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Abstract— A great deal of progress has been made in object
recognition with deep convolutional neural networks, thanks to
the availability of large-scale datasets. However, these networks
can prove difficult to train from scratch when the amount of
available data is limited. The purpose of this project was to clas-
sify images of peoples facial expressions into 8 distinct emotion
classes using transfer learning on a relatively small dataset. The
Cohn-Kanade AU-Coded Facial Expression Database (C.K.)[1]
and the Japanese Female Facial Expression (J.A.F.F.E.)[2]
Databases were joined and preprocessed. AlexNet, VGG and
ResNet architectures were pre-trained on ImageNet, a relatively
large dataset containing 1.2 million images with 1000 categories.
All of the weights of the networks were then fine tuned using
transfer learning. We ultimately achieved an average 90%
accuracy across all classes during testing.

I. INTRODUCTION

Today, deep-learning (DL) is the primary approach to
analysis and classification problems. From the introduction
of novel architecture design such as the Recurrent Neural
Network (RNN), Convolutional Neural Network (CNN), and
many others, spawned an array of variations and improve-
ments to these designs, such as AlexNet, VGG, and ResNet.

These new networks have been increasing in complexity,
and in performance. They are, typically, trained on many
classes. AlexNet, for example, was trained on 1000 different
classes of images. This makes the model, in theory, develop
universal features, and better at differentiating between ob-
jects.

Emotion classification introduces a new sets of challenges,
since the model needs to be able to differentiate intra-
facial features. We use DL for, both, feature selection and
expression classification. AlexNet provides a good start for
Transfer Learning. Because of the many classes the net was
trained on, there is an expectation that universal features had
been learned by the network.

We will train, or tune, the model using 224x224 color
images as input. Then, we will classify each image as one
of eight different mood, or emotion, classes. See Fig. 1 for
the visualization of the Input/Output relationship. AlexNet is
abstracted in the figure.

II. RELATED WORK

Happy, George, and Routray used local binary patterns
(LBP) to classify facial expression grayscale images into 6
different emotions: happiness, sadness, disgust, fear, surprise
and anger. Similar to our approach, the initial data prepro-
cessing involved facial detection using a Haar Cascade Face
detection algorithm followed by a resizing of the image.
Happy, George, and Routray used LBP to find features in
minor changes in facial expression, which is then followed

Fig. 1: Input/Output of Model.

by a dimensionality reduction by using PCA. The training
result is stored to classify features. Their approach to use
LBP and PCA is different from our transfer learning using
convolutional networks, but they also encounter the problem
of generalizability results.

Arumugam used Radial Basis Function network (RBFN)
for classification and Fishers Linear Discriminant (FLD),
Singular Value Decomposition (SVD) for feature selection in
order to classify facial images into emotions. Instead of the
Haar Cascade method, the Radial Basis Function network
was used to detect faces from images. Furthermore, the
dataset was made to only include three emotions: happy,
anger and disgust. This will inherently increase the accuracy
of an classifier. On the raw images, FLD and SVD were
applied to because of their manageability, especially for large
data such as images.

In both approaches, real time images of subjects were
taken; instead of downloading databases of existing face
images. This was justified because of ease of capturing real
time images from a camera, and the author’s ability to prelect
images used for training and testing. Furthermore, the authors
were able to create large datasets of images of themselves
as testing and training data.

III. DATASET AND FEATURES

Our combined data consists of two datasets. Each con-
tained a degree of labels, and other meta-data. Before use,
and preprocessing, the datasets needed to undergo a pre-
selection process. Each image, then, underwent a standard
array of preprocessing and data augmentation that is recom-
mended for use in CNN.

A. Pre-Selection

Our combined data consists of two datasets. Each con-
tained a degree of labels, and other meta-data. Before use,
and preprocessing, the datasets needed to undergo a pre-
selection process. Each image, then, underwent a standard



array of preprocessing and data augmentation that is recom-
mended for use in a Convolutional Neural Network CNN.

• C.K. is a facial expression dataset which contains video
transitions of emotions (or moods). Each video shows
a transition from a neutral facial expression to one of
seven other moods. We are, however, performing image
classification. So, each video needed to be divided into
frames of two classes. This was done with a simple
percentage threshold. See Fig. 2 for an example of
the dataset. The dataset consisted of 120 participants
expressing seven emotions (plus neutral), with a total
of 5877 frames (images).

Fig. 2: Cohn Kanade example.

• The J.A.F.F.E. dataset contains 210 emotion images.
These are generated by ten Japanese women, each
expressing three images per class. There was no pre-
selection needed for this data set, other than sorting
into appropriate directories, as this was the most well
prepared dataset. See Fig. 3 for an example of the
dataset.

Fig. 3: J.A.F.F.E. example.

The pre-selection process reduces the overall datasets size,
slightly, and changed the number of classes. Table I shows
this change. Fig. 4 shows the distribution of data among the
classes. The data is not as uniformly distributed as we’d like,
but further ’shaving-off’ data points is not desirable with our
dataset size.

TABLE I: Dataset size change.

Dataset Initial Size After Initial # # of Classes
Name Size Selection of Classes After Selection
C.K. 5900 4500 7 8

J.A.F.F.E. 210 210 8 8

Fig. 4: Class Size Distribution.

B. Preprocessing

The images varied greatly in the size ratio of face to image;
in some images the face would take up most of the image,
and in others only a quarter. For consistency, we decided to
use a prebuilt Haar cascade function, from OpenCV, for face
detection and cropping. The crop box was increased by 20%
for some augmentations to be possible, described in the next
segment. See Fig. 5 for visualization of this processing step.

Our complete dataset contained both GrayScale and RGB
images. AlexNet architecture was, however, built for RGB
images, only. To account for this, we simply replicated the
GrayScale images into three identical layers.

Fig. 5: Cropping Example Visualization.

C. Augmentation

During data collection, researchers often focus on con-
sistency, for cleaner datasets. That means images are taken
from a similar distance and the same angles. Although the
consistency makes the data easier to work with and process,
it does not necessarily translate to better model performance.
This is because, when training, the model becomes biased
towards some features. These might be the angle of the
object, or the lighting, etc. To make our model robust to these
changes, we implemented five types of data augmentations:

• Resizing. All images are, first, resized to a 256xN
image. N is based on the dimension ratio of the image,
after cropping. For example, if, after cropping, the im-
age size was 512x200, then N=100. So, both dimensions
are resized evenly.



• Cropping. Now, we take random crops, of the 256xN
image, of size 224x224. As mentioned in the Prepro-
cessing section, the cropping rectangle was enlarged
by 20%. The enlargement, combined with this step’s
cropping, creates images where small parts of the face
are missing.

• Horizontal Flip. Flipping random images, horizontally,
does not necessarily increase the model’s robustness, but
it is an easy way to increase the dataset size. It was an
appropriate augmentation, since human faces and facial
expressions are fairly symmetric.

• Rotation. Another possible variation, during classifi-
cation, is the rotation of the object in the image. To
make our model robust to this change, we rotate random
images by ±1o. The augmentation is limited to changes
of only 1o because of the datasets size limit. In order
to train the model to be robust to bigger changes, we
would need much more data.

• GrayScale. Next, a random set of 10% of the images are
converted from RGB to GrayScale. Since the features
we want the network to learn are not necessarily in
color, but in the facial expression, this will add further
robustness to our model.

• Normalization. Finally, each image was normalized us-
ing transforms.Normalize([0.485, 0.456, 0.406], [0.229,
0.224, 0.225]), which scales the image values in the
range of [0, 1].

It is worth noting that augmentations such as these produce
a two-fold benefit. Primarily, the model becomes robust to
changes. Secondarily, by augmenting an image, we create
an augmented copy of that image, and in turn, this produces
more data. See Fig. 6 for a visualization of the Cropping
/ Horizontal Flip / Rotation / GrayScaleaugmentations
performed.

IV. METHODS

Three pre-trained networks (VGG, AlexNet, and ResNet)
were pre-tained on the ImageNet dataset using the process
known as transfer learning. First we explain the network
architectures and how they were adapted for the specific
task of emotion recognition. We then go into detail on the
learning algorithms used to train these networks on our new
datasets. Lastly, we include information of how our datasets
were augmented to increase the performance of our networks
and how we went about testing and training.

A. Network Architectures

Before explaining the structure and size of each architec-
ture we will give a generalized explanation on the subcom-
ponents used in these and other common networks, how they
work and why they are used for image recognition.

1) CNN components:
• Convolutional Layers. This is the defining feature of

CNNs that separates them from other common neural
network architectures such as Multi-layer perceptions.
For a given input layer a number of 2 dimensional
”feature map” or image stacked on a 3rd dimension or

Fig. 6: Visualization of Augmentations.

”depth” is typically fed in and a smaller rectangular
”kernel” is convolved with the image. The explicit
formulation of this process is governed by the equation
below, where h is the input layer, and a is one kernel
and the output is one layer of a feature map.

There are multiple reasons for using this convolution
operation on images. Since pixels in images typically
are only related to pixels in nearby regions and in-
dependent of pixels far away, convolution gives pixel
features ”temporal” independence. i.e. extracted features
are only functions of pixels nearby. Another reason
for using convolution is that the output feature map is



typically smaller than the original input, as expressed in
the following equations for the output size relationships.
Wo = (Win − Fw + 2P )/S + 1
ho = (hin − Fh + 2P )/S + 1
Where, wo is the output width,win is the input image
width,fw is the kernel width, p is the padding size, and
s is the stride used. Likewise, height is expressed in
the latter equation. This decrease in size allows for a
method of dimensionality reduction which is important
when reducing the number of features down for large
images (curse of dimensionality). One last important
reason for using convolutional kernels is that the inputs
used shared weights. Since a single kernel will be used
for a convolution over an entire image, it greatly reduces
the require number of parameters of each ”pixel” or di-
mension. Given that these networks can reach parameter
numbers in the order of 106, reducing the number of
weights used can reduce over fitting, and the number of
required training images.

• Rectified Linear Units (ReLU). RelU is a non-linear
activation function used at the output of each convolu-
tion layer. Clearly, just like other non-linearities used in
neural networks, ReLU allows the network to learn non-
linear functions. However, the reason for the choice of
ReLU over other activation functions is that it reduces
the ”vanishing and exploding” gradient problem caused
by deep neural networks when back propagating. This
unit allows for 6 times the training speed over tanh, with
no cost to accuracy. The ReLU function and gradients
are defined respectively below.

• Max Pooling. Max pooling solves two problems for
CNNs; it reduces the output size of each layer thus
reducing dimensionality, and it gives the network trans-
lational invariance. The latter is important because if
a feature is shifted slightly by a few pixels, it will
be collected in a ”max pool” and gets routed to later
layers of a larger perimeter. This has shown to have
higher performance than other pooling techniques such
as ”average pooling”. An example of how this is done
is shown in figure 7 below.

Fig. 7: Maxpooling Technique

• Drop Out. This technique is used in CNNs to reduce
over fitting by further reducing the number of trainable
parameters and temporarily blocking neural pathways.
The idea is that neurons become specialized for specific
features and that by randomly disabling weights forces
the network to create new paths and feature representa-
tions throughout the network.

2) Architectures & Adaptations: All of these networks
were initialized using pretrained weights, adjusted for our
specific task, and then fine tuned on our new datasets. The
task specific adjustments are also explained for each network
below. Note: ”fc” and ”dense” in all architectures stands
for a standard fully connected network.

• VGG 19. This is a deep network consisting of 19 layers.
A visualization of the original architecture follows in
figure 8. Since the pre-trained network was originally
trained on the 1000 classes of ImageNet we can see that
the final layer consists of a 4096x1000 fully connected
layer. This needed to be replaced by a randomly ini-
tialized 4096x8 fc layer, and had to be entirely trained
from scratch.

Fig. 8: VGG 19

• ResNet. This is the deepest network that we trained and
tested. It is made up of small ”residual blocks” shown
in figure 9, the purpose for the direct connection with
the input to the output is to give a direct path for the
error to back propagate through the entire network. With
such a deep network the vanishing gradient can pose a
real problem and this was designed with this in mind.
We expect this network to have the lowest error because
the depth allows the network to learn more complicated
representations and features. We can see in figure 10
that the final layer has similarly been changed to have
a final 8 class output fc layer.



Fig. 9: Residual Block for ResNet

B. Learning Algorithm

Fig. 10: ResNet architecture

• AlexNet. At only 8 layers deep this is the shallowest
network we trained and tested. The entire architecture
and adaption can be seen in figure 11. This demonstrates
the same type of layer removal described for the prior
two networks.

Fig. 11: AlexNet Architecture Change

C. Learning Algorithm

1) Problem Formulation: First we define an image
as a vector x from our training set of size N, where
xε{x1, .., xN}. We then split our dataset into batches xt of
size K. i.e. xtε{x1, ..., xK}. Our CNN takes in as input a

batch of examples, and produces a probability distribution
representing the liklelihood that an example x came from a
given class. Thus, the output is a probability distribution of
dimension C, where C is the number of classes. The final
layer of the CNN is a ”soft-max” function that produces
these probabilities governed by the following equation,

where the vector x is the features produced by the final fc
layer of the CNN, and w are the learned weights associated
with these feature, and the output is the probability that
this vector belongs to class j. Therefor, we can think of the
final layer of the CNN as a linear classifier separating the
C classes based on the learned features, and the output of
the softmax as the probability distribution of what class the
example belongs to. It can be noted that the softmax function
enforces the requirement that the probability distributions
must sum up to 1.

Each example x has a target true one-hot encoding ”label”
associated with it depending on what facial expression it
comes from. For example, if image j comes from class 8,
then the target label tj is the one-hot encoding {0, 0, 0, ..., 1}.
This label represents the target probability distribution for
this example. i.e. the probability that this example comes
from class 8 is 1.

We can now define a loss function for our loss function
because we have target labels for each image in a batch
tnε{t1, ..., tK} and output distribution we will define as Y
where ynε{y1, ..., yK}. This becomes a simple supervised
learning problem and the objective becomes to minimize the
cross entropy loss function for each batch of images denoted
below.

ΣK
j=1ΣC

i=1 − yj,i ∗ log(pj , i)
where j represents an observation, and i represents a given

class.Thus yi,j is the true label for the jth observation and
ith class, and p is the probability that the network predicted
this example belonged to that class. C and K are the number
of classes and size of a batch respectively.

2) Stochastic Gradient Descent and Momentum: For our
means of minimizing the loss function we use stochastic gra-
dient descent. That is if we define our loss function as before,
but use only one training example j as an approximation for
the the true loss function, we will arrive at the following
definition for the loss function Q(w).

Q(w) = ΣC
i=1 − yj,i ∗ log(pj , i)

We then minimize this loss function for the current training
example, and repeat this process iteratively for random
examples in the batch until we have done this for our entire
dataset. There are two main reasons to use stochastic gradient
descent over other gradient based optimization methods.
First, when the size of datasets is large, it may be compu-
tationally expensive or difficult to calculate the entire ”true”
gradient, so stochastic gradient descent samples a subset of



summand functions at every training step. The second reason
is that if a examples in a training set are highly correlated
or similar, the gradients from different examples tend to
cancel out and then add up in a single direction when you
when averaged over the entire dataset. What this means in a
practical sense is that similar training examples provide little
or no additional information when averaged together, yet to
take a single step, you must have finished an entire ”epoch”.
So using stochastc gradient descent with highly correlated
data means that you can essentially take more gradient steps
using less epochs, and therefore is typically more efficient
by number of iterations required.

To minimize this loss function we take the gradient of the
loss with respect to the network parameters w, and adjust our
weights by ”taking a step” in the direction that minimizes
the loss. This process is described by the following update
step, the parameter η, is the learning rate which is typically
adjusted iteratively can be thought of as a function of epoch
t, i.e. η = η(t)

To improve training we also use the proposed momentum
method which gets added to our gradient step. The idea
behind momentum is that we use a weighted sum of our
previous weight updates so that our gradient descent builds
”momentum” in a certain direction. This should dampen
oscillations in our gradient step keeping the average direction
of our weight updates to be in a certain direction and thus
less effected by changes in the gradient. The final form of
the weight update is defined as follows.

D. Training and Testing

Training data was augmented to ensure robust training.
The methods employed included: 240 pixel resize, random
224 pixel crop, random horizontal flip, 10% random gray
scale, +/- 1% angle deviation, and gray scale pictures to
RGB. A early stopping method using 10% of the data was
also implemented. Another 10% of the data was used solely
for testing purposes. Finally, images of one team members
faces were also tested. The data augmentation on the training
data was further detailed in the Data Augmentation section
of Dataste And Features.

V. EXPERIMENTAL RESULTS

A. Choosing a network

To classify the facial expressions we decided to run a
preliminary test on three well-known networks: AlexNet,
VGG-19, and ResNet. Each network was trained over a
constant 30 epochs to observe how well each trains per
epoch.

Fig. 12: Training loss vs epoch for each network

As shown in Fig. 12, AlexNet and VGG appear to have
similar training curves, with ResNet training significantly
faster for the same amount of epochs. This is primarily due
to the greater complexity of ResNet (over 150 layers vs 8
layers for AlexNet and 19 for VGG 19). Although VGG and
AlexNet had similar training curves AlexNet appeared to run
in less time than VGG per epoch of training. Coupling that
with the simpler architecture relative to ResNet we decided
to use AlexNet to further our testing.

B. AlexNet on test set
After training AlexNet for 50 epochs we achieved the

following accuracies across all classes:

Fig. 13: Accuracy of AlexNet for each class

In general, our network had an average of 90% accuracy
across all classes, with the highest accuracy in contempt and
the lowest in neutral.

C. Overfitting
To better understand how the network is classifying images

the confusion matrix is displayed below:



Fig. 14: Confusion Matrix for AlexNet

From the matrix in Fig 14 the test set faces from the
neutral class seemed to have false-positives as well as some
false negatives. This might be due to some of our data being
inconsistent. For instance some images from the C.K. dataset
may lean toward neutral. This is due to how the images from
this set were extracted - stills from a video displaying a range
of expression from neutral to the given expression. Hence
there could be too many images in other classes that should
belong in the neutral class.

(a) Contempt (b) Neutral

Fig. 15: Example of similarities between classes

One way we tried to mitigate this was to implement early
stopping on the training to prevent over fitting. However there
was no noticeable improvement in the network’s performance
regardless of architecture. Thus another option to explore
would be to ”clean up” the training data a bit more, removing
any images that are too ambiguous.

D. Generalizing

After having relative success with the test set we decided
to see how well the network generalized to new faces,
specifically one of ours. To limit the amount of variability

we only used one face to provide various expressions. The
network had an average accuracy of 34.7% which is much
lower than previously stated with the previous test set.

Fig. 16: Classification accuracy for a new face

We believe that due to the new lighting and photography
angles of the new expressions the network was not able
to generalize to the new data. This also explains why the
network did so well on the previous test set, which was
composed of images from the same dataset as the training
images (although the same images were not used to both test
and train; the set was portioned).

(a) Sadness (b) Disgust

Fig. 17: Example of angle and lighting variance for new face

VI. CONCLUSION
Given the accuracy of the network on the test set it is

clear that the classifier shows promise. The only pitfalls we
observed were most likely from the portioned dataset we
trained on. Thus in order to improve this model there are
a few options to consider. One possible way to improve
the networks performance would be to clean up more of
the training data, making sure that there are no mislabeling
of images. Coupling this with early stopping while training
can improve performance and generalize to new faces and
environments.
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