
Indoor Localization based on WiFi Fingerprinting

Ryan Clark, Matt Hong, So Sasaki, Sophia Huang
Group 27

Department of Electrical and Computer Engineering
University of California, San Diego

rmclark@eng.ucsd.edu, mattjoo.hong@gmail.com, sosasaki@ucsd.edu, jih201@ucsd.edu
Github: https://github.com/ryanmclark/Localization via WiFi Fingerprinting

Abstract—Many applications depend on being able to reliably
localize a target in order to provide their respective services. This
is especially true in the field of robotics where localization is the
pinnacle of path planning. That being said, automatic localization
has been a major focus in robotics for quite some time. GPS
sensors have been able to reliably localize various devices in
many cases, however, this is not true when a GPS signal cannot
be established due to environmental conditions such as being
indoors. WiFi fingerprinting has been a very popular approach
to solve this problem by utilizing the Received Signal Strength
Indicator values across multiple Wireless Access Points (WAPs)
to localize a target with respect to the locations of the WAPs. In
this paper, we investigate multiple supervised learning techniques
on the UjiIndoorLoc dataset in order to localize targets based on
a dataset of WAP intensities against their respective localization
labels. K-Nearest Neighbors (KNN) had the highest accuracy with
a 99.79% building accuracy, 99.76% floor accuracy, and average
error of 1.78m.

Index Terms—Supervised Learning, WiFi Fingerprinting, Lo-
calization, K-Nearest Neighbors, Decision Tree, Random Forest,
Support Vector Machine, Principal Component Analysis

I. INTRODUCTION

WiFi fingerprinting uses the Received Signal Strength Indi-
cator (RSSI) values given by multiple Wireless Access Points
(WAP) in order to localize a target with respect to the WAP
locations. WiFi Fingerprinting has been a popular approach
used to study human behavior [3], localization for robotic ap-
plications, and many other studies [1]. WiFi Fingerprinting is a
popular approach due to the pre-existing WLAN infrastructure
that comes in many larger buildings [1]. The additional equip-
ment needed is a reliable receiver. As attractive as the WiFi
Fingerprinting approach may appear, it can be rather difficult
due to the noisy/unreliable nature of WAP signals as well
as inconsistent indoor environmental conditions; e.g. walls,
furniture, floors, and so on. In this paper, we approach the
WiFi Fingerprinting problem by utilizing supervised learning
on a publicly available dataset, UJIIndoorLoc, that contains
samples of the RSSI values from many WAPs with their
respective localization labels. The localization labels were
defined by quantitative values of latitude and longitude, and
categorical labels of floor and Building ID.

The supervised learning techniques explored in this paper
were K-Nearest Neighbors (KNN), Decision Trees (DT), Ran-
dom Forests (RF), and Support Vector Machines (SVM). Prin-
ciple Component Analysis (PCA) and Variance Thresholding
were also done for dimensionality reduction. The supervised
learning was accomplished by inputting WAP RSSI values

to predict the location of the device. A separate regression
and classification method was implemented for each machine
learning technique predicting the quantitative latitude and lon-
gitude, and categorical Building ID and Floor ID, respectively.

II. RELATED WORK

A number of studies have been conducted on WiFi finger-
print localization, many of which use the WAP RSSI values
in addition to a variety assisting sensors such as magnetic
field-based methods, inertia-based methods, etc [8]. A paper
by Hong et al. demonstrates how WiFi fingerprints can be
effective source of localization in a temporal based particle
filter approach [4]. Out of all of the approaches explored,
the particle filter approach produced the best results. Unfor-
tunately, the UJIIndoorLoc does not provide the data needed
in order to conduct a reliable temporal based solution to this
problem.

Many researchers from both academia and industry have
worked on UJIIndoorLoc especially for EvAAL 2015. [6]
EvAAL 2015 had a competition track called ”Wi-Fi finger-
printing in large environments,” where only UJIIndoorLoc is
available and another track called Foot-mounted pedestrian
dead reckoning positioning, where UJIIndoorLoc and MEMS
sensors (inertial, compass and pressure sensors) are available.
In the former track, Maximum Likelihood Estimation and k-
Nearest Neighbor algorithm [7] won the first place with 11.6-
meter mean error on an off-site evaluation. In the latter track,
Advanced Heuristic Drift Elimination [8] which can remove
azimuth drift error in indoor environments won the first place
with 1.9-meter mean error on an on-site evaluation.

Other studies have been also conducted with UJIIndoorLoc
datasets. Bozkurt et al. [9] and Aydin et al. [10] employ
statistical machine learning methods while Nowicki et al.
[11] and Nowicki et al. [12] adopt deep neural network
algorithms. In particular, Bozkurt et al. compare a wide range
of machine learning algorithms: k-Nearest Neighbor, Decision
tree, Adaboost,Bagging, Nave Bayes, Bayesian Network, and
Sequential minimal optimization. Bozkurt et al. conclude that
with the 99.7% building classification accuracy and 98.5%
floor classification accuracy, k-Nearest Neighbor algorithm
is the best algorithm for indoor positioning. However, their
comparative study is limited only for the classification prob-
lem. Our research compares and investigates machine learning
algorithms in both classification and regression problem for
indoor localization

Fig. 1. Universitat Jaume I dataset buildings - Source:
http://www.analyzingdata.org/portfolio/003-Indoor localization Wifi
Footprint/

III. DATASET AND FEATURES

This dataset covers a 108,703m2 area that includes 3
buildings with 4 or 5 floors depending on the building [1].
It consists of 21,049 samples that have been partitioned into
two pre-built datasets. There is a training dataset that contains
19,938 samples, and a testing dataset that contains 1,111
samples [1]. Each sample consists of 529 attributes, and an
example is shown in Table 1. The first 520 attributes consist
of different WAPs with RSSI values that range from -104dB
to 0dB and denoted null value of 100 for WAPs that are not
detected for each sample. Longitude and Latitude values for
each sample are given in meters. A building ID corresponding
to one of the three buildings is given as either 0, 1, or 2. A
floor number corresponding to one of the four floors is given
as either 0, 1, 2, 3, 4. The rest of the attributes were discarded
in our supervised learning approach but included a space ID
corresponding to the type of location that the measurement
was captured at (e.g. office, classroom, etc.), a relative position
with respect to the space ID (front of door, outside of door,
etc.), a user ID, a phone ID, and a timestamp. The space ID
and relative position attributes were of little interest to begin
with, however, the user ID, phone ID, and timestamp were
considered in a potential temporal approach to the problem
but proved to be of minimal use due to the lack of causality in
the timestamps given gaps between measurements that could
range from a few dozen seconds to a few minutes. We will
note that the phone ID and timestamps were used for quite a
bit of analysis that assisted in preprocessing decisions but was
ignored during classification and regression.

The UjiIndoorLoc dataset comes in two sub-datasets -
training and testing. However, some initial experiments led us
to believe that the two datasets were not drawn randomly from
an initially combined dataset, but rather created separately with
the other dataset in mind. In fact, the authors of this dataset
state that ”Dataset independence has been assured by taking
Validation (or testing) samples 4 months after Training ones”

[1]. This would not be an issue if the two datasets were created
in a similar manner, however, figure 2 reveals that this is not
the case. In figure 2, we can see one angle of the training and
testing datasets’ latitude, longitude, and floor number plotted
onto a 3D scatter plot. What this reveals is that a significant
portion of the testing dataset does not align with the training
dataset, and it appears that the testing dataset was created
purposefully to be different from the training set. The testing
set explored many portions of the buildings (entire corridors,
rooms, hallways) that were not even closely passed through
in the training set. This directly goes against the statistical
learning assumption that all data points are realizations of
independent and identically distributed random variables when
temporal or spatial correlations are not a factor. As stated
before, there is not any reliable temporal relation in this
dataset, and the authors of the dataset discuss how they draw
the datasets independently which removes all possibilities of
spatial correlations [1]. This was not discovered until we
made a subset of the original training set to be a validation
set for parameters and discovered that the validation errors
were drastically lower than the testing errors. Following this,
we decided that it was best to drop the provided testing
set entirely and then draw 80/20% splits for training and
testing datasets or 60/20/20% splits for training, validation,
and testing datasets where appropriate. These sub-datasets
were drawn randomly and all prepossessing and analysis was
done using the training and validation set. The test set was
not interacted with until it was time to produce final results.
This was enforced by setting a random seed when the initial
data was separated and then drawing the validation set from
the already separated training set when needed. Unfortunately
this adjustment compromises the ability to compare our results
with the results generated by other papers. We believe that the
statistical learning assumption violation is a much more severe
thing to address over producing comparable results against a
flawed dataset. In a similar manner to the provided testing
dataset, all of the data associated to phone ID 17 in both
datasets were removed due to having dozens of duplicate data
points with many different labels. The data from this phone
ID was clearly corrupted.

Following this correction, some preprocessing steps were
delicately used on the dataset. The initial prepocessing step
that was applied was to linearly normalize the dataset between
0 and 1 with 0 being null and/or weak RSSI intensities and
1 being the strongest RSSI intensities. To do this, we would
reassign the null value to be one below the minimum RSSI
intensity of -104dB and then we would simply divide the
dataset by that minimum value since the data was negative.
Afterwards, we subtracted the data from 1 to flip the signal
strength. From this point forward, we will assume that the
data is normalized in this range, however we will refer to the
original decibel scale for readability. The next step was to
find out what range of RSSI intensity values were reliable.
To do this, we used the K-Nearest Neighbors Regressor from
the python package sklearn, and compared the performance
as we swept the null value from -110dB to -80dB. Since

WAP001 ... WAP520 Longitude Latitude Floor BuildingID SpaceID RelativePosition UserID PhoneID TimeStamp

100 ... 100 -7515.916799 4864890 1 1 0 0 0 0 1380872703
TABLE I

EXAMPLE OF SINGLE DATASET SAMPLE

Fig. 2. Difference in Training and Validation Sample Locations

leaving the null value at 100 created a high penalty for some
classifiers and regressors, we thought it would be a beneficial
step to query the best null value. The null value would be
set to one of the numbers in the previously mentioned range,
and all values below it would be changed to that value thus
determining which WAP RSSI intensity values proved to be
reliable. Figure 3 shows us that the null value that produces the
least localization error (euclidean distance from true location)
on the validation set was -98dB. From this point forward, any
RSSI intensity value that was either null or below -98dB was
set to be -98dB.

Separately from the previous preprocessing, we decided to
analyze how many WAPs were active (giving non-null mea-
surements) for each given sample. Figure 4 shows a histogram
of the number of samples having a certain number of active
WAPs. From this we can draw the conclusion that the majority
of samples had many active WAPS and that a potentially high
source of error was coming from samples without enough
active WAPs. To prove this, we compared the error from the
same K-Nearest Nearest Neighbors Regressor against a query
that would eliminate samples from the dataset that did not
have at least n active WAPs on it, where n ∈ [0, 20]. Figure 5
shows a plot of the error versus the minimum required active
WAPs per sample as well as the amount of data that would be
lost from choosing to do so. It is important to note that this
preprocessing step was done in addition to and following the
previous preprocessing step following the analysis. The results
show that even requiring one active WAP showed drastic

Fig. 3. Localization Error vs. Null Intensity Label

improvement (Note that some samples had zero active WAPs
in the unaltered dataset). Since there is a reduced error versus
data lost trade off, we decided that requiring at least 9 active
WAPs per sample at a cost of 8% of the data was a worthwhile
trade. To back up this case in point, it is physically impossible
to localize an object in 3D space without having at least four
isotropically generated RSSI intensity values active on it when
restricted to a single moment of time.

The last form of preprocessing that was done on this dataset
was feature reduction. We decided that our dataset needed
some form of feature reduction given Figure 6, which shows
the number of active samples each WAP has. It is clear that
some WAPs hardly appear in the dataset and thus have a
very limited variance. Two separate approaches were used
here. One was to query the results while using the sklearn
variance threshold package and the other was to use Principle
Component Analysis (PCA). The variance threshold was set to
remove any feature that had zero variance following all of the
previous preprocessing, and the PCA was used to keep the
orthogonal components that explained 95% of the variance.
Figure 7 shows the variance explained versus the component
in descending order for the dataset. this plot reveals that the
majority of the variance in the dataset is in the first 100
components. In fact, 95% of the explained variance was in
the first 96 components.

Fig. 4. Histogram of Sample Count vs. Number of Active WAPS

Fig. 5. Localization Error vs. Minimum Required Active WAPs

IV. METHODS

A. Decision Tree

A Decision tree is a tree whose internal nodes can be taken
as tests (on input data patterns) and whose leaf nodes can be
taken as categories (of these patterns). More general, it is a
form of template matching which compare the input x to the
stored prototypes µk.

φ(x) = [κ(x, µ1), ..., κ(x, µN)]

Instead of using a pre-defined kernel function κ, the basis
function φ is learned from the input data by selecting the useful

Fig. 6. Histogram of Number of Active Samples vs. WAP ID

Fig. 7. PCA: Variance Explained vs. Components

features (formally, this method belongs to the adaptive basis
function model of the form f(x) = w0 +

∑M
m=1 wmφm(x)).

The basis function define the regions (part of the input feature
space partitioned by the node), and the wights specify the
response value in each region.

B. Regression Tree

Each node partition the input based on a feature. For
example, the first node compare the feature x1 of every input
against the threshold t1. If yes, then the sub-node compare the
feature x2 of every input against the threshold t2. If no, then
the sibling-node would compare the feature x1 of every input

against the threshold t3. And so on. The result of these axis
parallel splits the feature space into multiple regions.
The model can be formulated in the following form

f(x) = E[y|x] =

M∑
m=1

wmI(x ∈ Rm) =

M∑
m=1

wmφ(x; vm)

where Rm is the m’th region (m’th leaf), wm is the mean
response in this region, and vm encodes the choice of variable
to split on, and the threshold value, on the path from the root
to the m’th leaf.
Regression Cost

cost(D) =
∑
i∈D

(yi − ȳ)2

where
ȳ =

1

|D|
∑
i∈D

yi

is the mean of the response variable in the set of data.

C. Classification Tree

Similar to the Regression Tree, Each node partition the input
based on a feature. For example, the first node compare the
feature x1 of every input against the threshold t1. If yes, then
the sub-node compare the feature x2 of every input against the
threshold t2. If no, then the sibling-node would compare the
feature x1 of every input against the threshold t3. And so on.
The result of these axis parallel splits the feature space into
multiple regions.
The model can be formulated in the following form

f(x) = E[y|x] =

M∑
m=1

wmI(x ∈ Rm) =

M∑
m=1

wmφ(x; vm)

where Rm is the m’th region (m’th leaf), wm is the distribution
over class labels in this region, and vm encodes the choice of
variable to split on, and the threshold value, on the path from
the root to the m’th leaf. The distribution over class labels
stored at each leaf node is the empirical fraction of positive
examples that satisfy each conjunction of feature values, which
defines a path from the root to a leaf.
Classification Cost Entropy. Specifically, minimizing the
entropy is equivalent to maximizing the information gain
between test Xj < t and the class label Y

infoGain(Xj < t, Y) ≡ H(Y)−H(Y |Xj < t)

D. (Greedy) Growing a tree

The greedy procedure is implemented to compute the locally
optimal MLE partitioning of the data.
The split function chooses the best feature, and the best value
for that feature

(j∗, t∗) = argmin
j∈{1,2,...,D}

min
t∈τj

Y

where

Y = cost({xi, yi : xij ≤ t}) + cost({xi, yi : xij > t})

and τj defines the possible threshold for feature j.

E. Random Forest (Decision Tree Forests)

Several varied decision trees are trained independently and
the response is then averaged across those trees. The variance
of an estimate is reduced when average many estimates. More
specifically the ensemble is computed as below

f(x) =

M∑
m=1

1

M
fm(x)

where fm is the m’th tree. Since simply re0running the same
learning algorithm on different subsets of the data can result
in highly correlated predictors, which limits the amount of
variance. The random forests de-correlate the base learners by
learning trees based on a randomly chosen subset of input
variables.

F. K-Nearest Neighbors

The K-Nearest Neighbor algorithm is one of the simplest
yet powerful algorithms in supervised machine learning. In
classification, an object , in this case the fingerprint, is classi-
fied to the class most common among its k nearest neighbors.
In regression, an object, has the average values of its k nearest
neighbors. In this project, we used K = 1 and a 1-norm
distance metric, thus the distance between the object and its
neighbors is determined by the Manhattan distance, which is
computed as below

D =

√√√√ d∑
i=1

|xi − yi|

where xi is the sample of interest and yi is the neighbor over
all d features.

G. Support Vector Machine

Support Vector Machine is a machine learning algorithm
which uses a separating hyperplane to classify data. In a linear
kernel, the hyperplane can be defined as

y = wTx+ b

and the margin is defined as

r =
wTx+ b

||w||
The maximum margin can be represented as

argmax
w

r

2

This can be normalized and transformed into an optimization
problem as

argmin
w,b

||w||
2

A slack variable ξ is introduced to allow for misclassification.
The final optimization problem becomes

C

N∑
i=1

ξn + argmin
w,b

||w||
2

H. principal components analysis (PCA)

The principal component method allows dimension reduc-
tion by selecting an orthogonal linear basis vector wj ∈ RD
and corresponding scores zi ∈ RL such that minimize the
average reconstruction error

1

N

N∑
i=1

||xj − x̂i||2

The optimal solution is obtained by setting the Ŵ in x̂i =
WZT by the eigenvectors with largest eigenvalues of the
covariance matrix 1

N

∑N
i=1 xix

T
i

V. EXPERIMENTS/RESULTS/DISCUSSION

Most of the model’s hyper-parameters were tuned with 3
or 5 fold cross validation depending on the model runtime.
For K-Nearest Neighbors (KNN), we choose to implement 1
neighbor, the kd-tree algorithm with 50 samples per leaf for
efficient pruning, and most importantly the L1 norm distance
metric for less sensitivity to outliers. The KNN produced
the best results with 1 neighbor simply because this dataset
consisted of many duplicate datapoints with the same label.
When the results of the KNN are explored in detail, one
will see that it either produces 0 error or very large error
in the regression case. The Random Forest Model boosted the
amount of trees to 100 as opposed to the default 10 trees. The
Support Vector Machine used a linear kernel and the slack
penalty term was tuned with cross validation to arrive at a
value of 100 which corresponds to a relatively hard margin.
The linear kernel preformed the best for the same reason the
KNN preformed the best with a single neighbor. Lastly, the
Decision Tree model was left unaltered.

The metrics used to compute the regression error are the
mean coordinate error which is the mean L2 norm between
the predicted latitude and longitude and the actual latitude
and longitude. The original authors of the dataset created
standardized way to calculate the error which we will call the
standard error [2]. We will provide the formula for this metric,
however, we chose not to implement it due to the fact that we
have dropped their provided test set and therefore forfeited
all means of comparing results. This standard error penalized
building and floor missclassifcations with respective weights
and then summed them to the coordinate errors. We also used
the R2 Score for regression and accuracy for the classification.
Formulas for the metrics are provided below.

Mean Coordinate Error:

em =
1

n

n∑
i=1

||xi − x0,i||2

where x is the predicted latitude and longitude and x0 is the
true latitude and longitude.

R2 Score:

r2 = 1−
∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − ȳi)2

where yi is the data point, ŷi is the estimated regression line,
and ȳi is the mean.

Regression Results
Mean Coord Error R2 Score

Model Training Testing Training Testing
KNN 0.44 1.78 0.992 0.995
RF 0.41 4.56 0.997 0.994
DT 1.75 4.09 0.996 0.996
SVM 45.56 57.19 0.799 0.806

TABLE II

Classification Results
Accuracy Building Accuracy Floor

Model Training Testing Training Testing
KNN 0.992 0.998 0.992 0.998
RF 0.993 0.997 0.993 0.995
DT 0.993 0.996 0.993 0.962
SVM 0.993 0.997 0.983 0.992

TABLE III

Accuracy:

Accuracy =
True Positive + True Negative

Total

Precision and recall are computed based on the confusion
matrix which provides the count for True Positive, False
Positive, False Negative, True Negative. For this multilabel
problem, the precision and recall are computed for each label
(0, 1, 2), which is equivalent to precision and recall for
predicting label 0 (or 1, 2) or non-0 (or non-1, non-2) in the
binary classification problems.

Precision =
True Positive

Actual Results

Precision measures the fraction of predicted class label that
are relevant/correct.

Recall =
True Positive

Predicted Results

Recall measured the percentage of relevant results classified
by the model.

Beginning with the regression results, we can see that the
KNN model significantly outperformed all of the other models
while the SVM preformed terribly. Both of these results can
be explained due to the fact that much of the data had nearly
identical features but vastly different latitude and longitude
labels in conjunction with the fact that there were also many
identical duplicates in the dataset. SVM was unable to separate
this issue under many different kernels, which caused the
regression error to be high. KNN however, was able to find
the matching sample which caused it to have the lowest error.
Scrutinizing the error more closely reveals that much of the
KNN errors were either zero or very high (+10 meters) due
to the large amount of duplicates in the dataset. Even though
KNN preformed the best, we believe that a similar dataset that
was better put together would reveal that the Random Forest
would preform the best for this test.

The classification results reveal that all of the models
preformed relatively well, even the Support Vector Machine
which produced terrible regression results. This can be at-
tributed to the duplicate data sharing a similar label as opposed

K-Nearest Neighbors Confusion Table - Buildings
Predicted Results

0 1 2

A
ct

ua
l 0 1088

1 939 8
2 1785

TABLE IV

K-Nearest Neighbors Confusion Table - Floors
Predicted Results

0 1 2 3 4

A
ct

ua
l 0 877

1 1 937
2 923
3 8 945
4 129

TABLE V

to the regression case. There were 2 trends we were able
to detect from the confusion matrices, which can be seen in
Tables 4-11. The first is that the DT, RF, and SVM models
all classified 11 floors as floor 3 when it was actually floor
0. The cause behind that is of interest, however, that may be
something to look into for future work. The second is that a
misclassification is more likely to occur by misclassifying the
predicted floor as a lower floor than the truth. The precision
and recall matrices can be seen in Tables 12 and 13. However,
because the accuracy was very high, no new information was
gained. Overall, KNN out preformed all of the other models
for the same reasoning as the regression case.

Figures 8 through 11 show how each algorithm preformed
with localizing targets for phone ID 20. These results hold
similarly for other phone IDs and phone ID 20 was chosen
due to is visibility from having less data points. It is difficult
to tell which model preformed the best by looking at these
plots - SVM excluded. However, if we show an example of a
phone ID with many duplicate points, we will see how KNN
significantly outperforms everything else. Let’s compare phone
id 19 between the KNN and RF regressors in figures 12 and
13. Clearly KNN outpreforms its biggest competitor, RF, here
due to the high number of duplicate data points.

Random Forest Confusion Table - Buildings
Predicted Results

0 1 2

A
ct

ua
l 0 1088

1 947
2 11 1774

TABLE VI

Random Forest Confusion Table - Floors
Predicted Results

0 1 2 3 4

A
ct

ua
l 0 862 4 11

1 936 2
2 2 919 2
3 953
4 129

TABLE VII

Decision Tree Confusion Table - Buildings
Predicted Results

0 1 2

A
ct

ua
l 0 1088

1 1 944 2
2 13 1772

TABLE VIII

Decision Tree Confusion Table - Floors
Predicted Results

0 1 2 3 4

A
ct

ua
l 0 841 22 3 11

1 16 892 22 6 2
2 2 16 883 17 5
3 2 4 10 931 6
4 2 2 125

TABLE IX

Support Vector Machine Confusion Table - Buildings
Predicted Results

0 1 2

A
ct

ua
l 0 1088

1 947
2 11 1774

TABLE X

Support Vector Machine Confusion Table - Floors
Predicted Results

0 1 2 3 4

A
ct

ua
l 0 862 4 11

1 1 934 3
2 4 914 5
3 2 950 1
4 129

TABLE XI

Floor Accuracy
Method Label Precision Recall
KNN 0 1.0000 0.9898

1 0.9989 1.0000
2 1.0000 1.0000
3 0.9916 1.0000
4 1.0000 1.0000
avg 0.9981 0.9980

RF 0 0.9840 1.0000
1 0.9979 0.9947
2 0.9957 0.9967
3 0.9990 0.9845
4 0.9845 1.0000
avg 0.9922 0.9922

DT 0 0.9624 0.9803
1 0.9510 0.9622
2 0.9567 0.9619
3 0.9811 0.9560
4 0.9612 0.9118
avg 0.9625 0.9544

SVM 0 0.9829 0.9988
1 0.9957 0.9915
2 0.9902 0.9946
3 0.9969 0.9834
4 1.0000 0.9923
avg 0.9931 0.9931

TABLE XII

Building Accuracy
Method Label Precision Recall
KNN 0 1.0000 1.0000

1 1.0000 1.0000
2 0.9916 1.0000
avg 1.0000 0.9955

RF 0 1.0000 1.0000
1 1.0000 0.9885
2 0.9938 1.0000
avg 0.9979 0.9962

DT 0 1.0000 1.0000
1 0.9989 0.9874
2 0.9933 0.9994
avg 0.9974 0.9956

SVM 0 1.0000 1.0000
1 1.0000 0.9885
2 0.9938 1.0000
avg 0.9938 0.9962

TABLE XIII

Fig. 8. KNN Prediction - Latitude vs. Longitude

VI. CONCLUSION/FUTURE WORK

The best results were given by the K-Nearest Neighbor
model. This was due to the high number of overlapping
measurements in this dataset. The Decision Tree and Random
Forest models also preformed relatively well, but the Support
Vector Machine model preformed awfully. This is likely due
to the fact that the data was not very separable no matter the
kernel used. Unfortunately, the UjiIndoorLoc dataset does not
seem like a reliable or even practical dataset to approach this
problem in our opinion. The statistical learning assumption
violation between the two provided datasets, the high number
of overlapping measurements while also leaving much of the
map unexplored, and the lack of reliable temporal data have
all caused concern for how useful a dataset like this would be
for a practical WiFi fingerprinting localization application.

There are many use cases for reliable WiFi fingerprinting
for localization and there are many ways to improve the results

Fig. 9. RF Prediction - Latitude vs. Longitude

Fig. 10. DT Prediction - Latitude vs. Longitude

given in this paper. The first and most obvious improvement
would be to find or create a better dataset for this problem.
From here, a temporal localization approach could be used if
reliable temporal data is available such as in Hong et. al’s
particle filter approach [4]. Another approach would be to
localize the individual WAPs and optimize their locations by
minimizing the error between a set of ground truth coordinates
and the predicted coordinates generated from an intensity
versus distance fit.

Fig. 11. SVM Prediction - Latitude vs. Longitude

Fig. 12. KNN Prediction - Latitude vs. Longitude

VII. CONTRIBUTIONS

Ryan contributed to the final report, the code template for
the project, the analysis plots, parameter tuning, the K-Nearest
Neighbors model, the Random Forest model, and the Support
Vector Machine model. Matt contributed to the poster, the
mid-project presentation, the code template for the project,
parameter tuning, the Random Forest model, and the Decision
Tree model. So contributed to the final report, the mid project
presentation, the code template, parameter tuning, the Decision
Tree model, and a Neural Network model that was not used
do to not being compatible with the relatively small dataset

Fig. 13. RF Prediction - Latitude vs. Longitude

used. Sophia contributed to the final report, the Support Vector
Machine model, the Decision Tree model, and some of the
result metrics.

REFERENCES

[1] J. Torres-Sospedra et al., ”UJIIndoorLoc: A new multi-building and multi-
floor database for WLAN fingerprint-based indoor localization problems,”
2014 International Conference on Indoor Positioning and Indoor Naviga-
tion (IPIN), Busan, 2014, pp. 261-270. doi: 10.1109/IPIN.2014.7275492

[2] Joaqun Torres-Sospedra Raul Montoliu Adolfo Martinez
Joaquin Huerta. UJI - Institute of New Imaging Technologies,
Universitat Jaume I, Avda. Vicente Sos Baynat S/N, 12071,
Castelln, Spain. UPV - Departamento de Sistemas Informticos y
Computacin, Universitat Politcnica de Valncia, Valencia, Spain.
https://archive.ics.uci.edu/ml/datasets/ujiindoorloc

[3] R. Montoliu, J. Blom, and D. Gatica-Perez, Discovering places of
interest in everyday life from smartphone data, Multimedia Tools and
Applications, vol. 62, no. 1, pp. 179207, 2013.

[4] Hong, Feng Zhang, Yongtuo Zhang, Zhao Wei, Meiyu Feng, Yuan Guo,
Zhongwen. (2014). WaP: Indoor localization and tracking using WiFi-
Assisted Particle filter. Proceedings - Conference on Local Computer
Networks, LCN. 210-217. 10.1109/LCN.2014.6925774.

[5] Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and
Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss,
R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D.
and Brucher, M. and Perrot, M. and Duchesnay, E. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, 12. 2825–
2830. 2011.

[6] EvAAL. EvAAL-ETRI on-site and off-site Indoor Localization Com-
petition In conjunction with IPIN 2015 Banff, Alberta, Canada. 2015.
http://evaal.aaloa.org/2015/competition-home

[7] R Berkvens, M Weyn, H Peremans. Mean Mutual Information of Prob-
abilistic Wi-Fi Localization. 2015 International Conference on Indoor
Positioning and Indoor Navigation (IPIN) 1-4. 2015

[8] Ho Jin Ju, Min Su Lee, Chan Gook Park, Soyeon Lee, Sangjoon Park.
Advanced Heuristic Drift Elimination for indoor pedestrian navigation.
2014 International Conference on Indoor Positioning and Indoor Naviga-
tion(IPIN). 2014

[9] Sinem Bozkurt, Gulin Elibol, Serkan Gunal, Ugur Yayan. A Comparative
Study on Machine Learning Algorithms for Indoor Positioning. 2015
International Symposium on Innovations in Intelligent SysTems and
Applications (INISTA). 2015

[10] M. Ali Aydin, Ahmet Sertbas, Tulin Atmaca. A Comparative Analysis
of N-Nearest Neighbors (N3) and Binned Nearest Neighbors (BNN)
Algorithmsfor Indoor Localization. Computer Networks. CN 2017. Com-
munications in Computer and Information Science, vol 718. 2017

[11] Nowicki M., Wietrzykowski J. Low-Effort Place Recognition with
WiFi Fingerprints Using Deep Learning. Automation 2017, ICA 2017,
Advances in Intelligent Systems and Computing, vol 550. 2017

[12] Micha Nowicki, Jan Wietrzykowski, Piotr Skrzypczyski. Adopting
Learning-based Visual Localization Methods for Indoor Positioning
with WiFiFingerprints. Learning Applications for Intelligent Autonomous
Robots. 2018

