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      Abstract — Automatic sound recognition has received 

heightened research interest in recent years due to its many 

potential applications. These include automatic labeling of 

video/audio content and real-time sound detection for robotics. 

While image classification is a heavily researched topic, sound 

identification is less mature. In this study, we take advantage 

of the robust machine learning techniques developed for image 

classification and apply them on the sound recognition 

problem. Raw audio data from the Freesound Dataset (FSD) 

provided by Kaggle is first converted to a spectrogram 

representation in order to apply these image classification 

techniques. We test and compare two approaches using deep 

convolutional neural networks (CNNs): 1.) Our own CNN 

architecture 2.) Transfer learning using the pre-trained VVG19 

network. Using our self-developed architecture, we achieve a 

label-weighted label-ranking average precision (LWLARP) 

score and top-5 accuracy of 0.813 and 88.9%, respectively, 

when predicting 80 sound classes. 

      Index Terms— Machine Learning; Audio Recognition; Mel 

Spectrogram; CNNs 

I. INTRODUCTION 

Sound is one of the five primary senses humans use to 

understand the world around them. Many of today’s 

autonomous systems are predominantly vision based [1], and 

do not take advantage of the additional environment 

information provided from audio. Developing intelligence that 

is able to process both image and audio data concurrently 

would provide autonomous systems a deeper understanding of 

their environment and allow them to interact with their 

surroundings in a more meaningful way.  

Sound is defined as a vibration that propagates through a 

medium (air, water, etc.) as an audible compression wave [2]. 

These physical vibrations can be converted to an electrical 

signal using a transducer such as a microphone. This signal is 

then digitized in order to carry out various preprocessing and 

machine learning techniques. Sound waves are described by 

physical quantities including frequency, amplitude, and 

direction. We look to extract these properties and utilize them 

for recognizing certain sounds.  

Audio signals are inherently one-dimensional (amplitude 

over time). We look to transform these signals into a more 

descriptive representation that better illustrates the previously 

mentioned quantities. In this study, we propose the use of the 

Mel spectrogram, a transformation that details the frequency 

composition of the signal over time [3]. Since this results in an 

image representation of the audio signal, the Mel spectrogram 

is the input to our machine learning models. This allows us to 

make use of well-researched image classification techniques. 

The convolution neural network (CNN) is a powerful deep 

learning model that can learn a feature hierarchy for images. 

Since we are interested in predicting 80 different categories of 

sound, our model must be able to learn a high number of 

features in order to recognize specific sounds. In this study, we 

focus on two approaches to sound recognition using CNNs. In 

the first, we construct our own CNN architecture and fully train 

all the layers using our dataset. Second, we make use of transfer 

learning by utilizing the pre-trained VGG19 network, and only 

train the last few layers using our data. 

The rest of the paper is organized as follows. In section 

II, we compare our proposed approach to previous work 

conducted on this topic. Section III details the dataset and our 

preprocessing methods. In section IV, our models used for 

sound recognition are described in detail. Section V shows the 

results for both of the two approaches. Finally, we conclude the 

paper in section VI. 

 

II. RELATED WORK 

Previous work focused on audio recognition is described 

in [4-8]. The study conducted in [4] uses more traditional 

methods like k-NN and naïve Bayes to perform audio 

classification, while [5] shows how modern CNNs can be used 

to classify audio. The paper focused on CNNs obtained higher 

accuracy for classification. The biggest weakness from [4] and 

[5] is their lack of preprocessing, as their methods primarily 

work directly with the raw audio data. Based on these results, 

we determined additional preprocessing was necessary to 

accurately classify audio using CNNs. 

 

https://scikit-learn.org/stable/modules/model_evaluation.html#label-ranking-average-precision


It is well-known that CNNs have high performance for 

image classification. In [6], the authors showed how popular 

CNN architectures, such as AlexNet, VGG, Inception, and 

ResNet, performed when used for audio classification. Their 

approach involved decomposing the audio time series with a 

short-time Fourier transform to create a spectrogram which was 

used as an input to the CNN. The problem we faced with many 

of these models is that they are large and consist of many 

trainable parameters. This approach worked for [6] since their 

training dataset had 70,000,000 samples. Since our dataset is 

on the order of thousands of samples, it seemed unlikely that 

these large networks could be trained with our limited data. 

One approach to get around this is transfer learning. This 

involves using a pre-trained network, freezing most of the layer 

weights, and only retraining the last few layers on our audio 

training data. This is one of the approaches we pursued for this 

project. If we wanted to fully train a network with our data, a 

network such as the one discussed in [7] would be more 

appropriate. This network was designed for a dataset with 8732 

entries and 10 classes, as opposed to the 70,000,000 entries and 

30,871 classes in [6]. This inspired our second approach to 

classifying our dataset, which involved constructing a smaller 

architecture. 

[8] tries to interpret and explain how CNNs can classify 

audio signals. Using both spectrogram and raw audio inputs, 

CNNs are trained and a layer-wise relevance propagation 

(LRP) is used to see how the models select features and make 

decisions. They showed the unique regions on the input signal 

that correspond most strongly to that particular output label. 

The results of the paper also confirm that spectrogram inputs 

lead to higher accuracy over raw audio inputs.  

The results of these previous works influenced our 

proposed method to audio classification. For preprocessing, the 

Mel spectrogram is used to represent the audio signal in a more 

descriptive manner. Transfer learning and a smaller CNN 

architecture are implemented to accurately classify our audio 

data. The following section details our raw audio preprocessing 

and the Mel spectrogram. 

 

III. DATASET & FEATURES 

The popular machine learning and data science website 

Kaggle has provided two datasets containing labeled audio 

clips as part of an ongoing competition. The first is the 

Freesound Dataset (FSD) [9], which is a collection of 

crowdsourced annotations of 297,144 audio clips. A subset 

(4,970) of these audio clips comprise the competition’s curated 

dataset, which have been cleaned and validated to remove label 

noise. The second dataset is the Yahoo Flickr Creative 

Commons 100M dataset (YFCC) [10]. The YFCC dataset 

contains 99,206,564 photos and 793,436 videos. The 

soundtracks of a subset (19,800) of YFCC videos comprise the 

competition’s noisy dataset. All audio data were sampled at 

44.1kHz and range from 0.2 - 30 s in length. 
In this study, we chose to focus on the curated dataset in 

order to determine whether our proposed method could work 

with clean data. This resulted in 4,970 labeled audio clips in 

which 80% were reserved for training and the remaining 20% 

for testing. There is a total of 80 sound categories, 

corresponding to everyday sounds such as applause, a dog bark, 

a motorcycle, and a raindrop. Using this subset, each raw audio 

waveform was first processed by trimming the silent sections 

of the clip and then either further trimmed or zero-padded to 

equal a length of 2 seconds. This is necessary because our 

models require a static input dimension, and 2 seconds is the 

average length of the audio data. Next, each processed clip was 

transformed into its Mel spectrogram representation. A 

spectrogram is a visual depiction of a signal’s frequency 

composition over time. The Mel scale provides a linear scale 

for the human auditory system, and is related to Hertz by the 

following formula, where m represents Mels and f represents 

Hertz: 

𝑚 = 2595 𝑙𝑜𝑔10 (1 +  
𝑓

700
) 

The Mel spectrogram is used to provide our models with 

sound information similar to what a human would perceive. 

The raw audio waveforms are passed through filter banks to 

obtain the Mel spectrogram. After this process, each sample has 

a shape of 128 x 128, indicating 128 filter banks used and 128 

time steps per clip. Figures 1 and 2 display a raw audio clip and 

the corresponding Mel frequency representation, respectively. 

Our models look to learn features from this representation, and 

their architectures are described next. 

IV. PROPOSED METHOD 

In this section we present our two approaches to the audio 

classification problem. The different model architectures and 

components are discussed in detail. 

A. Self-Developed CNN 

 CNN has been very successful in various tasks due to 

its unique layers. It is usually composed of convolution layers 

and pooling layers. A brief description of these layers is shown 

below. We choose CNN mainly because of its ability to analyze 

Figure 1: Raw audio signal 

Figure 2: Corresponding Mel spectrogram 



spatial invariant features and using a relatively small number 

of parameters. 

 The convolution layer uses filters to translate over the 

input and then takes the inner product before adding the bias. 

Each filter has its own set of weights and bias. The weights and 

bias are the only parameters to train. Each layer can have 

multiple filters to learn different features. This gives CNN the 

benefits of relatively small number of parameters to learn and 

being able to learn spatial invariant features.  

The pooling layer is used to reduce the dimensionality of 

the subsequent layers. The commonly used pooling techniques 

are maxpooling and average pooling, where maxpooling takes 

the maximum value of the pooling window and average 

pooling takes the average value.  

For hidden layers in the model, we use Relu activation 

function. It has the form 𝑅𝑒𝑙𝑢(𝑥)  =  𝑚𝑎𝑥(0, 𝑥). The non-

linearity of the expression eliminates the gradient vanishing 

problem. For the output layer, we use softmax activation 

function for classification. The function squashes a vector into 

range (0,1) that all the element adds up to 1. This can be 

interpreted as the probabilities for each element.   

 
Since it is a multi-label classification task, we use binary 

cross-entropy loss for training the model.  Binary cross-

entropy loss calculates the loss for each class for a given 

sample independently. For each label, it evaluates the loss 

using the current class vs the rest. The expression is shown 

below: 

 
where s1 is the current score. 

We use Adam optimizer for stochastic gradient descent. 

Adam optimizer uses variable learning rate so that the step 

size is invariant to the magnitude of the gradient, which is a 

typical problem encountered in traditional stochastic gradient 

descent.  

A visualization of the model is shown below:  

B. Transfer Learning 

Transfer learning is a machine learning technique where 

a model is constructed and trained with a set of data then 

repurposed for a different task. It has the benefit of shortening 

training time and improve performance.  

VGG19 is a large-scale CNN based model trained with 

Imagenet data. It is very successful for image classification. 

applying VGG19 model for transfer learning in other image 

classification tasks, it is common to only retrain the fully 

connected layers. However, for our project, we are repurposing 

the structure for audio classification. We expect the high-level 

features learned in the last few convolution layers will be 

different between audio and image data. Thus, we will be 

retraining the last convolution block (containing 4 convolution 

layers) and the fully connected layers. 

 

V. RESULTS 

  For this project, the main metric we use to evaluate our 

models’ performance is label-weighted label ranking average 

precision (LWLRAP). This measures the average precision of 

retrieving a ranked list of relevant labels for each test clip 

(i.e., the system ranks all the available labels, then the 

precisions of the ranked lists down to each true label are 

averaged). The novel "label-weighted" part means that the 

overall score is the average over all the labels in the test set, 

where each label receives equal weight (by contrast, plain lrap 

gives each test item equal weight, thereby discounting the 

contribution of individual labels when they appear on the 

same item as multiple other labels). [11] 

  We also use top-5 categorical accuracy as a reference. 

This is not an accurate measure of the performance, since it is 

a multi-label classification problem. However, it will offer a 

more direct and easier to interpret measurement. From all 

4970 samples we used for training and testing, only 1 sample 

has more than 5 labels. Thus, ideally the first ground-truth 

label(when there are multiple labels, the metric selects the 

first label as the ground-truth) should be in the top 5 of the 

model’s predictions. 

The classification performance on the test set for different 

models is shown below. 
Models Epochs LWLRAP Top 5 Categorical 

Accuracy 

Deep CNN 400 0.813 88.9% 

Transfer Learning 100 0.797 88.5% 

VGG19  (no weight) 400 0.737 82.9% 

 
Figure 2: VGG19 network with last layers (red boxes) retrained 

Figure 2: Self-developed CNN architecture 



Table 1. Classification Results for Models 

The Deep CNN has the best performance in terms of 

classification accuracy. It is a result of iterating through 

hyperparameters to find the balance between complexity and 

overtraining. As seen above in the model introduction section, 

our deep CNN model is relatively small compared to popular 

structures that have been implemented successfully in various 

tasks (e.g. Resnet, Inception…) This is because of the main 

difficulty for this project, getting the best performing model 

with limited number of data.  

The transfer learning performs similarly to the deep CNN 

model in terms of accuracy. This confirmed our expectation 

that the lower level features learned by the convolution layers 

from image data can also be applied to the audio data. Although 

the accuracy of the transfer learning model is slightly worse 

than that of the CNN model, the training time is drastically 

reduced, 100 epochs compared to 400. We also train the 

VGG19 model without pretrained weights for comparison. 

VGG19 is a large-scale network, and as expected, the 

performance is the worst of the three. There is not enough data 

for the model to perform optimally.  

We can also analyze how the models perform for each 

category. Tables below shows the top-5 best and worst 

performance for each model. 

Class Precision Recall F-1 score 

Bass drum 1.00 0.94 0.97 

Gurgling 1.00 0.89 0.94 

Finger snapping 1.00 0.88 0.94 

Harmonica  1.00 0.86 0.92 

Hi-hat 1.00 0.84 0.91 

Table 2. Top 5 best classification performance for deep CNN     

Class Precision Recall F-1 score 

Chirp and tweet 0.17 0.17 0.17 

Walk and footsteps 0.5 0.1 0.17 

Squeak 0.5 0.12 0.2 

Sink (filling/washing) 0.5 0.17 0.25 

Water tap and faucet 0.5 0.2 0.29 

Table 3. Top 5 worst classification performance for deep 

CNN 

 From table 2, we can observe that the model 

performs very well at classifying instruments’ sound. This is 

the result of well-recorded instruments’ sounds have distinct 

frequency features. After we preprocessed the raw audio using 

mel-spectrogram, the model can learn these features easily.  

 In table 2, we can observe the classes that have bad 

performances are sounds with wide range of variability and 

easy to be confused with other sounds, even for human ears. 

For example, without context it is easy to confuse ‘sink 

filling’ and ‘water tap’. The low recall rate indicates that a lot 

of the samples are unlabeled, likely caused by labeled as 

another similar label. It is also difficult to check confusion 

between classes because of the nature of multilabel 

classification.  

Class Precision Recall F-1 score 

Bass drum 0.94 0.94 0.94 

Kids speaking 0.95 0.9 0.92 

Harmonica 1.00 0.86 0.92 

Hi-hat 0.94 0.89 0.92 

Finger snapping 1.00 0.84 0.91 

Table 4. Top 5 best classification performance for VGG19 

transfer learning 

Class Precision Recall F-1 score 

Walk and footstep 0.0 0.0 0.0 

Squeak 0.33 0.12 0.18 

Fill with liquid 0.5 0.18 0.27 

Scissors 0.44 0.24 0.31 

Sink (filling/washing) 0.4 0.33 0.36 

Table 4. Top 5 worst classification performance for VGG19 

transfer learning 

From table 4 and 5, we can observe that the transfer 

learning model performs similarly to the deep CNN model. 

They share most of the classes for both best and worst 

classification performance. There are a few classes that 

perform differently. It also shows good classification 

performance with instruments’ sound and bad performance 

with easily confused everyday sounds.  

VI. CONCLUSION 

Our proposed method details a robust machine learning 

approach to classify audio clips. Using our self-developed 

CNN architecture, we achieve a LWLRAP score of 0.813 and 

a top-5 accuracy of 88.9%, when predicting 80 sound classes 

on the validation set. Additionally, we achieve similar 

performance with the VGG19 network using transfer learning 

with a LWLRAP score of .797 and a top-5 accuracy of 88.5%. 

There is future work that can be done to further improve 

our sound recognition system. In order to develop a more 

powerful system, larger/deeper neural networks could be 

implemented. This would require a larger amount of training 

data, meaning we would need to utilize the noisy dataset 

provided by YFCC. While this dataset is harder to work with 

and its labels are less reliable, using this data would likely help 

generalize the system to work in noisier conditions. Techniques 



such as data augmentation could also be used in order to 

artificially construct more training data. A future application of 

interest is to use this system in conjunction with a computer 

vision system for automatically extracting information from 

video clips. 
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