from HF-97

0.5 .
— EOF OMP
0.45 | — EOFLS |-
— LD (N = 90)

LS: Least squares
OMP: Sparse processor

Mean Error (ME):

8 | 1 R

= ME=——I|Y —-Y
£ox| | Y -,
=

?C.omff'ﬁlﬁﬁ-\
. ”
% > 3 4 5 6 7
T

One entry from Learned Dictionary fits SSP data better than 6 EOFs

Learned dictionary (LD) reconstruction error less than 50% of EOF
error
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SSP reconstruction using Dictionary Learning

HF-97: One coefficient from Learned Dictionary vs. One EOF coefficient

SSP frame #300
1 0 I [ [ | [ |

20 -

50 .
60 + True SSP |
--=--Mean SSP
Learned dictionary
— EOF
70 f I | I | I I
1508 1510 1512 1514 1516 1518 1520 1522

Sound speed (m/s)



Learning dictionary from HF-97 SSP variation

Q random initialized, converges within 15 iterations

iter # 0
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LD solution space much smaller than EOFs

Inversion for SSP:

10%°

Assuming a potentially non-linear mapping: S
 EOF solution: T leading order coefficients 102}
(fixed indices)

o T C 10'5 L
H Jjoo™® ,

EOF sol'n -

LD solution: T-non-zero coefficients
(combinatorial indices)

0

ll X ’Ip "’Co—-\.\gt‘-—jz—«) * 4

e Since 6 EOFs or 1 LD entry required, if coefficients discretized in H=100
coefficients number of possible solutions are




Dictionary learning in travel time tomography
Bianco and Gerstoft 2018

The Earth contains both smooth and discontinuous variations in slowness (e.g. Moho, faults)
at multiple spatial scales

Most existing travel time inversion methods are ad hoc: regularize inversion assuming
exclusively smooth or discontinuous slownesses

Propose locally-sparse 2D travel time tomography (LST) method with three main ingredients:
e Sparsity constraint on slowness patches
e Dictionary learning (unsupervised machine learning)

 Damped least squares regularization on overall slowness map

1 Hz Rayleigh wave phase speed map
Long Beach seismic array
(5200 stations, ~14 million rays)
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For straight-rays get simple formulation:

For slowness field, get travel time:

Consider simple travel time model

2D map slowness map

t=—=ds
C

c = wave speed
s = slowness

- - Range (length)

57“12,1 s 5T12,k S1
.

_5T12,k “ e (5r,ij,k_ S L
"tomography matrix" A

Propose LST tomography ingredients:
e Sparsity constraint on slowness patches
e Dictionary learning (unsupervised machine learning)

 Damped least squares regularization on overall slowness map



Proposed locally-sparse tomography (LST) basics

Slowness (s/km)
0.3 0.35 0.4 0.45 0.5

N
o

Synthetic "checkerboard”
slowness example

~
o

Range (km)
3

1 20 40 6|0 80 100
Range (km)
LST approach three ingredients: classified as local and global models
1. Sparsity constraint on slowness patches
“Local” model

2. Dictionary learning (unsupervised machine learning)
“Global” model 3. Damped least squares regularization on overall slowness map

“Local” model: Models small-scale features as patches

“Global” model: Models larger-scale features with damped least squares



Proposed locally-sparse tomography (LST) basics

Slowness (s/km)
0.3 0.35 0.4 0.45 0.5

Synthetic "checkerboard”
slowness example

Range (km)

LST approach three ingredients: classified as local and global models
1. Sparsity constraint on slowness patches

“Local” model o . . . .
2. Dictionary learning (unsupervised machine learning)

“Global” model 3. Damped least squares regularization on overall slowness map

“Local” model: Models small-scale features as patches

“Global” model: Models larger-scale features with damped least squares



Slowness

Natural image

X; = argmin||y;

Local model: slowness patches related to dictionary entries

Dictionary D
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X3

Slowness (s/km)

Range (km)

— Dx;l[2 subject to |[|x;|[o <T

y = R;s = Dx;

RiS :Exz

10x10 pixel patches
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LST slowness image and sampling

Slowness (s/km)
0.3 0.35 0.4 0.45 0.5

X’s are stations

1 20 40 60 80 100
Range (km) Pixels and “patches”

Slowness map and sampling: Tomography matrix A € RMxN

« Discrete slowness map N=W; x W- pixels (straight ray)
« I overlapping v/n x v/n pixel patches o D ¢ RnxQ
« M straight-ray paths Slowness dictionary Q<1
“Local” model X; = arg min||R;ss — Dx;||5 subject to ||x;|lo = T
X
“Global” model ~ t = As, +¢  Sg = argmin ||t — Asg|3 + \illsg — s[5,

Sg



Formulation of LST and algorithm

Bayesian MAP objective:

s e B : 1 I 1
{8g,8s, X} = argmin {—QHt — Asgl3 + —5lIsg —ssll3 + == > IDxi — Rz’SsH%}
Sg,Ss, 0.6 O.g O-pz 7

subject to ||x;]lo =T V i.

Solution via block-coordinate descent

 Global model: the global slowness is solved as

Sy = argmin ||t — Asg||3 + A1]|sg —ssll5, A1 = ((76/(7%)2
S

g

 Local model: sparse coding and dictionary learning, decoupled from MAP objective

X; = argmin ||Dx; — R;S,||5 subject to ||x;|lo = T (Ss = Sg)
X
Dictionary learning by iterative thresholding and signed K- maxz max |DEy;ll1,
means (ITKM) algorithm, Schnass 2015 D |K|=

* The sparse slowness is then solved from

Ss = argmin Aq|[Sg — ss||5 + Z IDX; — Riss|l3, Ao = (0p/04)?
Sg i
"Slowness at pixel n"
A28g 1 + bySp
)\2 —+ bn
b o (llag( Zi R,;FRZ) E Zj\'r Sp,ll — ])n/bn

—1
5= (MI+ TRIR) (ds+ DRIDR) =P Fin =
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lownesses and dict
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Range (km)

LST vs. conventional method: synthetic inversions without noise

Each example took ~5 min on MacBook Pro
Slowness (s/km) Slowness (s/km)
0.3 0.4 0.5

True
Estimated

True
Estimated

1°
w

=TS
;2> 1

TO05(b) -
= 2 s £ 20}
Conventional < 40 2| 1T 40
L=10km,p =0.1 km?E 60 §0'4 7/\ £ 60
€ . ((7%) _ T go

- = o= = o= om o=

L
8

LST (A = A2 =0)

Haar wavelets
n=64, Q=169, T=1

DCT
n=64, Q=169, T=1
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Imaging Long Beach, CA using LST: Big Data task

* In March 2011, 5200 seismic stations were deployed in Long Beach, California over 70kmz2 area

* Ambient seismic noise cross-correlations were obtained for all unique virtual source-receiver
pairs (~14 million ray paths) using 3 weeks of data

* We consider only the 1Hz vertical component data, corresponding to Rayleigh surface waves
(from Lin et al. 2013)

* After quality control there were ~8 million ray paths



High-resolution LST phase speed map from 8 million cross-correlations

1Hz Rayleigh wave phase speed from LST

Long Beach array footprint
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For LST we generate a 300x200 pixel slowness
map with 8 million rays (tomography matrix A 33.78
has dimensions M=8 million, N=60000)
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10 iterations, used ~2 cpu-hours
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Since we are not imposing global correlations
on pixels, can treat A as sparse matrix, get fast
inversion for global model (which is bottleneck)
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LST comparison with eikonal tomography (Lin et al. 2013)

Eikonal tomography
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* \We observe the same general trends between eikonal and LST

 From LST have improved contrast along fault lines, for example near Signal Hill

e The LST results are preliminary and they can likely be improved with more careful

preprocessing (future work)
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