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Abstract— Influenza is a highly contagious acute respiratory
illness recognized since ancient times. Better epidemic predic-
tions would set up more appropriate public health prevention
and intervention strategies in temperate cities, like the New
York City. After several literature works, we found epidemics
occur mainly during the season months with abnormal changing
of temperature, precipitation, UV radiation, and wind speed.
Thus, we built some models, Random Forest, Linear Regression,
Gradient Boosting, K-Nearest Neighbors Algorithm, Deep Neu-
ral Network, to predict the break of influenza. The result shows
that our model could predict the influenza to some extent, with
more enough time we also want to use more weather stations
data to train and adjust the models, making the results become
better.

I. INTRODUCTION

In the United States, influenza is one of the most sig-
nificant diseases in humans, generating worldwide annual
epidemics, which result in about three to five millions cases
of severe illness, and about 250,000 to 500,000 deaths
[1]. Therefore, improving influenza knowledge about key
epidemiological parameters such as survival, transmission
and reproduction in hosts is essential to upgrade surveillance
network and to develop more accurate predicting models.
Better epidemic predictions would set up more appropriate
public health prevention and intervention strategies.

Epidemics occur mainly during the winter season months
in temperate cities (like the New York City) [2-4] unlike in
tropical and sub-tropical cities where they generally happen
during the rainy season [5-8]. These differences suggest a
climate impact on influenza spread. Climate might affect
influenza diffusion (onset, duration, size) by impacting in-
dividuals contact rates (frequency and duration), population
immunity and virus survival outside human body. Various
climatic factors such as temperature, humidity, rainfalls, UV
radiation, sunshine duration and wind speed might have an
impact on influenza spread. In temperate countries, humidity
and temperature might play an important role in influenza
spread. Several laboratory works showed that a cold and dry
weather promotes a higher virus survival outside human body
and a better transmission [9]. Another theory suggests a link
between vitamin D secretion and influenza immunity, which
is supported by experiments [10, 11]. As UV radiation is
involved in vitamin D production, a lack of UV radiation
in winter, for temperate countries, leads to a reduction of
vitamin D production and might boost influenza epidemics
[12, 13]. Dowell also suggested a role of dark/light cycles
and photoperiod on the immune systems caused by melatonin
fluctuations [14]. Thereby UV radiation and sunshine dura-
tion might have an indirect effect on influenza infections.
Finally, in China, Xiao et al. [15] proposed that a low

wind speed contribute to influenza spread. In fact, a strong
wind speed may have a dispersive effect on influenza in the
environment limiting its diffusion.

Our goals are to predict the influenza incidents in the
future years of New York City basing on the weather data.
For instance, we are interested in the number of incidents in
the next year. And also, we want to know which month in the
year would have possible outbreaks. Using these predictions,
we can make some recommendations to the government and
do some prevention.

II. RELATED WORK

There are three immunological types of influenza virus:
A, B, C. The type A virus is highly variable and shows con-
tinuous antigenic variation and is a major cause of frequent
epidemics and periodic pandemics. It also infects animals
and birds. Type B virus shows antigenic variation to a lesser
degree which results in epidemics, whereas type C appears to
be antigenically stable and causes sporadic upper respiratory
tract illness. It is estimated that annually around 0.5-1 million
people die and 600 to 1,200 million people become sick due
to influenza epidemics worldwide (Layne et al, 2001). Thus
the disease affects a large segment of the world population
resulting in significant mortality, morbidity and economic
loss. The World Health Organization has established a global
network of 112 national influenza centers in 83 countries
and regularly reports on the global influenza situation and
recommends current updated strains for use in the influenza
vaccine. Presently antigenic variant strains of influenza type
A(H1N1), A(H3N2) and type B viruses are causing frequent
epidemics in humans globally. Surveillance is essential for
identifying the new variants of these types and subtypes for
the selection of vaccine strains.

As a part of the influenza program, a study was initiated
at the National Institute of Virology (NIV) Pune City, Maha-
rashtra State, India, since 1976 which has been recognized
as the National Influenza Center since 1980 by the WHO.
During the course of this continuous surveillance of influenza
in Pune City between 1976 to 2002, NIV investigated several
outbreaks of influenza and isolated 43 antigenic variant
strains of influenza types A and B, which included many
global epidemics strains (Rao et al, 1979, 1982; Rao and
Banerjee 1993; Rao, 2003). The present communication
reports the variant strains of influenza type A (H3N2) and
type B isolated during influenza outbreaks in the year 2003
from Pune City.



III. DATASETS AND FEATURES

A. Datasets and Prepossessing

We used daily weather data from National Oceanic and
Atmospheric Administration(NOAA), which contains global
surface summary of the day from New York City Central
Park weather station. The influenza data we used is the
weekly influenza test report from Centers for Disease Control
and Prevention. To investigate the most recent potential
relationship, we choose to use datasets for the time period
from 2011 to 2018.

For the prepossessing of the raw data, we first treat with
the missing data, replacing them with mean values. Then we
aggregated the daily weather data frame into weekly data
frame, and merged the weekly weather data and influenza
data into one.

The prepossessed data contains:
•year: from 2011 to 2018
•week: from 1 to 52 or 53
•temp weeklyMin: weekly minimum temperature
•temp weeklyMax: weekly maximum temperature
•temp weeklyMean: weekly mean temperature
•slp weeklyMean: weekly mean sea level pressure
•wdsp weeklyMedian: weekly median wind speed
•wdsp weeklyMax: weekly maximum wind speed
•prcp weeklyMean: weekly mean precipitation
•uv time: weekly mean uv time
•ILITOTAL: weekly reported influenza infections

B. Features and Visualizations

Before we get started to develop models, we created visu-
alizations of the features to explore the potential relationship
between them. The pair plot of all features is shown in Figure
1. We can find that some features are highly linearly related,
so that we could choose to use one of them in our models.

Fig. 1: Pairplot of all features

We also plotted a heatmap of features and influenza
infections to find the correlation influence between different

features and influenza infection numbers. From fig 2, we
can find that the influenza infection numbers are more
related to features: slp weeklyMean, wdsp weeklyMedian,
wdsp weeklyMax, prcp weeklyMean.

Fig. 2: Correlation heatmap of features and influenza infec-
tions

IV. METHODS

A. Linear Regression

We tried linear regression model, which is a simple but
effective model compared with the baseline, to predict rating
from a combination of various features: f eature1, f eature2,
..., f eaturen. We created an one dimension array for the
prediction. The first entry was the bias θ0, each other entry,
θ1, θ2, ... θn, represented the parameters for other features.

f = θ0 +θ1 ∗ f eature1 +θ2 ∗ f eature2 + ...+θn ∗ f eaturen
(1)

In this method, we intended to fit a model, minimizing
the residual sum of squared distance between the predicted
values and true values in the training data. After inputted our
training data, we are able to calculate the optimal parameters
in the equation above.

B. Random Forest Regression

Random forest is an ensemble model: using decision trees
as individual models and bagging as the ensemble method.
We randomly chose samples from the training data to build
trees, and then randomly selected subsets of features to
generate the best split. Given a training set X = x1, x2, ..., xn,
with output Y = y1, y2, ..., yn. The random forest was built,
consisting of B multiple such random decision trees: for b =
1,...,B, we train a regression tree fb on Xb, Yb. To predict the
influenza infections, we output the mean predicted regression
outputs of the trees in the forest.

f̂ =
1
B

B

∑
b=1

fb(x′) (2)



C. Gradient Boosting

The idea of gradient boosting is an ensemble of week
prediction models, typically decision trees. We set up the
differentiable loss function:

L(y,F(x)) = ∑(yi−F(xi))
2 (3)

For gradient boosting, we started with a initialize decision
tree on data:

F0(x) = argmin
γ

n

∑
i=1

L(yi,γ) (4)

For iteration time from m = 1 to M, we set the measure-
ment of residuals rim as in eq.5, and fitted the updated tree
hm(x) to rm.

rim =−
[

∂L(yi,F(xi))

∂F(xi)

]
F(x)=Fm−1(x)

(5)

Then we solve for the multiplier γm to update the model:

γm = argmin
γ

n

∑
i=1

L(yi,Fm−1(xi)+ γhm(xi)) (6)

Fm(x) = Fm−1(x)+ γmhm(x) (7)

D. K-Nearest Neighborhood

For the k-nearest neighborhood(knn) model, we did the
prediction through finding out the closest relationship be-
tween training data and testing data. The measurement of
relationship or similarity is based on the inverse of their
distance.

For the training data, we have pairs (x1,y1), (x2,y2), ...,
(xn,yn), given the measurement of similarity, we reordered
the training data according to the distance between the target
test data.

We set k as the k nearest point to the target data: the k
most similar data point. After trying to set k from 1 to 20,
we found that when k=8, we can get the lowest RMSE in the
validation data. In our knn model, we set k=8: we picked the
8 most similar weekly weather data compare to the target one
and calculate the average infection number of these similar
weeks as in eq.8.

f (y = j | X = x) =
1
k ∑

i∈A
I(yi = j) (8)

E. Deep Neural Network

In our deep neural network model, we designed a network
consists of one input layer, two hidden layer and the output
layer as shown in fig. 3.

The dimension of input x of the neural network model is
415, and we trained the two layer of the model with ReLU
function:

f (x) = max(x,0) (9)

Let W1 be the weight matrix of the first layer, b1 be the bias
of the first layer, W2 be the weight matrix of the second layer,
and b2 be the bias of the second layer. The parameters W1,

Fig. 3: Deep Neural Network Model

W2 are learned with stochastic gradient descent. We derived
them with chain rule. We should compute the output of each
layer

hW,b(x) = ReLU(Wx+b) (10)

We trained our neural network using batch gradient de-
scent descent: first perform a feedforward pass, computing
the activation for layers until the output layer. And we
repeatly took the partial derivatives for the cost function
J(W,b) to reduce the cost function.

∂

∂Wi j
J(W,b;x,y) = al

jδ
l+I
i (11)

∂

∂bi
J(W,b;x,y) = δ

l+I
i (12)

V. RESULTS

Fig. 4: Regression result of Linear Regression model

Linear regression has the worst performance on test set.
This is reasonable because the prediction can not be linear.

Fig. 5: Regression result of Random Forest model



Random forest regression has a really decent result. It fits
the training data pretty good. Even though it did not predict
the future accurately, it predicted the outbreak successfully.

Fig. 6: Regression result of Gradient Boosting model

Gradient Boosting has the best result on both test set and
training set. It has the lowest RMSE and fits the data best.

Fig. 7: Regression result of KNN model

The performance of the KNN model is not bad. Although
it has a larger RMSE value than Gradient Boosting and
random forest, it predicts the happening of each outbreaks
successfully.

Fig. 8: Regression result of DNN model

The result of DNN model fits the data well. However, it
failed to predict the exact number of incidents near week
360 accurately.

Overall, it turns out that all the models predict the outbreak
of influenza successfully. And Gradient Boosting has the best
result on test set.

Models Training Data Testing Data
Linear Regression 558.823 1403.405

Random Forest 222.476 1461.625
Gradient Boosting 169.714 1392.070

KNN(k=8) 601.175 1500.434
DNN 527.139 1470.413

TABLE I: RMSE of models

VI. DISCUSSION

Linear Regression model, using the combination of all the
features, is a simple but effective way in predicting. For that
flu infection is the result of interaction of weather features,
KNN model, which is based more on similarity, is not very
suitable for this case.

Our weather data are regularly changing with seasons
changing, which likes the data are combined by several lines
just with positive or negative slopes and linearly at every
small locality. Then, during reading references, we find the
New York City is a typical temperature city where the UV
radiation and precipitation play the significant role. So we
use the models to test and train the data without UV radiation
and precipitation respectively, the consequence shows that
the RMSE without UV/Precip is four times of the RMSE
with UV/Precip, which agrees with the reference and we
approve these by using the machine learning.

VII. CONCLUSION

Above all, we, through the whole results, find the influenza
could be controlled the weather. Because with the changing
of weather, like temperature, UV radiation, precipitation,
wind speed and snow down, the patients of influenza will
decrease or increase regularly. Besides, after training several
models, we find the test consequences could meet our expec-
tation. The test result can predict the break of the influenza
in the New York City just under the combination with the
different weather data, which make our goal come true and
really could help the government to do some preparation
before the break of influenza.

VIII. FUTURE WORK

We will use universal weather data, like finding different
meteorological stations data, and using the longer span of
year, or do more literature research to find a better way, to
do test. Besides, we will also improve our model and try
several new models to see the consequence which is more
reasonable.
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members. Zhengxing Li finds and collect the data of weather
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