Urban Scene Segmentation for Autonomous Vehicles

Hsiao-Chen Huang
UC San Diego
hsh030@eng.ucsd.edu

Eddie Tseng
UC San Diego

edtseng@eng.ucsd.edu

Abstract

For the past few decades, full automation has become
an ultimate goal that people want to achieve, and the de-
velopment of autonomous vehicles (AVs) is one of the im-
portant progress in our lives. Understanding the surround-
ing and making decisions are crucial concepts for AVs. We
deeply believe that the computer vision techniques can help
us solve these problems. The first challenge that stuck out
to us is how to distinguish roads, people and cars, or even
traffic signs. Hence, we aim to implement semantic segmen-
tation in this project.

Our main idea is to use fully convolutional networks to
perform pixel-wised classification in urban scene images.
Though there have been much work in image segmentation,
we would like to implement and evaluate the performance
of several contemporary models such as AlexNet and VGG
net into fully convolutional networks.

1. Introduction

Scene segmentation can be defined as a problem of end-
to-end classification and it is also an important task in the
field of computer vision. While similar to normal object
recognition task, the goal of scene segmentation is not to
find a bounding box of recognized objects but to label each
pixel according to which object or class it belongs to. Scene
segmentation can come in many different settings. When
the requirement is only to label each pixel according to
class, it can be described by other names such as pixel-level
labeling or pixel-wise classification. In this project, we try
to make dense predictions, which can label each pixel with
the class of its enclosing object. The prediction provides
not only the classes but also additional information regard-
ing the spatial location of those classes. Furthermore, we
can also apply object detection or tracking based on the re-
sults.

Moreover, scene segmentation plays a very important
role in the context of autonomous driving. The use case
often requires captioning on a video stream, but this is not
our focus in this project and we will evaluate our system in

Chih-Yen Lin
UC San Diego
chl886@eng.ucsd.edu

Ping-Chun Chiang
UC San Diego
p3chiangl@eng.ucsd.edu

an offline setting. In this experiment we started with fully
convolutional network(FCN) which was first proposed by
Long et al. [7]. We use pixel accuracy(we will mention in
4.1) as the benchmark to measure our performance because
it is easy to compute and provides an intuitive approxima-
tion of human perception of the performance. The best re-
sults we achieved are 89% pixel accuracy on training data
and 88% on testing data.

Figure 1: Example of urban scene segmentation

2. Related Work
2.1. Prediction

Given a set of input images, X’ that contains /N samples
and each sample x,, is a 256 x 512 image.

{x1,%X2, ..., XN} EX (1
The corresponding annotation) is represent as

{}’1,}’2»~-,YN}€37 (2)

Each annotation of a sample y,, contains ¢ + 1..., which ¢
is the number of class and ¢ + 1 is the background. The
algorithm we applied is One-Hot encoding and we will talk
about this later.

vn = {(co, €1, .., Ce, Ceq1)|e; € 0,1]}, Vn 3)

In order to find corresponding position based on neural
network, we define a decision function (Eq. E[) which would
learn to minimize the structural risk:

g: X =Y “4)

We use sigmoid function (Eq. |5) as our activation func-
tion, so that all the outputs will lie in between 0 and 1.

1
S S — 5
Evaluate cross entropy as loss function:
Lly,y]= - yilog, (3:) 6)

2.2. Convolutional Neural Network

Deep Convolutional Neural Network (CNN) is a popu-
lar and primary method to solve image classification prob-
lem. It is first proposed by LeCun et al. [4]. Convnets are
built with convolutional layers, pooling layers, and fully-
connected layers. The convolutional and pooling layers are
used to extract features by filtering and extending the depth
of feature dimension. Each convolutional layer is made up
of a set of neurons that we can consider it as a transfer map-
ping by a filter. Each neuron connects to a small region of
neurons in the previous layer with different weights.The set
of filters have small width and height, and depth is the fea-
ture dimension. In fully-connected layers, the output will
be reduced to a single vector of probability scores along the
depth dimension.

Input Convolutional ~ Pooling Fully Connected Output
Layer Layer Layer Layer Layer
| |

I

Figure 2: The architecture of CNNJ[6]

However, appending a fully-connected layer enables the
network to learn by using global information where the spa-
tial arrangement of the input falls away and it is harm-
ful for dense classification tasks such as image segmenta-
tion. Hence, we mention a proper method in section 2.3 to
achieve our goal.

2.3. Fully Convolutional Network

Fully convolutional indicates that the neural network is
composed of convolutional layers without any fully con-
nected layers. The main difference between CNNs and
FCNss is that the fully convolutional networks is learning

filters everywhere. A fully convolutional network can learn
representations and make decisions based on local spatial
input. After passing through the convolutional operations
the same as CNN, hooking a bunch of deconvolutional lay-
ers, and then running gradient descent allows learning func-
tions which couldn’t be learned with a pure convolutional
network, for instance for semantic segmentation[5]. In this
project, data for each layer in a convolutional net is a three-
dimensional array of size h X w X d, where h and w are
the spatial dimensions, and d is the feature dimension [7].
Inputs are images with pixel size 256 x 512, and 3 color
channels.

D2* W/2 * HI2 D4* W72 * H/2

> > > > > > > > > > >

D3* W/4 * H/4 Output:
W*H

Di*W*H (C+1)*W*H

Figure 3: Design network as a bunch of convolutional layers
with downsampling and upsampling inside the network

2.3.1 1x1 Convolutional Layer

Traditional convolutional networks cannot manage different
image sizes since fully-connected layers, while fully convo-
lutional networks can manage different image sizes because
it only contains convolutional layers. Basically 1x1 convo-
lutions serve several purposes:

e They perform dimensional reduction in a fast manner.
With a 1x1 convolution, we can rather cheaply reduce
the number of channels without losing information.

e They are used in depthwise separable convolutions to
factor the convolutional layer along the depth axis,
reducing computation and reducing memory require-
ments and often slightly improving accuracy.

e One argument is that they allow for improvements in
accuracy because it means that cross-channel informa-
tion and spatial information can be analyzed indepen-
dently by the model.

2.3.2 Deconvolution

Deconvolution is a network with stacked layers, which can
be considered as a reverse of convolution. Instead of con-
volving a filter mask with an image to get a set of activation
as in a convolutional neural net, we are trying to infer the
activation that when convolved with the filter mask, would

yield the image. The learned filters in deconvolutional lay-
ers correspond to bases to reconstruct shape of our input
image. Hence, they are used to capture different level of
shape details to expand the image back to its original size

[90.

2.3.3 Skip Connection

Skip architecture as the name suggests skips some layer in
the neural network and feeds the output of one layer as the
input to the next layer as well as some other layer. Different
layers in convolutional operation provide us with different
levels of information. We lose some resolution during the
convolutional and pooling operations. It contains wider per-
ceptual field in lower layers, and less details in higher lay-
ers. Skip connection is a method to solve the above prob-
lem, which is to add back some resolution by fusing the
output from the previous layer. It is able to help lower level
information to reach top level and recover the details.

3. Experiments
3.1. Dataset

In this project, The model will be trained and evaluated
on Cityscapes dataset. This large-scale dataset contains
a diverse set of stereo video sequences recorded in street
scenes from 50 different cities, with high quality pixel-
level annotations of 5000 frames in addition to a larger set
of 20000 weakly annotated frames. This website has the
tremendous database, but we only use leftImg8bit trainex-
tra and gtCoarse as our training set which contains 19998
coarse annotations and training images.

scene images, we extract all the images and resize them to
256 x 512, and the number of channels is 20 because we
decide to segment 19 classes and the last channel is back-
ground. Each channel represents one class, and we use
One-Hot skill to give the pixel value as one when it cor-
responds to the certain object.

Figure 5: Example of ground truth image

The goal of One-Hot encoding is to classify an pixel into
one among K classes, and we choose K = 20. However,
in our case, we need to calculate background when we im-
plement network. Hence, the actual number of classes is
19. The reason we use One-Hot encoding is that it trans-
forms categorical features to a format that works better with
classification and regression algorithms. This will help us
improve the results when calculating the last layer of neural
network.

°
°
°

Channel 1
(class 1)

Label Image ool o

3 channels(RGB) /

Class! | Class2 | Class3

Processed Data

\ sen‘a?vi

Channel 2 —p 1 0 0
Class 4 | Class5 | Class 6 (class 2)

°
°
°

0 0 0

0 0 0

Figure 4: The color map of each object

3.1.1 Dataset exploration

The training dataset provides png images, where pixel val-
ues encode labels. In order to compare the prediction with
true value, we make some data processing tasks with the la-
bel images. First, there are fifty files with different urban

D Name Color(R, G,B) | ID Name Color(R, G, B)

0 road (128,54,128) | 10 sky (128, 54, 128) =
1 sidewalk (244, 35, 232) 11 person (220, 20, 60) E5T || €29 || o
2 building (70, 70, 70) 12 rider (255,0,0)

3 wall (102, 102, 156) | 13 car (0,0, 142))

4| fence | (190,153,153) | 14 | truck (0, 0,70) Pixets

5 pole (153, 153,153) | 15 bus (0, 60, 100)

6 | traffic light | (250, 170,30) | 16 train (0, 80, 100)

7 traffic sign (220, 220, 0) 17 | motorcycle (0, 0, 230)

8 vegetation (107, 142,35) | 18 bicycle (119,11, 32)

9 terrain (152,251, 152) | 19 | background (0,0,0)

Channel 9
(Background)

°
°
°

Figure 6: Example of One-Hot encoding(8 classes)

3.2. Platform

Since the availability of the powerful Graphics Process-
ing Units (GPUs) will be a crucial key to train a deep con-
volutional neural network. We use the compute engine with
one NVIDIA® GTX(®) 1080ti GPU. Note that the memory
size of 1080ti GPU is 11GB, so normally it has ability to ac-
commodate most of implementation in deep convolutional
architectures. The training speed is also adjust the banch
critical factor to the success in deep learning. However, with

limit resource and four networks we want to compare with,
we also use the computer without GPU. For our tremendous
labels’ data, 11 GB is still not enough. Therefore, we have
to turn down the batch size, such as the maximum of batch
size is 2 when we train VGG 19. Note that the processing
power of 1080ti is 11.3 TFLOPS in double precision, so
it is really an ideal speed up method to our expectation of
training deep networks.

To build networks, we choose to use Tensorflow [[1] as
our library due to the following tractabilities. First, by us-
ing TensorBoard, we are able to visualize and track our
training progress in terms of accuracy and loss. Secondly,
by coding in Tensorflow, we get a chance to understand the
details in customizing estimators and loss functions.

3.3. Models

3.3.1 AlexNet

AlexNet was first presented by Krizhevsky et al.[3]. Con-
vnets are built with 8 layers, which contains 5 convolu-
tional layers, 3 pooling layers, and 3 1 x 1 convolutional
layers. And it uses ReLU operation in each convolutional
layer to model and add non-linearity. Also, it uses dropout
to overcome the overfitting problem. With these benefits,
we try to modify and apply it to this project. The architec-
ture of AlexNet with skip connection we used are shown in

Fig.[7]

Figure 7: AlexNet with skip connection

3.3.2 VGG19

VGGNet was first presented by Simonyan et al.[8]. Con-
vnets are built with 16 convolutional layers, 5 pooling lay-
ers, and 3 1 x 1 convolutional layers. The architecture of
VGGNet with skip connection we used are shown in Fig. [g]

Figure 8: VGGNet with skip connection

4. Result
4.1. Evaluation Matrix

Here, we mention two methods, pixel accuracy and mean
accuracy, to measure the performance of our results. Pixel
accuracy presents the total accuracy by comparing each
pixel in the predict image and ground truth image. In mean
accuracy, we consider each pixel accuracy in each class,
then take an average of those values. However, we just com-
pute the pixel accuracy so far in this project. We hope to
apply the mean accuracy in our future work.

Let n;; be the number of pixels of class ¢ predicted to
belong to class j, and t; = > ; Tij be the total number of
pixels of class 7. n.; is considered as number of classes.
The formula of pixel accuracy and mean accuracy are:

i Mii

e Pixel accuracy : ==—

Zi ti

e Mean accuracy : 1 i
Nel ¢ ti
In addition, the background pixels will be ignored in
evaluation part, which means the background, the last chan-
nel in label image we mention in 3.1.1, does not belong to
the class 1.

4.2. Comparison

The dataset contains 18,000 training and 1,998 testing
images. AlexNets were trained in 13k steps and VGG was
trained in 93k steps(skip) vs 41k steps(non-skip).

We compare the results of AlexNet and VGG, which are
shown in Fig[9] and Fig[I0] As our experiments, VGG19
with skip connection has the best accuracy (89%) and
VGG19 without skip connection has the worst accuracy
(59%).

In Fig[T] we show the prediction results. The first row is
the result of AlexNet nonskip model, the second row is the
result of AlexNet skip model, and the third row is the result
of VGG skip model. By comparing the first and second row,
we can see the segmenting border of AlexNet without skip

connection is blurry, but more clear with skip connection.
By comparing the second and third row, we ¢ an predict
more detail objects in the deeper network, VGG19.

Training set Testing set

Entropy loss Pixel accuracy

"

Training accuracy: 80.5 %
Testing accuracy: 77.2 %

Alex
wp | ’

Training loss: 0.049
Testing loss: 0.052

M

Training loss: 0.0526
Testing loss: 0.044

Alex

Training accuracy: 78.2%
Testing accuracy: 80.1%

Figure 9: AlexNet comparison

Training set Testing set

Entropy loss Pixel accuracy

VGG
skip

Training loss: 0.022
Testing loss: 0.03

Training accuracy: 89 %
Testing accuracy: 88 %

Figure 10: VGG19 comparison

Figure 11: Prediction result.

5. Discussion

Skip Connection: The accuracy of the model with skip
connection should be higher and improve the segmentation
detail because of fusing information we loss during pool-
ing operation. Also, the results shown in Fig[TT| meet the
expectation.

AlexNet vs. VGG net: VGG is similar to AlexNet, but
more filters. Thus, VGG can extract higher features. That is
why it is currently the most popular model, deep and simple.

Batch Size: Due to the limited GPU and RAM size, we
trained mini-batch gradient descent with batch size equal to
5 for AlexNet and 2 for VGG. Therefore, this is the reason
for large fluctuations.

Learning Rate: In this project we use learningrate =
0.0001. For the future work, we will tune learning rate to
optimize the training speed. As the prediction results shown
inlm green indicates road, blue indicates cars, etc..

6. Future Work

Due to the limitation of time and resource, we spent
much time on training process and did not able to find the
proper value of parameters. Hence, we hope to complete
the following works in the future:

e Upgrade hardware by increasing the efficiency and
memory of GPU

e Achieve real-time segmentation

e Implement different models (RNN, LSTM)

e Tune parameters to find the best performance
e Try more classes or use different dataset

e Calculate class mean accuracy which consider the per-
formance of each object

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al. Tensorflow: A system for large-scale machine
learning. In OSDI, volume 16, pages 265-283, 2016.

[2] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-
zweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The cityscapes dataset for semantic urban
scene understanding. CoRR, abs/1604.01685, 2016.

[3] A.Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks.

In Advances in neural information processing systems,
pages 1097-1105, 2012.

(4]

(5]

(6]

(71

(8]

(9]

Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. Ob-
ject recognition with gradient-based learning. In Shape,
Contour and Grouping in Computer Vision, pages 319—
, London, UK, UK, 1999. Springer-Verlag.

H. Noh, S. Hong, and B. Han. Learning deconvolution
network for semantic segmentation. In Proceedings of
the 2015 IEEE International Conference on Computer
Vision (ICCV), ICCV 15, pages 1520-1528, Washing-
ton, DC, USA, 2015. IEEE Computer Society.

M. Peng, C. Wang, T. Chen, and G. Liu. Nirfacenet:
A convolutional neural network for near-infrared face
identification. Information, 7(4):61, 2016.

E. Shelhamer, J. Long, and T. Darrell. Fully convo-
lutional networks for semantic segmentation. I[EEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 39(4):640-651, April 2017.

K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

M. D. Zeiler and R. Fergus. Visualizing and under-
standing convolutional networks. In European con-
ference on computer vision, pages 818-833. Springer,
2014.

