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Dictionary learning
• Means of estimating sparse causes for given classes of signals, 

e.g. natural images, audio 
• Originated in neuroscience to estimate structure of V1 visual 

cortex cells from natural images 
• Useful for regularization of general image denoising inverse 

problem, but only recent applications in the geosciences 
• Seismic survey image denoising 
• Dictionary learning of ocean sound speed profiles (SSPs)
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Olshausen 2009

Beckouche 2014
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Background: sparse modeling of arbitrary signal y

• Measurement vector y is expressed as sparse linear combination of columns or 
"atoms" from dictionary D

• y could be (for example) segments of speech or vectorized 2D image patches 
• Dictionary atoms represent elemental patterns that generate y, e.g. wavelets or 

learned from the data using dictionary learning
• x is estimated using sparsity inducing constraint, example "     -norm" regularization:

- norm "counts" # non-zero coefficients
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Background: sparse modeling of arbitrary signal y

• Measurement vector y is expressed as sparse linear combination of columns or 
"atoms" from dictionary D

• y could be (for example) segments of speech or vectorized 2D image patches 
• Dictionary atoms represent elemental patterns that generate y, e.g. wavelets or 

learned from the data using dictionary learning
• x is estimated using sparsity inducing constraint, example "     -norm" regularization:

- norm "counts" # non-zero coefficients

??
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Background: sparsity and dictionary learning

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

"Natural" images, patches shown in magenta Learn dictionary D describing

• Dictionary learning obtains "optimal" sparse modeling dictionaries directly from data
• Dictionary learning was developed in neuroscience (a.k.a. sparse coding) to help 

understand mammalian visual cortex structure 
• Assumes (1) Redundancy in data: image patches are repetitions of a smaller set of 

elemental shapes; and (2) Sparsity: each patch is represented with few atoms from 
dictionary

Olshausen 2009

• Each patch is signal 
• Set of all patches

Sparse model for patch      composed of few atoms from D
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Background: sparsity and dictionary learning
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"Natural" images, patches shown in magenta Learn dictionary D describing

Olshausen 2009

Sparse model for patch      composed of few atoms from D

• Dictionary learning obtains "optimal" sparse modeling dictionaries directly from data
• Dictionary learning was developed in neuroscience (a.k.a. sparse coding) to help 

understand mammalian visual cortex structure 
• Assumes (1) Redundancy in data: image patches are repetitions of a smaller set of 

elemental shapes; and (2) Sparsity: each patch is represented with few atoms from 
dictionary

• Each patch is signal 
• Set of all patches



Olshausen and Field 1997: image model with sparse prior
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Assume that each image patch described by linear system 

Goal: estimate bases     from observations  
Probability of image patch arising from bases phi is 
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Image patches

Likelihood Prior Posterior

, with

Likelihood Independent, sparse prior



Olshausen and Field 1997- sparse prior induces sparse 
coefficients

Sparsity inducing prior

"Cauchy distribution"

Derivative of prior induces 
sparsity in solution, as we’ll 
see…



Olshausen and Field 1997 - derivation of Error function
Learn basis functions      by minimizing Kullback-Leibler (KL) divergence 
between true images and those reproduced by model

Since               is fixed, KL is minimized by maximizing 
log-likelihood (or minimizing negative log-likelihood) of 
image patches generated from model, hence

Given:



Olshausen and Field 1997 - derivation of Error function cont’d
Learn basis functions      by minimizing Kullback-Leibler (KL) divergence 
between true images and those reproduced by model



Olshausen and Field 1997 - derivation of Error function cont’d
Learn basis functions      by minimizing Kullback-Leibler (KL) divergence 
between true images and those reproduced by model

Given:

Obtain:



Olshausen and Field 1997 - gradients for network model
Rewriting Error function, take derivatives to find gradient

Update to          with network (inner loop)              

with

Update to            with gradient descent 
(outer loop)            

"Hebbian" update



From Olshausen ’97 method, obtain dictionary atoms that resemble 
cells from mammalian visual cortex 
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Dictionary elements



Nice to have atoms like cells, but what else is dictionary 
learning useful for?



Nice to have atoms like cells, but what else is dictionary 
learning useful for?

Image restoration tasks

Denoising
Inpainting (a.k.a. matrix completion)

Elad 2006

Mairal 2009



Olshausen and Field 1997 - gradients for network model

Can be rephrased with Laplacian prior

Coefficients calculated using gradient descent, then dictionary updated by

This idea of iterative refinement is familiar: solving for 
coefficients, then updating basis functions
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Vector Quantization and K-means
Vector quantization (VQ): means of compressing a 
set of data observations                               using a 
nearest neighbor metric with codebook 

2D example

K-means: finds optimal codebook for VQ
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Relationship to sparse coding

{ {Sparse 
processor

VQ 
operators

Dictionary learning 
objective

K-means Gain-shape VQ
K-means 
G-S VQ



Objective solved as simple optimization problem

1. Solve for sparse coefficients                                using 
sparse solver  

2. Solve for dictionary D using sparse coefficients from step 
(1)….. repeat until convergence

Background: a basic dictionary learning framework
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Patches shown in magenta 

Given set of patches                      , learn dictionary D describing them

Dictionary D

Dictionary learning objective



MOD algorithm:
1. COEFFICIENTS: Solve for coefficients X=[x_1…x_i] for fixed Q 

using orthogonal matching pursuit (OMP) 
2. DICTIONARY UPDATE: Solve for dictionary Q=[q_1…q_i], by 

inverting the coefficient matrix X, and normalizing dictionary 
entries to have unit norm. 

…. repeat until convergence

MOD algorithm: Extending K-means to dictionary 
learning problem

Method of Optimal Directions (MOD) [Engan 2000]

bQ = YXT (XXT )�1

Simple and flexible but, a few drawbacks: 
• computationally expensive to invert coefficient matrix X
• since keeping coefficients in X fixed during dictionary update, slow convergence
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2D exampleK-SVD algorithm:
1. Solve for coefficients X=[x_1…x_i] for 

fixed Q using OMP 
2. Solve (1) for dictionary Q=[q_1…q_i], 

updating both Q and X from the SVD of 
representation error 

update q_k, x_k by SVD 

…. repeat until convergence

K-SVD algorithm
K-SVD [Aharon 2006]: Learn optimal dictionary for sparse representation 
of data
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Image restoration tasks

Denoising Inpainting (a.k.a. matrix completion)

Elad 2006

Mairal 2009



Image restoration tasks
Denoising: learning from noisy image patches for specific image

Solved using block-coordinate 
descent algorithm (also two steps):

(1)

(2)
Elad 2006



Why not just use neural networks?
Burger 2012: Multi-layer perceptron competes with state of art denoising algorithms, 
using 362 million training samples (~one month of GPU time) 

… at least in geoscience (seimsics, ocean acoustics) we rarely have this much training 
data

Wipf 2018

Adaptive image denoising-like MLP-like



Why not just use neural networks? (cont’d)



Dictionary learning of ocean sound speed profiles 
Bianco and Gerstoft 2017

• Acoustic observations from ocean contain information about 
ocean environment 

• The inversion of environment parameters is limited by physics 
and signal processing assumptions
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Source 
(active or noise)

Hydrophones
Sound speed 
profile c(z)

⍴1, c1

⍴2, c2



Sound speed profiles
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• Sound speed profiles (SSPs) in the ocean are often highly variable 
with fine scale fluctuations 

• Acoustic inversion of SSPs is ill-posed and traditionally regularized 
using EOFs (=PCA in this case) 

• Dictionaries obtained via unsupervised learning may provide better 
representation of SSP dynamics
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Dictionary learning of sound speed profiles

0 5 10 15 20 25
UTC (hour)

20

30

40

50

60

70

D
ep

th
 (m

)

1508

1510

1512

1514

1516

1518

1520

1522

So
un

d 
sp

ee
d 

(m
/s

)

cm

c̄

ym

10

40

70de
pt

h 
(m

)

-1 0 1
amplitude

‘Learned Dictionary’

Dictionary 
Learning

ym = cm � c̄

SSP Variability

HF-97 Experiment
• 30 hours of SSP data 
• Used 1000 profiles for 

dictionary learning 
• K = 30 point SSP’s 

(interpolated from 15 
measurements)
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Bianco and Gerstoft JASA 2017 (published)
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Example: Denoising alphabet with K-SVD algorithm
True alphabet Recovered alphabet (no noise, K-SVD)

Recovered alphabet (noise std = .5, K-SVD)Recovered alphabet (no noise, PCA)
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SSP reconstruction error using Dictionary Learning

• One entry from Learned Dictionary fits SSP data better than 6 EOFs 
• Learned dictionary (LD) reconstruction error less than 50% of EOF 

error

Based on 1000 profiles from HF-97
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LS: Least squares 
OMP: Sparse processor 

Mean Error (ME): 

ME =
1

KM
kY � bYk1



HF-97: One coefficient from Learned Dictionary vs. One EOF coefficient
SSP reconstruction using Dictionary Learning
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Learning dictionary from HF-97 SSP variation
Q random initialized, converges within 15 iterations



LD solution space much smaller than EOFs
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Inversion for SSP: 

Assuming a potentially non-linear mapping: 
• EOF solution: T leading order coefficients 

(fixed indices) 

• LD solution: T-non-zero coefficients 
(combinatorial indices)

EOF sol’n

LD sol’n

Scomb = H
T N !

T !(N � T )!

Sfixed = H
T

• Since 6 EOFs or 1 LD entry required, if coefficients discretized in H=100 
coefficients number of possible solutions are

EOFs: LD: Scomb = 104 solutionsSfixed = 1012 solutions
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Dictionary learning in travel time tomography
Bianco and Gerstoft 2018

Long Beach seismic array 
(5200 stations, ~14 million rays)

10 km

7 km

1 Hz Rayleigh wave phase speed map

LST

• The Earth contains both smooth and discontinuous variations in slowness (e.g. Moho, faults) 
at multiple spatial scales 

• Most existing travel time inversion methods are ad hoc: regularize inversion assuming 
exclusively smooth or discontinuous slownesses 

• Propose locally-sparse 2D travel time tomography (LST) method with three main ingredients: 
• Sparsity constraint on slowness patches 
• Dictionary learning (unsupervised machine learning) 
• Damped least squares regularization on overall slowness map



Consider simple travel time model
2D map slowness mapFor slowness field, get travel time:

c =

x1

x3

x2

x4

Range (length)
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wave speed
slowness

For straight-rays get simple formulation:

"tomography matrix"

• Propose LST tomography ingredients: 
• Sparsity constraint on slowness patches 
• Dictionary learning (unsupervised machine learning) 
• Damped least squares regularization on overall slowness map



1. Sparsity constraint on slowness patches 
2. Dictionary learning (unsupervised machine learning) 
3. Damped least squares regularization on overall slowness map

Proposed locally-sparse tomography (LST) basics

“Local” model

“Global” model

LST approach three ingredients: classified as local and global models

“Local” model: Models small-scale features as patches

“Global” model: Models larger-scale features with damped least squares

Synthetic "checkerboard" 
slowness example



1. Sparsity constraint on slowness patches 
2. Dictionary learning (unsupervised machine learning) 
3. Damped least squares regularization on overall slowness map

Proposed locally-sparse tomography (LST) basics

“Local” model

“Global” model

LST approach three ingredients: classified as local and global models

“Local” model: Models small-scale features as patches

“Global” model: Models larger-scale features with damped least squares

Synthetic "checkerboard" 
slowness example



Local model: slowness patches related to dictionary entries

Dictionary

10x10 pixel patches
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Olshausen 2009

Slowness

Natural image



Pixels and “patches”

LST slowness image and sampling

Slowness map and sampling: 
• Discrete slowness map  N=W1 x W2  pixels  
•     overlapping                   pixel patches 
• M  straight-ray paths

“Local” model

“Global” model

Tomography matrix 
(straight ray)

x’s are stations

Slowness dictionary



Formulation of LST and algorithm

Bayesian MAP objective:

Solution via block-coordinate descent

• Global model: the global slowness is solved as 

• Local model: sparse coding and dictionary learning, decoupled from MAP objective 

• The sparse slowness is then solved from 

   

(          )

Dictionary learning by iterative thresholding and signed K-
means (ITKM) algorithm, Schnass 2015 

"Slowness at pixel n"



Synthetic slownesses and dictionaries

Checkerboard "Fault" profile Ray sampling (64 
stations, 2016 rays)

Ray density

Dictionaries: 
Prescribed and Learned



LST vs. conventional method: synthetic inversions without noise

with

Conventional tomography method 
(Rodgers 2000) 
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Each example took ~5 min on MacBook Pro

Slowness RMSE (s/km) written on 2D estimates



LST vs. conventional method: synthetic inversions with travel time noise 
Checkerboard

with

Conventional tomography method 
(Rodgers 2000) 

• Slowness RMSE (s/km) written on 2D estimates

• Noise is Gaussian with STD 2% of mean travel time



with

Conventional tomography method 
(Rodgers 2000) 

LST vs. conventional method: synthetic inversions with travel time noise 
Fault profile

• Slowness RMSE (s/km) written on 2D estimates

• Noise is Gaussian with STD 2% of mean travel time



Imaging Long Beach, CA using LST: Big Data task

7 km

10 km

• In March 2011, 5200 seismic stations were deployed in Long Beach, California over 70km2 area

• Ambient seismic noise cross-correlations were obtained for all unique virtual source-receiver 

pairs (~14 million ray paths) using 3 weeks of data

• We consider only the 1Hz vertical component data, corresponding to Rayleigh surface waves 

(from Lin et al. 2013)

• After quality control there were ~8 million ray paths



1Hz Rayleigh wave phase speed from LST

Long Beach array footprint

10 km

7 km

High-resolution LST phase speed map from 8 million cross-correlations

• For LST we generate a 300x200 pixel slowness 
map with 8 million rays (tomography matrix A 
has dimensions M=8 million, N=60000) 

• 10 iterations, used ~2 cpu-hours 
• Since we are not imposing global correlations 

on pixels, can treat A as sparse matrix, get fast 
inversion for global model (which is bottleneck) 

• Newport-Inglewood fault network shown as 
black line



LST comparison with eikonal tomography (Lin et al. 2013)

Eikonal tomography LST

• We observe the same general trends between eikonal and LST 
• From LST have improved contrast along fault lines, for example near Signal Hill 
• The LST results are preliminary and they can likely be improved with more careful 

preprocessing (future work)


