
Hand Gesture Recognition

Group 7
Arshia Zafari, Erik Seetao, Joni De Guzman, Hayk Hovhannisyan
A11167578, A10705834, A53212113, A12466074

{azafari, eseetao, j5deguzm, hhovhann}@ucsd.edu

Abstract— Gesture recognition is an active field of research
which has a wide range of applications including hand gesture
recognition, human machine interaction, and immersive game
technology. From the Leap Motion Hand Gesture Recognition
dataset comprised of 20,000 images of ten distinct hand ges-
tures, we train a 2D convolutional neural network to classify
these hand gestures. Our model is able to achieve a success rate
of 90.2%.

I. INTRODUCTION

Given a collection of hand gesture training images, we de-
sign a classification model that learns to distinguish between
the different gestures when given new images. This problem
has widespread application in areas such as ASL translation,
virtual gaming, and driver/pedestrian hand recognition for
safe and smart driving. As of recently, deep learning has
seen tremendous growth in different computer vision and
machine learning applications from image classification and
segmentation to object detection and recognition. Therefore,
we decided to apply deep learning methods to the problem
of hand gesture recognition. We implement a convolutional
neural network that takes in images of 10 different hand
gestures and outputs the predicted gesture type. Although
our model is more simple in that it learns to recognize only
10 hand gestures, it can easily be scaled up to learn a larger
number of hand gestures and signs.

II. RELATED WORK

A hand gesture recognition system that utilizes depth and
intensity channels is fed into a 3D CNN (convolutional
neural network) in [1]. Their 3D CNN consists of two
parallel networks that are capable of operating on both high-
resolution and low-resolution inputs. The two subnetworks
learn different features, and their outputs are merged to clas-
sify an input into one of 19 gestures. A 3D CNN functions
the mostly same as a 2D CNN, but it allows for spatial and
temporal data where the third dimension of time is absent
in a 2D CNN. This model is a more sophisticated version
of our model as we simplify ours to use only spatial data.
This work also mentions the use of heavy data augmentation
to improve the robustness of their network. We draw ideas
from their data augmentation when implementing ours on
our data.

In [2], a multi-layered random forest model is used to
recognize and classify sign language signals from depth im-
ages. The data undergoes augmentation to make the features
scale, translation, and rotation invariant since a hand sign

can have a very different appearance when seen from a
different view. The use of a multi-layered random forest aids
in discriminating between hand signs that look very similar,
but the authors mention the data augmentation being more
of a contributing factor in improving the results significantly.

On the other hand, [3] combines a CNN with a sliding
window approach to perform hand gesture recognition in
real-time on raw video streams. Their network consists of
two separate models: one is a CNN to detect the presence of
a gesture and the second is a CNN classifier to classify the
detected gestures. This work is different than other works as
it operates on dynamic data rather than static images. Our
approach uses static images in the form of individual still
images of gestures rather than a full sequence. Since we do
not use dynamic data, our network does not need to a second
model to detect the presence of a gesture.

Rather than using neural networks, [4] design handcrafted
spatio-temporal features with a traditional SVM (support
vector machine) classifier to perform hand gesture recog-
nition in an in-vehicle setting. Due to the recent success of
deep learning, using a traditional approach is outdated as
deep learning models continue to report higher performance
and accuracy for gesture recognition.

Most similar to our work is [5], which also uses a 2D CNN
to implement hand gesture recognition. As opposed to using
a readily available dataset, this implementation creates their
own dataset of gestures. This work offers an even simpler
CNN model than ours, yet it still retains good performance.
It differs from our model in that we build a deeper model
with more convolutions. A deeper neural network allows for
learning more higher level features, so we decide to include
more layers in our model.

III. DATASET

We use the Hand Gesture Recognition Database from
Kaggle1. The database contains 20,000 infrared images (of
size 640×240) of hand gestures captured by a Leap Motion
sensor. The images are split into 10 distinct gestures from
10 different users, comprised of 5 males and 5 females. All
hand gesture images are taken with the right hand. The 10
gestures are: palm, L, fist, fist side, thumb, index, OK, palm
side, C, and down. Figure 1 shows samples of the different
gestures in the dataset.

1https://www.kaggle.com/gti-upm/leapgestrecog



Fig. 1. Top row: palm, L, fist, fist side, thumb. Bottom row: index, OK,
palm side, C, down

A. Preprocessing & Data Augmentation

For preprocessing, all images are converted to grayscale,
normalized, centered, cropped, and downsampled to square
images of size 120 × 120. This is accomplished by first
employing findContours() via OpenCV to perform a
blob detection on the hand in each image like in Figure 2.
For each hand blob, we find the center of the hand and crop
it to a square 240 × 240. If an image has a hand too far
to the left or right that cropping goes out of bounds, the
image is zero padded and then cropped. Finally, the image
is downsampled by a factor of 2 to yield a size of 120×120.

Fig. 2. findContours() used to find hand center

Due to the limited amount of images in the dataset, we
apply further augmentation by mirroring and rotating the im-
ages, effectively doubling our dataset to 40,000 samples. In
doing so, we ensure right and left hand representation which
also aids in improving the robustness of our model. Figure
3 below gives an example of a mirrored image and Figure 4
gives a rotated mirror of 15 degrees counterclockwise.

Fig. 3. Mirrored image of ’L’ gesture

Fig. 4. Rotated image of ’palm’ gesture

It is important for the dataset to undergo enough aug-
mentation in order for the images provide a consistent
and clear amount of information, as well as am adequate

representation of different perspectives. This ensures that
our model performs better in varying circumstances and is
capable of distinguishing a larger variety of images [6].

IV. METHODS

We exploit deep learning techniques for our hand gesture
recognition task. For our model, we build a 2D CNN with
dilated convolutions, batch normalization, pooling, dropout,
and fully-connected layers. The model is built using the
Keras v.2.1.6 back-end of Tensorflow.

Fig. 5. 2D CNN network architecture [7]

A. Network Architecture

Our architecture consists of 3 dilated convolutional layers
with ReLU (rectified linear unit) activation, each followed by
additive Gaussian noise, batch normalization, and pooling
layers. This results in a pyramid-like architecture as the
pooling layers decrease the spatial resolution of the inputs to
half their size. Following the pyramid architecture, we add 2
fully-connected layers with 7200 and 128 units, respectively.
The final layer of the model is fully-connected with 10 units
and a softmax activation to appropriately classify the input
image into one of the 10 hand gestures. A diagram of the
described model is shown in Figure 5.

We go into more detail about each of the different layers
in our network below.

• Dilated convolutions: The three convolutional layers
use 128, 64, and 32 filters, respectively. All convolu-
tional layers use a 3 × 3 kernel, a stride of 1, and a
dilation rate of 2. We use dilated convolutions because
increasing the dilation rate effectively increases the
receptive fields of the output. What this means is that
our 3×3 kernel functions the same as a 7×7 kernel but
without the same number of parameters as a 7×7 kernel.
This results in an increased receptive field meaning and
less computation. Figure 6 shows an illustration of a 2
dilated convolution that we utilize in our model.

• Gaussian noise: Layers of additive Gaussian noise
follow the convolutional layers to increase robustness
of the network. Since pixel values of the image were a
factor of 10−2, we chose Gaussian noise with variance
of 0.0035.



Fig. 6. Dilated convolution of a 3x3 kernel with a dilation rate of 2

• Batch normalization: Batch normalization is added
between convolutional and pooling layers to help pre-
vent the model from overfitting and to allow better
generalizability of the network.

• Pooling: Pooling layers reduce the network’s output
size by downsampling the inputs. Specifically, we use
max pooling which takes the maximum value about a
2× 2 window.

• Dropout: A dropout layer (with keep ratio = 0.5)
is applied before the last fully-connected layer, so
during training 50% of the nodes are dropped from
the network. This thereby prevents certain nodes from
influencing the output and allows the network to learn
more robust and specific features.

• Fully-connected: As mentioned previously, we include
3 fully-connected layers with the following number of
output units: 7200, 128, and 10.

• Softmax: Softmax is used as the activation for the last
fully-connected layer since it is the primary activation
for classification with more than two classes.

Softmax(xi) =
exi∑
j e

xj

• ReLU: ReLU is nowadays the standard non-linear ac-
tivation function for neural networks because it avoids
the vanishing gradient problem. The ReLU equation and
its gradient is defined below.

f(x) = ReLU(x) = max(x, 0)

f ′(x) =

{
1 x > 0
0 otherwise

V. EXPERIMENTAL SETTING

For our experiments, we employ a training, validation, and
testing split of 60%, 20%, and 20% respectively. This results
in 32,000 images for training, 4,000 for validation, and 4,000
for testing.

A. Training

For training our model, we choose the hyperparameters
specified in Table I, where the training structure follows
a similar implementation to [8]. The original images were

downsampled to 120 × 120 to accelerate computation time,
and an initial downsampling by a factor of 2 does not result
in much loss of features. The RMSProp optimizer is chosen
since it is a fast and popular optimizer that performs well on
large datasets. The batch size we use is 64. Using a small
size, we are able to regularize the training and have a lower
generalization error. The model uses a standard learning rate
of 0.01 to prevent the gradient from descending too slow or
failing to converge.

num classes 10
num epochs 25
batch size 64
image size 120 ×120

learning rate 0.01
optimizer RMSProp
criterion Cross Entropy

weight initialization Xavier

TABLE I
MODEL SPECIFICATIONS

We can visualize the outputs of the trained network to try
to explain how it is manipulating the pixel data in order
to extract features used to classify them [9]. Looking at
Figure 7 we see the output of the activation layer of the
first convolution layer and see an example of a sideways
fist gesture representation after being passed through the
network. We also analyze deeper and view the same image
representation after the last activation of the third convolution
layer in Figure 8.

Fig. 7. Output of layer 3

Loss: Since our task is essentially multi-class classifi-
cation, we appropriately use cross-entropy loss as the loss
function.

L = −
∑

x,d∈T

∑
k

dklog(yk) (1)

B. Testing

The test images had equal representation of all 10 gesture
classes as seen in Figure 9. Using the three main evaluation



Fig. 8. Output of layer 12

metrics that we chose (explained in the next section), we
predicted the labels of these test images and compared them
to the true labels. With this, we were able to count the
number of successful and failure cases.

Fig. 9. Frequency of test samples

C. Evaluation Metrics

In order to evaluate the performance of our model, our
primary metric is accuracy which is the percentage of correct
classifications.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

In addition, we evaluate the total accuracy across the test data
with top-2 and top-3 accuracy. Top-2 accuracy illustrates the
accuracy of our predicted label being within the top two sets
of guesses among the 10 possible classes an image could be.
The same works for top-3 where the prediction is within the
top three guesses.

Secondary metrics used are precision, recall, and f1-score.
Precision is the fraction of positive predictions that are
correctly guessed divided by the total number of positive

predictions be it correct or incorrect. Whereas recall is the
fraction of correctly guessed positive predictions divided by
the total amount of actual positive values. F1-score is the
harmonic average of the precision and recall, where an F1-
score reaches its best value at 1 (perfect precision and recall)
and worst at 0.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 = 2
Precision ·Recall

Precision+Recall
(5)

VI. RESULTS & DISCUSSION

A. Results

The results show a wide set of conclusions. In general,
the model performs quite well. The test accuracy came out
to be 90.2%, the top-2 accuracy was 97.7%, and the top-3
accuracy was 99.7% shown in Table II.

Test loss 1.21636
Test accuracy 90.2%

Top-2 accuracy 97.7%
Top-3 accuracy 99.7%

Correctly labelled 3,607

TABLE II
OVERALL TEST RESULTS

Fig. 10. Training results

Out of the 4,000 test images, 3,607 images were correctly
classified. Figure 11 shows examples of the correctly classi-
fied images, whereas Figure 12 shows examples of the incor-
rectly classified images. The normalized confusion matrix in
Figure 13 shows how most each class prediction aligns with
the true prediction except for the fist and index gestures.
The classification report in 14 show all secondary evaluation
metrics for the various classes, showing the support for each.



Fig. 11. Success cases where our network correctly labelled images

Fig. 12. Failure cases where our network incorrectly labelled images

B. Discussion

The training results from Figure 10 show the validation
loss fluctuating while the training loss decreases and remains
very small. This is most likely an indication of the model
overfitting on the training data. Simply put, overfitting occurs
when your model has learned to fit the specifics of the
training set and fails to generalize well when presented with
unseen data. This may affect validation accuracy more than
training accuracy because at training time, the small changes
made to the parameters are specifically designed to optimize
a training objective which is a good proxy for training
accuracy; so the effect is less like a random perturbation of
the parameters, more something pushing classifications for
training examples in a consistent direction. For the validation
samples, because the update was not computed with them in
mind, the way it acts is closer to a random perturbation.
This could be due to the small size of the validation set, so

Fig. 13. Confusion matrix for our model. The x-axis represents the
predicted labels and the y-axis represents the true labels for the test images.
The format is as such: if you predicted A when the actual label was B, you
get an entry in the (A,B) cell of the matrix.

Fig. 14. Classification report

increasing the size can reduce the variance of the validation
accuracy changes that result from parameter changes because
they are averaged over more samples.

The outputs of the activation layers are hard to interpret.
Looking at an example of the sideways fist hand gesture
as seen by the network, we can try to understand the types
of features the network tries to extract at a varying levels
of the architecture. Figure 7 shows the output of the image
through the different filters of the first convolutional layer.
The network does well in extracting edges (i.e. low level
features) as the hand gesture becomes more distinct against
the background. As we move deeper into the network we
can analyze the output of the same image through the third
and last convolutional layer, shown in Figure 8. The image
becomes more pixelated, showing the various shapes and
higher level features the network is trying to extract.

Analyzing the model’s performance on the test set allows
us to obtain a better understanding of the results. Out
of the 4,000 test images, 3,607 were correctly classified,
corresponding to 90.2% accuracy. Both the top-2 and top-
3 accuracy are quite high. Studying the confusion matrix in
Figure 13, we see that most images are correctly classified



as the predicted labels and true labels are aligned across the
diagonal. However, many images from the index class were
incorrectly labeled as a fist. We can see such examples in
Figure 12 with many images of the index gesture (class 5)
being predicted as a fist (class 2). The reasoning behind this
is that the gesture for an index figure is essentially a fist
with a single finger raised, which makes the fist a subset of
the index gesture. For many images of the index gesture, the
index finger is difficult to make out and is not as prominent
as the fist. This resulted in many misclassifications and is
also reflected in the classification report of Figure 14. The
gesture that had the best accuracy was the down gesture,
with 100% precision, recall and F1-score.

VII. CONCLUSION & FUTURE WORK

Training the network on the original dataset gave almost
perfect accuracy since there was not any drastic variability
between the image samples, which is why layers of noise
were added. Although this decreased accuracy, this made
the model more robust to different gesture perspectives.
However, the model still experienced some overfitting during
training. The variance in the validation loss is also likely
due to the small batch size since there are less images to
compute the error for each epoch. Misclassifications of the
index gesture as a fist is likely due to the fact that the index is
essentially the fist gesture with one finger raised, so the single
finger can be hard to recognize. The layer visualizations are
difficult to interpret but it give us insight on the features that
the network is trying to learn, like gradients and shapes.

For future work, we plan to expand our model to in-
corporate several image sequences to allow short videos
of hand gestures. More complex 3D convolutional network
architectures enables both spatial and temporal data as input.
By implementing 3D CNN models as a future work, this
will allow us to translate and recognize live motion of
dynamically changing gestures.

CONTRIBUTIONS

• Arshia Zafari (team lead): Wrote notebook for training,
testing, evaluation, displaying results, the DEMO code,
as well as the analysis and other sections of the report.
Also made the mid-quarter PowerPoint and designed the
poster. Organized regular group meetings.

• Erik Seetao: Created data loader to read from dataset,
hand blob localizer, data augmentation with mirrored
and rotated images for supplement, downsampling and
visualization segments.

• Joni De Guzman: Worked on the network architecture
which included implementation of the dilated convolu-
tions; wrote the related work and methods section of
the report, as well as other sections; and maintain the
Github repository of our code.

• Hayk Hovhannsiyan: Worked on data pre-processing
used for training and testing of the model, including
scripts for cropping, re-scaling, transferring and loading
the data. Created data for DEMO, and took part of
regular group discussions and interpretation of results.

REFERENCES

[1] P. Molchanov, S. Gupta, K. Kim, and J. Kautz. Hand gesture recognition
with 3d convolutional neural networks. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages
1–7, 2015.

[2] A. Kuznetsova, L. Leal-Taix, and B. Rosenhahn. Real-time sign
language recognition using a consumer depth camera. In 2013 IEEE
International Conference on Computer Vision Workshops, pages 83–90,
2013.

[3] Okan Köpüklü, Ahmet Gunduz, Neslihan Kose, and Gerhard Rigoll.
Real-time hand gesture detection and classification using convolutional
neural networks. CoRR, abs/1901.10323, 2019.

[4] E. Ohn-Bar and M. M. Trivedi. Hand gesture recognition in real time
for automotive interfaces: A multimodal vision-based approach and
evaluations. IEEE Transactions on Intelligent Transportation Systems,
15(6):2368–2377, 2014.

[5] Abhishek Signh. Cnn gesture recognizer: Cnn gesture recognizer, 2017.
[6]
[7] W. Ji L. Liebel H. Iqbal, P. Fernandez. Plotneuralnet, 2019.
[8] A. Sharma. Autoencoder as a classifier using fashion-mnist dataset,

2018.
[9] A. Kumar. Understanding cnn with keras, 2018.


