
Modulation Classification Using Neural Networks
Venkatesh Sathyanarayanan, Jahya Burke, Rui Shang, Richard Bell

Electrical and Computer Engineering University of California San Diego, San Diego, CA 92093
Emails: vesathya@eng.ucsd.edu, jahya1burke@gmail.com, r4shang@ucsd.edu, rcbell@eng.ucsd.edu

Abstract—In this paper we explore the performance of neural
network based modulation classification systems, specifically the
convolutional neural network (CNN) and the residual neural net-
work (ResNet). Using the PyTorch machine learning library, we
are able to get comparable results reported by other researchers
using different frameworks. We also explore the effects that
frequency offset and frame boundary misalignment have on the
results.

I. INTRODUCTION

In this section we will go over the motivation behind
modulation classification and related work, followed by a brief
on what the inputs and ouputs are in the last paragraph.
Modulation is the manipulation of the amplitude, frequency
or phase of an electromagnetic (EM) wave with the intent
of transmitting information. The transmitter and receiver will
agree to particular modulation scheme ahead of time to allow
this information sharing to occur. There are use cases such
as dynamic spectrum sensing in the commercial space and
electronic warfare in militiary where one would like to infer
the modulation type given just the received signal. This is
known as modulation classification. The field of modulation
classification is an extension of the field of signal detection,
whose theory was developed in the 1950s [1], [2]. The signal
detection problem can be considered as a binary classification
problem in which the output classes are either; signal is
present, or it is not. In the detection theory world these are
referred to as hypotheses, where H0 is the null hypothesis
when no signal is present and H1 is the hypothesis when signal
is present. In the sampled data domain, these hypotheses can
be expressed as,

H0 : r[n] = w[n] , (1a)
H1 : r[n] = s[n] + w[n] , (1b)

where r[n] is the received sampled signal, s[n] is the true
transmitted signal and w[n] is a noise signal. The true signal
can be expressed as

s[n] = sI [n] cos(2πfcn)− sQ[n] sin(2πfcn) , (2a)

= Re
{
s̃[n]e2πfcn

}
, (2b)

where s̃[n] = sI [n] + jsQ[n] is the complex baseband
representation of the passband signal and fc is the carrier
frequency.

Modulation classification extends the signal detection prob-
lem by allowing more output classes to exist. It is not enough
to determine whether a signal is present, now it is desired
to determine what type of signal is present. Some of the

earliest work in this area was done in the 1980s. In these
early works, hand crafted features were created from the raw
time domain signal, such as zero crossing locations [3], square
law classifiers [4], statistical moment classifiers [5] and phase
based classifiers [4]. Surprisingly, the first neural network
approach at modulation classification was also attempted at
this time [6]. The authors in this work still created hand crafted
features but fed these features into a neural network for the
final classification process.

More modern approaches to modulation classification taking
advantage of advancements in computing software/hardware
[7], [8] that allow reasonable training and testing times and
advances in deep learning research [9]–[13] that reduce the
vanishing gradient problem seem to begin in 2016 [14]–[16].
These approaches do not use hand crafted expert features to
classify the modulations, instead they depend on data alone to
train deep neural networks. It should be noted that cyclosta-
tionary based modulation classifiers are still relevant and seem
to perform well [17]–[19], though we did not investigate them
in this article.

In this project each input frame is a digitized EM wave
of five milliseconds which corresponds to a matrix of size
2 by 1024, where the two corresponds to the inphase and
quadrature phase components of an EM wave. Our output is
one of the eleven modulation types. In the following Section
II we describe a wireless sytem model and give an intuition
behind what a neural network should learn, in order to classify
the modulation type. In Section III, we go over the details of
the synthetic dataset generation that was used for the project.
We will use the MATLAB code from [20] to create our dataset.
In Section IV, we explain the details of the models used. We
used the CNN model from [14] and a Resnet from [21] as a
template and trained and tested the models on our synthetic
data. In Section V, we go over the results of using the CNN
with relu, CNN with tanh and ResNet with relu. We present
results of further tests which were run to understand the black
box of the CNN, namely the effect of frequency error on
the performance on the CNN model, performance changes of
the CNN model when a carefully chosen subset of classes
were used for training and testing, effect of misaligned frame
window where data from more than one class is part of a
frame. Sections VI and VII are conclusions and individual
contributions respectively.

Our main contribution in this project is successfully im-
plementing models in PyTorch for modulation classification
using CNN and ResNet and getting good accuracies of over
80%. Additionally we were able to use our physics knowledge

1

of wireless communications to pry open the black box of
CNN and infer that similar modulation types are more prone
to misclassification and also that phase sensitive modulation
types are most vulnerable.

II. WIRELESS SYSTEM MODEL

In this section we will give an intuition on what the neural
network has to learn in order to to classify the modulation type
of a wireless signal. An electromagnetic wave is affected by
a multitude of non-linear artifacts . An ideal neural network
will have to be trained over the space of all occurrences of
the non-linear artifacts. This is not practically possible and
we therefore need to be smart in ensuring that we use a
reasonably exhaustive dataset. This complicates the training
data generation phase if synthetic data is to be used because
proper care must be taken to impart the necessary distortions
to the data.

For example, Figure 1 shows the ideal complex baseband
symbol values for three different modulations types; BPSK,
QPSK and 16QAM. The undistorted digital baseband repre-
sentations for these modulations correspond to

BPSK : s̃ ∈ {±1} , (3a)
QPSK : s̃ ∈ {±1± j} , (3b)

16QAM : s̃ ∈ {±1± j,±1± 3j,±3± j,±3± 3j} . (3c)

If a neural network were trained using samples drawn from
the clean symbol sets such as in (3) and then tested on
live signals using a software defined radio unit such as the
universal software radio peripheral (USRP), poor classification
performance would result. The reason for this, as detailed in
([22]), is that the real life signal will be a specific realization
of 4, with all its non-linear artifacts, where

r(t) = Aej2π∆ftejθ
K∑

k=1

ejϕk s̃kg(t− (k − 1)T − ϵT) ,

0 ≤ t ≤ KT

(4)

fully represents the standard channel effects that would be
imparted onto the signal minus additive complex Gaussian
noise. It will be assumed that r(t) contains this missing noise
term throughout. In (4), A is the attenuation due to path loss
between transmitter and receiver, ∆f is the carrier frequency
offset due to oscillator imperfections, θ is carrier phase offset
due to the distance between transmitter and receiver, ϕk is
phase jitter due to the inaccuracies of the oscillators, g(t) is
the effective impulse response of the channel given by the
convolution of the transmitter pulse shaping filter and the
channel impulse response, T is a symbol period, ϵ < T
is the time offset from the start of a symbol period and
{s̃k}Kk=1 are K complex transmitted data symbols drawn from
a finite size modulation format such as those in (3). We may
represent the set of parameters that define (4) through the
vector u =

[
A,∆f, θ, {ϕk}Kk=1, g(t), ϵ, {s̃k}Kk=1

]T
. The goal

is to find a function that robustly maps signals with various
values of u to the proper modulation type

i = f(r(t)) , (5)

Fig. 1. Constellation diagrams for BPSK, QPSK and 16QAM.

where i is the index over the set of all modulation types
expected. Using the fact that neural networks are universal
function approximators [23], we use a neural network to
approximate the function f . Thus it is expected that the neural
network with multitude of parameters, will be able to learn the
non-linearities reasonably accurately.

III. DATASET AND FEATURES

The field of wireless communications is a mature field and
we are able to model all the artifacts as described in equation
(4) within an accuracy that would suffice in most commercial
applications. Each input frame represents 2 × 1024 samples
of a complex baseband modulation extending over 5 ms of
time, where the two corresponds to the inphase and quadrature
components of the sampled signal. The output is one of the
eleven modulation types. We have adopted the MATLAB code
from [20] to create the synthetic dataset of 10,000 samples
per class. See Table I for the specifics on the values of the
parameters used to generate data. The choice of the values
used as shown in the table is based on the implementation
in [20]. We use this data for training and testing CNN and
ResNet models. Please note that the values chosen are such
that there is one strong line of sight path, low values of
frequency errors both from clock jitter and Doppler. These are
reasonably mild conditions in comparison to a lot of real life
cases especially in dense cities. Also the clock jitter on cheaper
sources of transmitter can be expected to be much higher. More
adverse conditions makes the problem challenging and we are
therefore focusing on these milder channel conditions in this
project.

To test the effect of frequency error on the performance
of the CNN model, we generated test data by changing the
maximum clock offset and maximum Doppler parameters. For
frame misalignment tests, we reused already generated syn-
thetic data to create new test data by adding controlled portions
of frames from two different classes. Please note that since
application of neural network to wireless communications is a
nascent field, there is not any benchmark data set that is widely
used. The closest to a benchmark dataset would be RadioML
2018.01A from [24]. Using this dataset that contains both real
and synthetic data would be something that we would want to
attempt in the future. We did try using the dataset for testing
our model, but its size was too big resulting in the datahub
kernel crashing.

2

Fig. 2. Steps involved in creating synthetic data

TABLE I
TRAINING DATASET PARAMETERS

Training dataset parameters
Number of Classes 11
Number of input frames
per class

10000

Input dimension 2 by 1024
Duration of each input
frame

5 ms

Center frequency 900 kHz for digital modulation
types and 100 kHz for analog

SNR 30 dB
Sampling rate 200 kHz
Samples per input frame 1024
Symbols per frame 128
Samples per symbol 8
Max Doppler 5 Hz
Max clock offset 5 ppm
Multipath profile Rician fading
Rician fading K factor 4
Rician fading delay profile 0, 1.8, 3.4 samples Delay
Rician fading path gains 0, -2, -10 dB

IV. METHODS

As a first step to any learning task it is a good idea to
plot the input data to search for features that are striking. If
there is a clear path forward after visualization, using a neural
network may be overkill or even suboptimal. Figures 3,4 and 5
show the input data in the time domain, constellation domain
and frequency domain respectively before any channel effects
are added. Even before the addition of channel effects, it is
not immediately clear looking at these plots how one might
classify the modulation types. There is no clear set of rules
that could be used to differentiate between all modulation
types. We could work hard to find a set of rules on a set of
transformed features, but this would be the classical approach
to modulation classification and defeats the purpose of using
a neural network.

Using PyTorch two different neural networks were tested;
the basic convolutional neural network and the residual con-
volutional neural network. The input time domain samples are
transformed accordingly to Figure 6 and fed to the neural
networks. The dataset has a total of 110,000 signals, of which
70% are used for training, 20% are used for testing and
10% are used for validation. Each network is trained for 100
epochs on the training set with early stopping in place to avoid
overfitting the model. The results are then calculated on the
testing set. To evaluate the performance of each model we
generate a confusion matrix, calculate the overall accuracy and
look at the loss plots during training.

Fig. 3. Time domain input modulations plotted across sample number.

Fig. 4. Constellation diagrams for digital modulation types

Fig. 5. Spectrograms for each of the modulation types. Time is given by the
vertical axis with frequency along the horizontal axis

3

Fig. 6. Transformation process from streaming input samples to blocked NN
input

Fig. 7. Basic convolutional neural network architecture

A. Convolutional Neural Network

The basic convolutional neural network architecture used
contains six convolutional blocks followed by a fully con-
nected layer and a softmax. Each convolutional block contains
a convolutional layer, a batch normalization, a max-pooling
and an activation function in sequence. During the exploration,
two activations have been used. One is ReLU, the most
commonly used activation function, and the other one is tanh.
RelU has been proven to outperform tanh in other applications.
However, we wanted to insure that it was the best choice for
modulation classification.

Figure 8 shows the detailed architecture of the CNN model.
The first five Convolutional blocks are essentially the same
with the only difference in the input and output dimensions.
The last one block has an average pooling instead of max pool-
ing. Compared with max pooling, average pooling smooths out
the feature and emphasizes on down-sampling of the overall
feature.

B. Residual Convolutional Neural Network

The residual convolutional neural network (ResNet) has
proven to be a valuable tool for classification in many ap-
plications. It relies on the usage of skipped connections in the
network to train the model to learn residual features that can
be helpful for classification.

The ResNet architecture is shown in figure 9. It contains
6 residual blocks followed by three fully connected layers.
The residual blocks are made up of one convolutional layer,

.

Fig. 8. Detailed convolutional neural network architecture

Fig. 9. Residual convolutional neural network architecture

two residual units and a max pooling layer. Within the resid-
ual units there is a skipped connection that goes over two
convolutional neural networks. In total this network contains
30 convolutional layers which is five times the number of
convolutional layers in the basic CNN architecture.

V. TESTS, RESULTS AND DISCUSSION

A. Convolutional Neural Network

Using ReLU as the activation function, a test accuracy
of 82% is obtained. The loss plot in Figure 10 shows that
the validation loss stays consistently close to the training
loss. This indicates that the model does not overfit. After 70
epochs the training is ended due to early stopping to avoid
overfitting. The confusion matrix in Figure 11 has a strong
diagonal. So, for most classes the accuracy of classification is
above 95%. However, some classes prove to be more difficult
to differentiate than others. The modulation types 16QAM
and 64QAM are the most frequently misclassified types. The
classes QPSK and 8PSK are also difficult for the network to
classify. This is due to the similarities between these types of
modulations, which can be seen in the visualizations of the
signals in Figures 3,4 and 5. These classes are persistently
difficult to classify for all networks used in this investigation.

The performance of tanh was relatively worse than ReLu
in the CNN model. Test accuracy for this method is 78%.
The loss plot shown in figure 12 is slightly more noisy than
the plot for relu and indicates that the training ended due to
early stopping after 45 epochs. This could mean that with the
tanh activation function the model is more prone to overfitting.
The confusion matrix for the CNN model with tanh activation

4

Fig. 10. CNN-Relu Training and Validation Loss

Fig. 11. CNN-ReLU Confusion Matrix

function is seen in figure 13. The diagonal accuracy is still
relatively high but there are more misclassifications across all
modulations types. This causes the confusion matrix to appear
more fuzzy. Moving forward relu is used as activation in the
ResNet model due to these findings.

B. Residual Convolutional Neural Network

The overall test accuracy obtained with the ResNet model
is 81%. This is slightly less than the results for the basic CNN
with ReLu. The loss plot for the ResNet model is shown in
figure 14. The training proceeded for 100 epoch and did not
stop from early stopping. The validation loss clearly diverges
from the training loss, which is indicative of overfitting. The
ResNet model has 5x the number of parameters than the
basic CNN model. Models with more parameters require more
data to properly train those parameters. For this reason larger
models are prone to overfitting. Since the same amount of

Fig. 12. CNN-Tanh Training and Validation Loss

Fig. 13. CNN-Tanh Confusion Matrix

training data is used as with the smaller CNN network, it
makes sense that overfitting is observed in this case.

The confusion matrix for the reset model is shown in
figure 15. The prominent diagonal shows that the accuracy is
relatively high for most classes, but the same difficulties are
observed as with the basic CNN. The 16QAM and 64QAM
modulation types are often confused, as are the QPSK and
8PSK modulation types. Overall the basic CNN has better
performance, showing that sometimes simpler solutions are
more effective especially when datasets are limited. Please
note that we did attempt a larger dataset towards the end,
however datahub would crash on loading dataset above 4GB.

C. Effect of frequency error on CNN

We used a nominal value of MaxClockcOffset and Max-
Doppler in creating synthetic data as shown in Table I. Real
life scenarios typically have higher values of frequency error.

5

Fig. 14. ResNet Training and Validation Loss

Fig. 15. ResNet Confusion Matrix

We chose milder conditions of frequency error for establishing
a baseline performance of a model and test it on data of higher
frequency error. In this test, I create a new test data set of 1000
samples each class with varying freqeuncy errors and test it
on a pretrained CNN model. The results of the test can be
seen in the confusion matrix in Figure 16. Notice that a lot
of results are wrongly predicted as 64 QAM or 16QAM. To
understand this, lets look at an intuition behind what a CNN
learns.

One way of looking at what a CNN learns would be that
it first makes a transformation of the IQ samples to a 2D
polar co-ordinate system similar to Figure 1 and is classifying
the frames in this transformed domain. Thus one would have
1024 points on a 2D plane each of them affected by non-linear
multiplicative correlated noise effects. These channel effects
can be thought of spreading the constellation points, that are
initially in a regular grid as shown in Figure 1, into an irregular

Fig. 16. Confusion matrix for data with 500Hz Frequency error.

Fig. 17. Clean signal affected by channel followed by freqeuncy errors.

cluster of points. The frequency error additionally rotates the
clusters continuously with respect to time. In equation 6 where
r(t) is the received signal and r′(t) is the received signal
with phase rotation due to frequency errors, notice that r(t) is
multiplied by a value with unit amplitude but a a phase that is
constantly changing at a rate proportional to ferr. The phase
is changing continuously since t is changing. In Figure 17
illustrates our explanation above in four sub plots. We are
initially seeing the clean constellation points coming out of
a transmitter, followed by channel distortion with minimal
frequency errors. If we assume higher frequency errors on top
of the distortion, what we see are the rotations of the cluster as
shown in the bottom subplots of Figure 17. In a single frame of
5 ms, we will have points that have rotated upto 180 degrees.
Thus when there is a high frequency error, what the CNN
receives will be 1024 points where each sample is rotated

6

Fig. 18. Confusion matrix for classes without QAM modulation types.

slightly more than the previous sample. Thus it will be a
dense cloud spread throughout the constellation diagram. This
will mostly resemble the densely packed grid of modulation
types such as 16QAM and 64QAM. Thus in cases of higher
frequency errors, it makes sense that phase modulation types
are most affected and also that a lot of them are wrongly
classified as QAM types.

r′(t) = r(t)ejθerr , θerr = 2πferrt, (6)

D. Performance of CNN using a subset of classes

When we trained and tested the CNN, from the results in
Figure 11 we noticed that the top two mis-classified classes
were 16 QAM and 64 QAM. We wanted to study whether the
neural network performance can improve if we separately train
and test them on non-QAM classes and QAM only classes.
The reason was that we wanted to understand if learning
other modulation types is somehow confusing our model and
making it miscasslify QAM and vice versa.

1) No QAM modulation - CNN performance: The overall
test accuracy for a CNN trained on 11 versus 9 classes
improved from 82% to 86%. Notice the confusion matrix in
Figure 18. The confusion matrix for the 9 classes looks as
though it is taken out of the larger confusion matrix for 11
classes as shown in Figure 11, thus clearly indicating that the
CNN classification of non-QAM types is not much affected
by QAM types.

2) Only 16 and 64QAM - CNN performance: The overall
test accuracy for a CNN trained and tested on only 16QAM
and 64QAM is 56%. Notice the confusion matrix in Figure 19.
The 2by2 confusion matrix looks as though it is carved out of
the larger 11×11 confusion matrix in Figure 11. Thus we can
conclude by saying that the way CNN learns to classify QAM
modulation types is delineated from the non-QAM modulation
types, under low frequency error conditions.

E. Effect of frame misalignment on CNN

In real life scenarios say particular bandwidth has QPSK
modulation data, it can suddenly change to 16QAM. We will

Fig. 19. Confusion matrix for classes with QAM modulation types.

not know where the boundary in time is, for this transition. It is
therefore an interesting problem to study how CNN behaves
when we supply it with a signal of a particular modulation
type for one part of the frame and another modulation type
for the rest. In this test, we pick a pair of modulation types
say for example BPSK and GFSK and we generate a frame
that contains say 5% of BPSK and 95% of GFSK i.e. first
52 samples are BPSK and next 972 samples are GFSK. See
Figure 20 for an illustration of how a misaligned frame is
constructed. We slide this percentage from 5% to 95% in steps
of 5. For each of the frame thus calculated, we test the data on
pretrained CNN. We calculate the normalized scores and make
a note of the scores belonging to the two classes in focus. For
each pair we thus get 19 frames of data and thus 19 readings of
normalized scores per class. We also add the normalized scores
for the two class and get a sum of scores number. We thus have
three set of readings one for each class and one for the sum
of scores, all of which we plot against percentage contribution
from the first class. We repeat this test for analog modulation
types FM and SSB-AM, phase modulation types QPSK and
8PSK, QAM modulation types 16QAM and 64QAM. This test
was run on MATLAB using a pretrained CNN network loaded
from MATLAB [20], that is supposed to almost the same as
our model. We were running into issues when we tried testing
it in python and due to shortage of time, we decided to take
this approach.

Please note that the normalized scores can also be thought
of percentage of contribution of each class to a frame. The
expectation of the test results is that, if a signal contains
40% BPSK and 60% GFSK we should get a score of 0.4
for BPSK and 0.6 for GFSK. Thus a plot should ideally
have two straight lines, crossing each other similar to the two
diagonals of a rectangle. Also note that the plots are for one
data frame picked from each class. That particular data frame
picked might not be truly a global representation of the class
data and therefore the results should be looked at accordingly.
Nevertheless, the results are interesting and will definitely add
a good deal to our understanding of the workings of the CNN.

7

Fig. 20. A single frame with first 20% BPSK data and next 80% GFSK data

Fig. 21. Plot of normalized scores for a frame containing BPSK and GFSK

A future work item would be to have a plot averaged over all
data. Also whenever I mention the word contribution in the
sections below, it represents the percentage of the frame a
particular class occupies.

1) BPSK - GFSK: In Figure 21, the score is predominantly
close to zero for BPSK for any contribution up to 30% and the
same is true for the score of GFSK when its contributions are
weak and less than 30%. Beyond 30% contribution points, the
two lines start ramping up steeply and completely dominate the
score when they are close to having 60% contribution. Thus
we can say that the CNN is able to very confidently classify a
signal with a score of almost 1, as long as the contribution is
more than 60%. Also note that the CNN gets confused around
50% region when the total sum is less than 1, which means
that the signal is thought of as partly belonging to some other
class other than the two of interest.

2) FM - AM: In Figure 22, we see results similar to the case
of BPSK-GFSK. However, FM seems to moderately dominate
SSB-AM, meaning the CNN more often thinks the signal is
FM than AM. Also most interestingly, the sum of scores dips
quite a bit to 0.6 at around 35% region of contribution from
AM, thus indicating that the frame is thought of belonging to
some other class.

3) QPSK - 8PSK: In Figure 23, we see that QPSK dom-
inates 8PSK. Please note that this result is counter-intuitive

Fig. 22. Plot of normalized scores for a frame containing FM and SSB-AM

Fig. 23. Plot of normalized scores for a frame containing QPSK and 8-PSK

since QPSK can be thought of as a subset of 8PSK. Thinking
on the same line of argument posed in the subsection titled
Effect of frequency error on CNN, one would be tempted
to think that 8PSK would dominate QPSK. One explanation
could be that QPSK data picked had stronger channel artifacts
and the 8PSK data was relatively cleaner. The results from the
confusion matrix in Figure 18 also indicate that more often
than not, QPSK is wrongly classified as 8PSK and thus this
result should be an anomaly.

4) 16QAM - 64QAM: In Figure 24, we see that 64QAM
dominates 16QAM. This is consistent with our expectations
as detailed previously in our our analysis of QPSK and 8PSK.

VI. CONCLUSION

It has been shown that the performance of neural networks
for the modulation classification task can achieve very high
levels of accuracy over a large range of modulation types
under nominal channel distortions. The convolutional neural

8

Fig. 24. Plot of normalized scores for a frame containing 16QAM and 64-
QAM

network and residual neural network achieved accuracies of
over 80%. Further we were able to use our physics knowledge
of wireless communications to pry open the black box of CNN
and infer the following. In the frequency error tests, we noticed
that phase sensitive modulation types are most vulnerable
to frequency errors and we were also able to provide a
strong reasoning on why lots of non-QAM modulation types
are misclassified as QAM types. From our frame boundary
misalignment tests, we understood that similar modulation
types are more prone to being misclassified as one another in
general. Further, in the tests done using a subset of classes, we
learnt that the way CNN learns to classify QAM modulation
types is delineated from the non-QAM modulation types,
under low frequency error conditions.

VII. CONTRIBUTIONS

Venkatesh Sathyanarayanan: Co-ordination among team
members, Testing of frequency error effects on CNN, Frame
misalignment test and subset of classes test

Jahya Burke: implemented the basic CNN network model
in pytorch with Rui. Implemented the ResNet model. Created
and ran training and testing code for CNN with tanh/relu and
resnet.

Rui Shang: Implemented the basic CNN network model in
pytorch with Jahya. Implemented LSTM but not get it working
yet.

Richard Bell: Generated test and training data. Tested frame
misalignment performance using our NN implementation.
Searched for and reviewed most references for final paper.

REFERENCES

[1] W. Peterson, T. Birdsall, and W. Fox, “The theory of signal detectability,”
Transactions of the IRE Professional Group on Information Theory,
vol. 4, no. 4, pp. 171–212, Sep. 1954.

[2] R. C. Davis, “The detectability of random signals in the presence of
noise,” Transactions of the IRE Professional Group on Information
Theory, vol. 3, no. 3, pp. 52–62, March 1954.

[3] S.-Z. Hsue, “Automatic modulation classification using zero crossing,”
IEE Proceedings F (Radar and Signal Processing), vol. 137, pp.
459–464(5), December 1990. [Online]. Available: https://digital-library.
theiet.org/content/journals/10.1049/ip-f-2.1990.0066

[4] K. Kim and A. Polydoros, “Digital modulation classification: the bpsk
versus qpsk case,” in MILCOM 88, 21st Century Military Communica-
tions - What’s Possible?’. Conference record. Military Communications
Conference, Oct 1988, pp. 431–436 vol.2.

[5] J. E. Hipp, “Modulation classification based on statistical moments,”
in MILCOM 1986 - IEEE Military Communications Conference:
Communications-Computers: Teamed for the 90’s, vol. 2, Oct 1986, pp.
20.2.1–20.2.6.

[6] J. E. Whelchel, D. L. McNeill, R. D. Hughes, and M. M. Loos,
“Signal understanding: an artificial intelligence approach to modulation
classification,” in [Proceedings 1989] IEEE International Workshop on
Tools for Artificial Intelligence, Oct 1989, pp. 231–236.

[7] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, 2016, pp. 265–283. [Online]. Available: https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[8] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch: Tensors
and dynamic neural networks in python with strong gpu acceleration,”
PyTorch: Tensors and dynamic neural networks in Python with strong
GPU acceleration, vol. 6, 2017.

[9] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR, vol.
abs/1502.03167, 2015. [Online]. Available: http://arxiv.org/abs/1502.
03167

[12] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics,
ser. Proceedings of Machine Learning Research, Y. W. Teh and
M. Titterington, Eds., vol. 9. Chia Laguna Resort, Sardinia,
Italy: PMLR, 13–15 May 2010, pp. 249–256. [Online]. Available:
http://proceedings.mlr.press/v9/glorot10a.html

[13] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” CoRR, vol. abs/1505.00853,
2015. [Online]. Available: http://arxiv.org/abs/1505.00853

[14] T. J. O’Shea and J. Corgan, “Convolutional radio modulation
recognition networks,” CoRR, vol. abs/1602.04105, 2016. [Online].
Available: http://arxiv.org/abs/1602.04105

[15] B. Kim, J. Kim, H. Chae, D. Yoon, and J. W. Choi, “Deep neural
network-based automatic modulation classification technique,” in 2016
International Conference on Information and Communication Technol-
ogy Convergence (ICTC), Oct 2016, pp. 579–582.

[16] T. J. O’Shea and J. Hoydis, “An introduction to machine learning
communications systems,” CoRR, vol. abs/1702.00832, 2017. [Online].
Available: http://arxiv.org/abs/1702.00832

[17] U. Satija, M. S. Manikandan, and B. Ramkumar, “Performance study of
cyclostationary based digital modulation classification schemes,” in 2014
9th International Conference on Industrial and Information Systems
(ICIIS), Dec 2014, pp. 1–5.

[18] K. Kim, I. A. Akbar, K. K. Bae, J. sun Urn, C. M. Spooner, and J. H.
Reed, “Cyclostationary approaches to signal detection and classification
in cognitive radio,” in Proceedings of the 2007 2Nd IEEE International
Symposium on New Frontiers in Dynamic Spectrum Access Networks.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 212–215.
[Online]. Available: http://dx.doi.org/10.1109/DYSPAN.2007.35

[19] U. Satija, M. Mohanty, and B. Ramkumar, “Cyclostationary features
based modulation classification in presence of non gaussian noise
using sparse signal decomposition,” Wireless Personal Communications,
vol. 96, no. 4, pp. 5723–5741, Oct 2017. [Online]. Available:
https://doi.org/10.1007/s11277-017-4444-4

9

[20] MATHWORKS, Modulation Classification with Deep Learn-
ing, 2019 (accessed June 12, 2019). [Online].
Available: https://www.mathworks.com/help/deeplearning/examples/
modulation-classification-with-deep-learning.html

[21] T. J. OShea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based
radio signal classification,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 1, pp. 168–179, Feb 2018.

[22] O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of auto-
matic modulation classification techniques: classical approaches and new
trends,” IET Communications, vol. 1, no. 2, pp. 137–156, April 2007.

[23] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[24] DeepSigIO, Modulation Classification with Deep Learning, 2019
(accessed June 13, 2019). [Online]. Available: https://www.deepsig.io/
datasets

10

