
Face Detection with Deep Learning

Yu Shen
Yus122@ucsd.edu

A13227146

Kuan-Wei Chen
kuc010@ucsd.edu

A99045121

Yizhou Hao
y3hao@ucsd.edu

A98017773

Min Hsuan Wu
mhwu@ucsd.edu

A92424998

Abstract

The project here presents the implementation of face
detection technology by using deep learning. The main
idea used in this project is multi-task Cascaded Convolu-
tional Neural Networks, which contains three sub-networks
together to learn to recognize human faces after several
stages of decomposition and filtering. The dataset that is
going to be used is FDDB dataset, which contains over five
thousand faces in a set of around two thousand and eight
hundred images.

1. Introduction
With the development of machine learning and computer

vision, face detection becomes a very popular and useful
technology. The history of face detection can be divided
into three phases. The first period was from 1964 to 1990.
It was the start of face detection, and the research in this
period were mainly based on Geometric features. At this
early stage, there were not many applications related to face
detection. The second period was from 1991 to 1997. Al-
though this period was short (only seven years), it was actu-
ally a peak time of face detection research and development.
A lot of new algorithm and business application on face de-
tection showed up in this time. And the research moved to
Eigen-face based method instead of geometric feature based
method. In the third period, from 1998 to now, researchers
and scientists are focusing on face detection under non ideal
conditions. For example, if the light is too strong or people
are moving around too fast, it’s going to be hard to track
the faces. Hence, people tried to implement face detection
based on three dimensional model to have a better track of
faces. And for now, face detection has been implemented
and widely used in different industries and products. Face
detection could be used in the access control system of a
door or of a building. It could also be used by companies
or school to check employees’ or students’ attendance. The
new iPhone released several months ago also uses this tech-
nology to unlock the screen. Face detection is definitely
going to be an indispensable part in the intelligent society

in the near future and face detection may be implemented
into even more applications such as digital passport and so
on. As students studying in machine learning, we are curi-
ous and enthusiastic about this new and popular technology.
Hence, in this project, we are going to use Deep learning to
detect human faces in images.

2. Related Work

As mentioned in the introduction part, the face detection
technology has been studied for over 50 years. Hence, in
the history, there are a lot of different face detection meth-
ods that are interesting and each of them has their own ad-
vantages and disadvantages. For example, the Viola-Jones
method[6] is the first framework that can allow face detec-
tion in real time. This is a three-step framework, which
includes features computation, classification, and combi-
nation of classifiers. Overall, Viola-Jones is a successful
method, which has fast detection speed and good accuracy
and low false positive rate. However, it takes long time for
training and has restriction on different head poses. Lo-
cal Binary Pattern(LBP [1]) is another effective method. In
this method, every pixel is assigned a texture value, which
can be combined with target for tracking. The advantages
of LBP includes fast computation, successful description of
texture feature and simple steps. However, it could be only
used for gray images, and it doesn’t have good accuracy.
Adaboost algorithm[3] was proposed in 2003. AdaBoost is
a learning algorithm that can create a strong classifier by
choosing visual features from a bunch of simple classifiers
and combining them linearly. It is very simple to be im-
plemented because it doesn’t require any prior knowledge
about the face structure. Also, it can be used with numer-
ous different classifiers and improves classification accu-
racy. The disadvantages of Adaboost are that first it has
slow training speed, second it is too sensitive to noisy data
which can lead to low final detection accuracy. SMQT Fea-
tures and SNOW Classifier Method[5] is a relatively new
method published in 2011. This method has two phases.
The first phase is face luminance, which get pixel informa-
tion of the image. The second phase is detection which uses
SMQT features as feature extraction and SNOW to speed

1

up the classifier. This method is computationally efficient.
But it has low false positive rate. The last method dis-
cussed here is neural network based method[4], which is the
foundation of the MTCNN[7]. In this early neural network
method, there are two stages: filtering and merging and ar-
bitating. The advantages of this method are acceptable false
detection and acceptable accuracy. And the disadvantages
are slow detection process and complex methodology. The
method we implemented in our project is MTCNN. Com-
pared to all methods above, MTCNN has the best and in-
credibly high accuracy. Although it takes some time for
training, we can save time by using pre-trained model and
keep the relatively high accuracy. MTCNN even supports
for real time face detection. Hence, MTCNN is a very good
method for face detection.

3. Dataset and Features
The data used is FDDB dataset [2]. It contains 5171

faces in a set of 2845 (both gray-scale and colored) im-
ages. The dataset was broken down into 10 folders with
roughly 520 labeled faces each folder. Each image may
contain multiple faces. The dataset have labels of the po-
sitions of human faces within the picture. The labels were
marked by drawing ellipses around each human face, and
recording the radius of both axes, center of the ellipse, and
the angle of the ellipse. As seen in 1, the data has multiple

Figure 1. Sample data

faces within the picture with different lightings. Notice the
two faces at the back have poor lighting and their bodies,
even edges of their faces are blocked by the other people in
front.

In 2, the labels are drawn as ellipses. Notice that ellipses
may overlap with each other. In addition, note that the per-
son’s face on the left is not labeled. This is because only
faces with either one of the eyes visible is labeled. The an-
notators also only label the faces that are at least 20 pixels
in both height and width. Since these faces are annotated

Figure 2. Sample data with elliptical label

by different annotators, there could be slight differences in
judgments on whether or not a face should be labeled be-
tween different annotators. Moreover, different poses of the
faces, occlusions of faces, as well as resolution all affect
the annotations. Therefore, there are intrinsic difficulties in
making a perfect labels. However, these should not affect
most annotations significantly and the annotations should
still be relatively accurate.

4. Method
The method we used is called Multi-task Cascaded Con-

volutional Networks[7]. Different from other algorithms,
MTCNN is cascading three CNN with different structures
together for face detection. Figure 3 is the pipeline of
MTCNN, and figure 4 is the detailed structure of MTCNN.
Before we put the testing image into classifier, we need to
resize the image in different scales, and stack it into an im-
age pyramid. By doing these steps, we can generate the
same face in different scales, which increases the ability of
the network. After that, a sliding window will be applied
to the pyramid, and break the image into regions, which are
the inputs to the network.

4.1. Stage-1

Stage-1 is called P-Net, which references to Proposal
network. It is a shallow network which will roughly decide
which region contains faces. For each proposed bounding
box, there will be three different classifications applied to it,
which are face classification, bounding box regression and
facial landmark localization. I will introduce these three al-
gorithms in the later section. The output of P-Net are some
proposed boxing boxes and their classification scores of
faces. None maximum suppression will be applied in order
to clean the bounding boxes that are overlapping with each
other. Those remaining boxes will be resized to 24x24x3,
and used as the input to the next net.

2

Figure 3. Pipeline of three stages of MTCNN

Figure 4. Three nets of MTCNN

4.2. Stage-2

Stage-2 is called R-Net, which references to Refine net-
work. This Net has convolution with larger kernel and a
fully connected layer, which is more powerful than the pre-
vious network. The goal of this net is to refine the results
from previous net. The bounding boxes which have low
face classification scores will be discarded. Again, for the
regions with high classification scores, bounding box re-
gression and facial landmark localization will be applied.

The output of this net are still bounding boxes and their clas-
sification scores. Those boxes will be resized to 48x48x3 to
be used as the input to the next net.

4.3. Stage-3

Stage-3 is called O-Net, which references to Output Net.
This network is deeper with larger convolution kernel com-
paring with previous nets. This powerful network will make
the final decision about where the face is and what the size
of bounding box should be.

4.4. Classification and Regression

At the end of three stages, there are the computation of
face classification, bounding box regression and facial land-
mark localization. Their loss function are different, I will
introduce them one by one.

4.4.1 Face classification

While doing face classification, cross entropy is used as the
Loss function.

Ldet
i = −(ydeti log(pi) + (1− ydeti)(1− log(pi))) (1)

where pi is the probability produced by the network. ydeti ⊂
0, 1 is the ground-truth label of the faces.

4.4.2 Bounding Box Regression

For the bounding box regression, Euler distance(L2 loss) is
used as the loss function.

Lbox
i = ||ŷboxi − yboxi ||22 (2)

where ŷboxi is the regression target generated by the network
and yboxi is the ground-truth location.

4.4.3 Facial Landmark Localization

L2 loss is also used as the loss function for this part.

Llandmark
i = ||ŷlandmark

i − ylandmark
i ||22 (3)

where ŷlandmark
i is the location of facial landmarks gen-

erated by the network and ylandmark
i is the ground-truth lo-

cation.
These weighted sum of these three loss values is used as the
loss for back propagation. Their weights are deterministic
values. In the P-Net and R-net, the weights for face determi-
nation, boxes regression and landmark localization are 1.0,
0.5 and 0.5. In the last stage, the weights are 1.0, 0.5, 1.0.

3

5. Experiments/Results/Discussion

5.1. Evaluation method

The algorithm was tested on the FDDB dataset. The
evaluation method used was to compare the coordinate of
the ellipse label to the center of the output rectangle. If
the two coordinates are within 50 pixels both in width and
height, the rectangle is considered a correct detection. If
there is a detection rectangle but not an elliptical label near
the rectangle, it is considered a false positive. An example
of false positive is shown in 5. Notice the person’s face on
the left was detected with a green bounding rectangle, but
it was not labeled, since neither of the person’s eyes were
visible. On the other hand, if there is a labeled ellipse but
the detector fails to find the face, it is considered a false
negative. An example is shown in 6. Notice a red ellipse in
the top center labels a man’s face that is partially covered by
the person in front. Since most of the person’s face was cov-
ered, the detector was unable to detect the face. However,
it was still labeled since one of the person’s eyes is visible.
In [2], the authors proposed a method to evaluate by calcu-
lating the overlap between the bounding rectangle and the
ellipse. Although it does give a better meaning to what a
correct detection is, i.e. over 80% overlap between the rect-
angle and ellipse, it would consider all detection as false
detection if the rectangle and ellipse have relatively differ-
ent sizes. Since, distance between center pixel is simpler
to implement, it was used to evaluate the results. Note that
the percentage overlap is an arbitrary number as the 50 pix-
els used, and thus either evaluation method is intrinsically
imperfect as the labels. Nonetheless, the evaluation result
should still be a meaningful metric to test the algorithm.

Figure 5. Example of false positive

Figure 6. Example of false negative

Fold False positive Correct detection Total Faces
1 23 480 515
2 18 485 519
3 25 483 517
4 18 488 517
5 17 486 514
6 21 484 518
7 30 494 518
8 24 468 518
9 15 483 514
10 24 495 521
All 215 4846 5171

Table 1. Detection results

5.2. Results

The results are recorded in Table 1 and Table 2. Since
there are two kinds of errors, a false positive and a false
negative, there are two metrics to evaluate the detector. The
accuracy, is the number of correct detections made divided
by the total number of faces. This measures how many of
the labeled faces can the detector find. The true positive
rate, is the number of correct detections made divided by
the number of all positives. This measures out of all the
detections the detector has made, what percentage of which
is a true detection.

6. Conclusion/Future Work
By using FDDB dataset for evaluation, our implemen-

tation of MTCNN got an average of 93.7% accuracy and
95.8% true positive rate. The 4% of false positive rate indi-
cates that there are some differences between the MTCNN
detection and FDDB’s label. We looked into the mis-
prediction cases, and we found some faces without both
eyes visible are still detected by MTCNN. Since FDDB
only labels faces with either one of the eyes visible, there

4

Fold Accuracy True Positive Rate
1 0.932 0.954
2 0.934 0.964
3 0.934 0.951
4 0.944 0.964
5 0.946 0.966
6 0.934 0.958
7 0.954 0.943
8 0.903 0.951
9 0.940 0.970
10 0.950 0.954
All 0.937 0.958

Table 2. Accuracy and True positive rates

are some faces not labeled, which caused our false positive
rate to go high. Also, some labeled faces with extremely
low light conditions or with other objected covered. This
kind of faces are difficult for MTCNN to detect.

For the future work, we can improve our model by train-
ing more edge cases, like the ones mentioned above. Also,
doing more evaluations like we did on FDDB can help us
to find the weakness of our model. In addition, training
on a even larger dataset should allow the network to learn
in more extreme cases and therefore have improved perfor-
mance. We can also make our MTCNN implementation to
work on real time face detection. While the accuracy is
high enough, we can work on other functionalities like face
recognition or emotion recognition in the future.

References
[1] T. Ahonen, A. Hadid, and M. Pietikäinen. Face recogni-

tion with local binary patterns. In European conference
on computer vision, pages 469–481. Springer, 2004.

[2] V. Jain and E. Learned-Miller. Fddb: A benchmark for
face detection in unconstrained settings. Technical Re-
port UM-CS-2010-009, University of Massachusetts,
Amherst, 2010.

[3] R. Meir and G. Rätsch. An introduction to boosting and
leveraging. In Advanced lectures on machine learning,
pages 118–183. Springer, 2003.

[4] H. A. Rowley, S. Baluja, and T. Kanade. Neural
network-based face detection. IEEE Transactions on
pattern analysis and machine intelligence, 20(1):23–
38, 1998.

[5] K. Somashekar, C. Puttamadappa, and D. Chandrappa.
Face detection by smqt features and snow classifier us-
ing color information. International Journal of Engi-
neering Science and Technology, 3(2), 2011.

[6] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In Computer Vision
and Pattern Recognition, 2001. CVPR 2001. Proceed-
ings of the 2001 IEEE Computer Society Conference
on, volume 1, pages I–I. IEEE, 2001.

[7] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face
detection and alignment using multitask cascaded con-
volutional networks. IEEE Signal Processing Letters,
23(10):1499–1503, Oct 2016.

5

