
“Deep Fakes” using Generative Adversarial Networks (GAN)

Tianxiang Shen
UCSD

La Jolla, USA
tis038@eng.ucsd.edu

Ruixian Liu
UCSD

La Jolla, USA
rul188@eng.ucsd.edu

Ju Bai
UCSD

La Jolla, USA
jub010@eng.ucsd.edu

Zheng Li
UCSD

La Jolla, USA
zhl153@eng.ucsd.edu

Abstract

“Deep Fakes” is a popular image synthesis technique
based on artificial intelligence. It is more powerful than tra-
ditional image-to-image translation as it can generate im-
ages without given paired training data. The goal of “Deep
Fakes” is to capture common characteristics from a collec-
tion of existed images and to figure out a way of enduing
other images with those characteristics, e.g. shapes and
styles. Generative adversarial networks (GANs) provide us
an available way to implement “Deep Fakes”.

In this project, we use a Cycle-GAN network which is a
combination of two GAN networks . The loss can be divided
into 2 parts: total generator loss LG and discriminator loss
LD, where LG includes a cycle-consistency loss Lcyc to en-
sure the images in input and output domains are mapped in
a reasonable way. We calculate and back-propagate the 2
losses iteratively to train the Cycle-GAN.

We implement our Cycle-GAN for two objectives - ob-
ject transfiguration and style transfer. In the former task
we translate images of handbags and backpacks mutually
and in the latter one we transform photos to other art styles
such as Van Gogh oil painting and Ukiyo-e. Making use
of PyTorch framework, the results of generated images are
relatively satisfying.

1. Introduction

1.1. Background

Image-to-image translation has been researched for a
long time by scientists from fields of computer vision, com-
putational photography, image processing and so on. It has
a wide range of applications for entertainment and design-
assistance. The basic principle of image translation can be
deemed as changing features of the input images in some
specific ways while keeping other features unchanged. The
method of feature change can be tuned manually or auto-
matically. For automatic change, a process based on ma-
chine learning should be included for learning a general

Figure 1. A comparison between paired training images and un-
paired training images [4]

transfer method from a large training data set of numerous
images to ensure the translation is reasonable for various
inputs [1, 2, 3].

However, during the training period, many training mod-
els require paired training images. Yet obtaining paired
training data can be difficult and expensive. For example,
building image pairs manually may be resource-consuming,
but undefined output will emerge without paired constraints.
Inspired by Zhu et al.’s work [4], we implement a Cycle-
GAN system that can learn to translate between images
without paired training images as inputs(Figure 1, right).
We test this Cycle-GAN system in two translation tasks,
namely object transfiguration that translates images be-
tween handbags and backpacks and style transfer which
transforms between real photographs and different art styles
such as oil painting and Ukiyo-e.

1.2. Previous Works

Image-to-image translation has been investigated for a
long time. Previously, it is usually carried out by manual
or semi-automatic methods [5]. Such operations include
enhancement of the contrast of pictures, image smoothing
strategies, noise reduction techniques, and so on. In 2014,
Goodfellow et al. developed image-to-image translation by

1

Figure 2. A block diagram of a GAN

using a generative adversarial network (GAN) significantly
[6]. The GAN system consists of a generator that gener-
ates images from random noises and a discriminator that
judges whether an input image is authentic or produced by
the generator. The two components are functionally adver-
sarial, and they play two adversarial roles like a forger and
a detective literally. After the training period, the generator
can produce fake images with high fidelity. In 2015, Rad-
ford et al. used a deep convolutional generative adversarial
network (DCGAN) to implement a process of unsupervised
representation learning and got a satisfactory result [7]. In
this network, the generator and discriminator are both con-
volutional neural networks (CNNs). Later in 2017, Zhu et
al. proposed a Cycle-GAN network to build an unpaired
image-to-image translation [4]. The Cycle-GAN contains
two GAN networks, and other than the loss in the tradi-
tional GAN network, it also included a cycle-consistency
loss to ensure any input is mapped to a relatively reasonable
output.

2. Physical and Mathematical framework
The framework we used in this project is a Cycle-GAN

based on deep convolutional GANs.

2.1. Generative Adversarial Networks (GAN)

The basic module for generating fake images is a GAN.
A block diagram of a typical GAN network is shown in Fig-
ure 2. A GAN network is consisted of a generator and a
discriminator. During the training period, we use a data set
X which includes a large number of real images x under
a distribution of pdata. The generator G aims to produce
images G(z) which are similar to real images x where z
are noise signals under a distribution of pz . Meanwhile, the
discriminator D aims to distinguish images generated by G
from real images x. The probability that an input image
input determined by D as a real image rather than a fake

image generated by G is denoted as D(input). Obviously
D(input) ∈ [0, 1]. We train D to maximize the probabil-
ity that D assigns the correct labels to both real images and
fake images generated by G, while G is being trained to
minimize the probability that its outputs are determined by
D as fake images, i.e. to minimize 1−D(G(z)). This two-
player minimax game between D and G can be expressed
as the following value function [6]:

min
G

max
D
V(D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(1)

After a sufficient training, the generator should be able
to produce quite realistic images by using noise signals z.
Meanwhile, the discriminator’s capability of distinguishing
fake images from real ones will also be strengthened.

2.2. Deep Convolutional GAN (DCGAN)

A convolutional GAN with a set of architecturally topo-
logical constraints for stability of training is called a DC-
GAN [7]. Both the generator and the discriminator of a
DCGAN are CNNs. In our work, the generator of a DC-
GAN is a CNN which contains three down sampling layers,
six residual layers and three up sampling layers (Figure 3),
and the discriminator is another CNN which contains four
convolutional layers (Figure 4).

2.3. Cycle-GAN

Although a DCGAN structure can fabricate images after
a sufficient training period, the translation does not guaran-
tee that an individual input x is mapped to an output y in a
meaningful way, especially the mapping is not a bijection,
i.e. all the inputs are mapped to the same output frequently,
which is called a ”mode collapse” [8]. Hence, Inspired by
Zhu et al.’s work [4], we use a Cycle-GAN which is shown
in Figure 5 for this project.

In a Cycle-GAN, there are two DCGANs, i.e. two gen-
erators and two discriminators. During the training period,
two different sets of numerous images are sent as inputs to
two DCGANs respectively. We denote these two domains
as X and Y . For one of the DCGANs, input images x are
members of domain X , and fake images generated from
noise signals should be similar to images in domain Y rather
than ones in domainX , which is different from a traditional
GAN. We denote the generator of this GAN as G, and im-
ages generated by G as G(x). We say that domain Y is the
target domain of this GAN. Similarly, for the other GAN,
input images are y which belong to domain Y , and its gen-
erator(denoted as F) should also generate images(denoted
as F (y)) which are difficult to be distinguished from images
in domain X . Hence, X is the target domain of this GAN.
The discriminator of the GAN with generator G is denoted
asDY since its goal is to distinguish fake imagesG(x) from

Figure 3. A block diagram of a generator in a DCGAN

Figure 4. A block diagram of a discriminator in a DCGAN

real images in domain Y , and similarly the discriminator of
the other GAN is denoted as DX .

We introduce the cycle consistency loss Lcyc to ensure
that if we translate an image from one domain to the other
and then back to this domain again, finally the image should
return to the place where it left [4], which means the map-
ping the input and the output is reasonable. The cycle-
consistency losses contains two parts. One is called forward
cycle-consistency loss that ensures F (G(x)) ≈ x (translate
an input image x from domain X to domain Y via mapping
G, and then back to domain X via mapping F), and the

other is called backward cycle-consistency loss that ensures
G(F (y)) ≈ y.

Meanwhile, it is also helpful to introduce an additional
loss to encourage mapping G and F to preserve color com-
position between inputs and outputs [4, 9]. We denote this
loss as Lidentity which aims to regulate the generator to be
close to an identity mapping when real images in the target
domain are provided to the generator as inputs[4].

Since there are two losses for each DCGAN, i.e. an ad-
versarial loss and a discriminator loss, we merge the adver-
sarial losses of the GANs together to obtain an adversarial

Figure 5. A demonstration of cycle-GAN [4]

Figure 6. Demonstration of results for handbag-backpack trans-
lation using Cycle-GAN. Left column for real images and right
column for generated images

loss for the whole cycle-GAN as LGAN, and we combine
the discriminator losses together to get the discriminator
loss for the whole network as LD. Summarizing, there are
four losses for our cycle-GAN:

LGAN = Ex∼pdata(x)[(1−DY (G(x)))
2]

+ Ey∼pdata(y)[(1−DX(F (y)))2]
(2)

LD = Ex∼pdata(x)[DY (G(x))
2]

+ Ey∼pdata(y)[DX(F (y))2]

+ Ex∼pdata(x)[(1−DX(x))2]

+ Ey∼pdata(y)[(1−DY (y))
2]

(3)

Figure 7. Demonstration of results for transferring photos to Van
Gogh oil paintings.

Lidentity = Ey∼pdata(y)[||G(y)− y||1]
+ Ex∼pdata(x)[||F (x)− x||1]

(4)

Lcyc = Ex∼pdata(x)[||F (G(x))− x||1]
+ Ey∼pdata(y)[||G(F (y))− y||1]

(5)

For these four losses, Lcyc and Lidentity are `1-norm
losses, meanwhile LGAN and LD are MSE losses. For sim-
plicity, we combine Lcyc, Lidentity and LGAN together as a
total generator loss LG:

LG = λ1LGAN + λ2Lidentity + λ3Lcyc (6)

where λ1, λ2 and λ3 are coefficients that control relative
importances of the three losses. We also divide LD into two

Figure 8. Demonstration of results for transferring Van Gogh oil
paintings to photos.

sections, i.e. LDX
and LDY

to express the losses of the two
discriminators respectively:

LDX
= Ex∼pdata(x)[(1−DX(x))2]

+ Ey∼pdata(y)[DX(F (y))2]
(7)

LDY
= Ey∼pdata(y)[(1−DY (y))

2]

+ Ex∼pdata(x)[DY (G(x))
2]

(8)

In each epoch of the training period, we firstly calculate
and back propagate LG, then calculate and back propagate
LDX

and finally calculate and back propagate LDY
, which

is shown in Algorithm 1, where E denotes the number of
training epochs, N denotes the number of training images,
and learnRateinit denotes the initial learning rate. After
first E0 epochs, learning rate will start decreasing linearly
until it equals to zero in the last epoch.

3. Experiments and Results
3.1. Dataset

Our implementation of Cycle-GAN aims to solve two
different problems, so we use two different sets of images
for training.

For object transfiguration (handbag-backpack transfor-
mation), the images we used are collected from Google Im-
age. We arrange 760 images as handbag inputs where 660
images for training and 100 images for testing, and 950 im-
ages as backpack inputs where 801 images for training and
149 images for testing. For style transfer (photo-Van Gogh
oil painting/Ukiyo-e transfer), we make use of data sets
from UC Berkeleys repository (available at UCB Dataset)
to train our model.

Algorithm 1 Algorithm to train a cycle-GAN
1: learnRate← learnRateinit
2: for e = 0→ E − 1 do
3: for i = 0→ N − 1 do
4: Calculate LG

5: Back-propagate LG

6: Calculate LDX

7: Back-propagate LDX

8: Calculate LDY

9: Back-propagate LDY

10: end for
11: if e ≥ E0 then
12: learnRate ← learnRateinit ∗ (1 − (e −

E0)/(E − E0))
13: end if
14: end for

3.2. Object Transfiguration

During training process, we set λ1 = 1, λ2 = 5 and
λ3 = 10, and the LD is multiplied by a coefficient of 0.5.
The losses while training are shown in Figure 9, where sub-
figures (a)-(e) show LG, LD, LGAN, Lidentity and Lcyc re-
spectively.

The results of the handbag-backpack translation are
shown in Figure 6. The figures in the left column are real
images while the figures in the right column are fake images
produced by the generator.

3.3. Style Transfer

We use the same settings used in handbag-backpack
translation for this task. And the losses while training is
shown in Figure 10.

The results of the photo-Van Gogh oil painting transla-
tion are shown in Figure 7, 8. Similarly to Figure 6, the
images in the left column are real and those in the right col-
umn are generated. However, the satisfactory part are all
for the transferring from photos to oil paintings. The photos
generated from oil paintings look not good because of the
lack of realness.

Also, the Figure 11 shows the losses decreasing process
during the training of the Cycle-GAN for transferring be-
tween photos and Ukiyo-e.

4. Result Discussion
The results of transfer photos to Ukiyo-e are demon-

strated in Figure 12, which seems rather satisfactory. How-
ever, similar to transferring Van Gogh paintings into photos,
the results of transferring Ukiyo-e to photos are not satisfac-
tory. (Figure 13)

Figure 9, 10 and 11 show that all losses decrease contin-
uously after each iteration and converge to constants at 200

https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/

Figure 9. The losses decreasing process while training cycle-GAN for handbag-backpack transfiguration. (a)-(e) show LG, LD , LGAN,
Lidentity and Lcyc respectively

epochs when the algorithm is done.

4.1. Object Transfiguration

We use perceptual studies to evaluate the performance of
the network, which is to let people distinguish real and fake
images given a pair of input and output. From Figure 6, we
can see that those handbags generated by the network in the
right column are very similar to real bags. They are different
from real backpacks in the left column in shape and style yet
reserve some special characteristics. For example, bags in
the second pair both have two vertical stripes and the third
pair have similar zipper design. We showed our result in the
presentation and most people cannot tell fake images from
real ones.

Although our network produces compelling results most
of the time, it may produce noisy images in some cases.
This may be caused by the distribution characteristics of
training datasets, or by the structure of the generator. There
is still a little instability in this unsupervised system.

4.2. Style Transfer

We trained the Cycle-GAN with Van Gogh’s oil paint-
ings and tested some photos using this network. As shown
in Figure 7, the output images,as expected, were in the style
of oil painting, with colors and details kept. There were
blurry and pale outcomes occasionally. And the situation is
similar regarding the Ukiyo-e. The generated images are all
in warm colors and are consist of a lot of very little blocks
when observed in detail, which are just the typical features
of Ukiyo-e.

However, when we try to transfer Ukiyo-e or oil paint-
ings into photos, we did not get images like photos. Some-
times we may even get the original images. The reason
for this is that GANs capture common characteristics of the
dataset and generate images in this way. Both oil paintings
and Ukiyo-e pictures have distinctive characteristics. The
characteristics of Van Gogh oil paintings are that they use
bright and hot colors extensively, as well as sporty, contin-
uous, wave-like flowing strokes. And the Ukiyo-e pictures
are always consist of warm colors such as red, yellow and
light green and covered by tiny color blocks mainly because
of the characteristics of the material that the Ukiyo-e pic-

Figure 10. The losses decreasing process while training cycle-GAN for photos and Van Gogh oil paintings transferring. (a)-(e) show LG,
LD , LGAN, Lidentity and Lcyc respectively

tures are painted on. However, normal photos have nothing
in common. The network cannot figure out a fixed pattern
of photos to do image transfer and thus produces bad fakes.

5. Future Work

One drawback of GAN neural network is it needs mul-
tiple data to train it and the speed of the training process is
rather slow. We are still finding the best optimizer functions
and batch size for the GPU to balance the robustness and
efficiency of our GAN networks.

GANs have many interesting applications in all kinds of
industry apart from generating new objects and style trans-
fer. One typical application is season transfer. We can train
the network using photos of different seasons and turn it
into a season transferring system. Likewise, our method can
be implemented as a photo enhancement technique. It can
generate photos with shallower depth of field given photos
captured by DLSR camera.

Recently, GANs have modeled patterns of motion in
video. They have also been used to reconstruct 3D models
of objects from images. There will be an increasing number
of improved GANs come into play in the near future.

References
[1] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.

Image-to-image translation with conditional adversarial net-
works. arXiv preprint, 2017. 1

[2] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European Conference on Computer Vision, pages 694–711.
Springer, 2016. 1

[3] Xiaolong Wang and Abhinav Gupta. Generative image mod-
eling using style and structure adversarial networks. In
European Conference on Computer Vision, pages 318–335.
Springer, 2016. 1

[4] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. arXiv preprint arXiv:1703.10593, 2017.
1, 2, 3, 4

[5] Rafael C Gonzalez and Richard E Woods. Image processing.
Digital image processing, 2, 2007. 1

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014. 2

Figure 11. The losses decreasing process while training cycle-GAN for photos and Ukiyo-e transferring. (a)-(e) show LG, LD , LGAN,
Lidentity and Lcyc respectively

Figure 12. Demonstration of results for transferring photos to
Ukiyo-e.

[7] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-

Figure 13. Demonstration of results for transferring Ukiyo-e to
photos.

vised representation learning with deep convolutional genera-

tive adversarial networks. arXiv preprint arXiv:1511.06434,
2015. 2

[8] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial
networks. arXiv preprint arXiv:1701.00160, 2016. 2

[9] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsu-
pervised cross-domain image generation. arXiv preprint
arXiv:1611.02200, 2016. 3

