
  

 

Abstract—Bench tests are crucial for car manufacturers 

before their cars hit the road and come to the market. 

Bench test planning is challenging for each manufacturer 

due to robustness and complexity of the test. There are 

several hundreds of features affecting the bench test, 

which introduce a lot of uncertainty to the prediction of 

bench test time. In this project, we are looking for suitable 

machine learning algorithms to predict the bench test 

time. The four models we finally choose are XGBoost, 

random forests, extremely randomized trees and gradient 

boosting. We then combine them into one model by 

assigning a weighting factor to each of them, which can 

give us the optimal prediction. We evaluate each model by 

R-square scores, which shows how good the prediction fits 

our regression. With the prediction from our algorithm, 

car manufacturers are able to plan their bench tests in a 

more efficient pattern without lowering the test quality. 

INTRODUCTION 

As one of the largest manufacturers of luxury cars, Daimler 
has always considered safety and efficiency as priorities on its 
production lines. To certificate the quality of each unique car 
configuration before they are introduced to markets, engineers 
have designed a robust testing system. However, it is pretty 
challenging to fasten the test process due to large amount of 
potential feature combinations included in these tests. 
Moreover, it is still uncertain that how each feature would 
affect the whole bench test time. If there was a competent 
algorism for predicting bench test time of each car with a given 
feature combination included in the test, it would be promising 
to manage the test time and maximize the utility that Daimler 
has. Our project is relatively abstract because all given features 
are classified by encrypting into one or two capital letters. 
While we were doing this project, we all just consider these 
features as some factors that could alter the bench test time. 
Thus, the input of our project is feature combinations. Each 
feature 𝑥𝑛 could be either one or zero, which indicates whether 
a feature is included in the bench test or not. As the input from 
each data point, the feature combination is an array only made 
of one or zero. The output for our model candidates is the bench 
test time according to a given feature combination included in 
the test. We have tried multiple model candidates, among 
which we selected best four models, gradient boosting, random 
forests, extremely randomized trees and XGBoost. We then 
combined these four models together by assigning a weighting 
factor to each model. We use this combined model to output a 
predict bench test time with an R-square score of 0.55642. 

I. DATASETS AND FEATURES 

  We use the data from a Mercedes-Benz Greener 

Manufacturing competition on the Kaggle website. There are 

                                                           
 

3367 training data sets, 842 cross-validation datasets and 4209 

test datasets. This data contains an anonymized set of 

variables, each representing a custom feature in a Mercedes-

Benz car. For example, a variable ‘a’ could be 4WD (4 wheel 

drive), while other variables might represent the headlights, 

added air suspension, or a head-up display. Variables with 

letters are categorical while variables with 0/1 are binary 

values, and there are 376 logistic features and 8 classification 

features. The ground truth it labeled ‘y’ and represents the 

time (in seconds) that the vehicles take to pass the bench test 

for each variable. 

     We divide the data into 8 classes, and Fig. 1 shows the 

feature distribution of class X0. 

 

 
Fig. 1 Feature distribution from X0 class in histogram 

     We can also visualize the data in another way. 

 
Fig. 2 Another way to display feature distribution 

A. Feature Selection 

     Feature selection is a process where we should select those 

features that contribute most to the prediction variable or 

output. Having irrelevant features in the datasets can decrease 

the accuracy of many models, especially linear algorithms like 

linear and logistic regression.  In the feature selection process, 

we find that there is an abnormal point in the ‘y’ values, which 

is 175, as is shown in Fig. 3. 
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Fig. 3 Distribution of y values 

     We remove this abnormal point and the distribution of y 

values looks like a skewed Gaussian distribution, shown in 

Fig. 4. 

 
Fig.4 Distribution of processed y values 

B. Feature Extraction 

     In this process, we compute the KL divergence for the 

classification features and set the threshold as 0.1%. The KL 

divergence formula is 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) = ∑ 𝑃(𝑖) 𝑙𝑜𝑔
𝑃(𝑖)

𝑄(𝑖)
𝑖

 

 

 
Fig. 5 Distribution before feature combination. Take class X0 as an example, 
the Red arrows show the sparse signals which are supposed to be filtered out, 

blue and purple arrows show close distributions that need to be combined. 

     By implementing the KL divergence, we can find where 

the distributions of features are too close, shown in Fig.5. And 

Fig. 6 shows the distribution after combination. 

 
Fig. 6 Feature distribution after feature combination 

II. METHODS 

     To make a better prediction, we choose several algorithms 

to build our model, the main methods we use are Gradient 

boosting, Random Forest, Support Vector Machine, XGBoost 

as well as Extremely Randomized Forest. Besides, we also use 

other methods such as Stochastic Gradient Decent, Linear 

Regression, etc. as for comparison and evaluation towards our 

selected algorithms. And finally, we decide to use a 

combination of different algorithms as an optimization to 

achieve the best prediction. 

A. Gradient Boosting 

     Gradient boosting is a machine learning technique for 

regression and classification problems, which produces a 

prediction model in the form of an ensemble of weak 

prediction models, typically decision trees. 

     In Gradient boosting, we need to assign a cost function 

𝐿(𝑦, 𝐹(𝑥)) and the number of iterations M. 

     The first step is initialize the model with a constant value 

𝐹0(𝑥) = 𝑎𝑟𝑔 min
𝛾

∑ 𝐿(𝑦𝑖 , 𝛾)

𝑛

𝑖

 

     Then implement the iteration for m=1 to M and compute 

the residuals 

𝑟𝑖𝑚 = − [
𝜕𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

𝜕  𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)

 ,    𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 

     Next we need to set a decision tree ℎ𝑚(𝑥) for the new 

training set {(𝑥𝑖 , 𝑟𝑖𝑚)}𝑖=1
𝑛  and compute the following 

𝛾𝑚 = argmin
𝛾

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛾ℎ𝑚(𝑥𝑖) )

𝑛

𝑖=1

 

     The last step in the loop is to update the function 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾ℎ𝑚(𝑥)  

B. XGBoost 

     XGBoost is an optimized distributed gradient boosting 

library designed to be highly efficient, flexible and portable. It 

implements machine learning algorithms under the Gradient 

Boosting framework. XGBoost provides a parallel tree 

boosting that solve many data science problems in a fast and 

accurate way. 

     In XGBoost, the objective function contains two part, the 

loss function and the regularization 

𝑜𝑏𝑗(𝜃) = 𝐿(𝜃) + Ω(𝜃) 

 

 



  

 Tree Ensemble  

     As for the XGBoost algorithm, a tree ensemble 

often contains a set of classification and regression 

trees. We can write y value as 

�̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖),  
𝐾

𝑘
𝑓𝑘 ∈ ℱ 

     Where K is the number of trees, f is a function in 

the functional space F, and F is the set of all possible 

CARTs. Therefore, our objective to optimize can be 

written as: 

𝑜𝑏𝑗(𝜃) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖)

𝑛

𝑖

+ ∑ 𝛺(𝑓𝑘)

𝐾

𝑘=1

 

 Tree Boosting 

     For the supervised learning models, we need to 

define the objective function and optimize it. Here 

we assume our objective function as 

𝑜𝑏𝑗(𝜃) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖
(𝑡)

)

𝑛

𝑖

+ ∑ 𝛺(𝑓𝑖)

𝑡

𝑖=1

 

 Additive Training  

     Rather than traditional training methods, in 

additive training, we train the trees by fixing what we 

have learned, then add one new tree at a time. The 

prediction value can be written as 

�̂�𝑖
(𝑡)

= ∑ 𝑓𝑘(𝑥𝑖) = �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)

𝑡

𝑖=1

 

     The objective function will be 

𝑜𝑏𝑗(𝑡) = ∑ [𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)

) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑛

𝑖=1

+ 𝛺(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

     Where 𝑔𝑖  and ℎ𝑖 are defined as 

𝑔𝑖 = 𝜕
�̂�𝑖

(𝑡−1)𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)

) 

ℎ𝑖 = 𝜕
�̂�𝑖

(𝑡−1)
2 𝑙(𝑦𝑖 , �̂�𝑖

(𝑡−1)
) 

 Regularization 

     We define the regularization part as 

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

 

     Finally we get the objective function 

𝑜𝑏𝑗(𝑡) = ∑ [𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2] + 𝛾𝑇

𝑇

𝑗=1

 

 

     Where 𝐺𝑗 = ∑ 𝑔𝑖𝑖∈𝐼𝑗
 and 𝐻𝑗 = ∑ ℎ𝑖𝑖∈𝐼𝑗

. 

     For a given structure, the best solution we can get is 

𝑤𝑗
∗=−

𝐺𝑗

𝐻𝑗+𝜆
 

𝑜𝑏𝑗∗ = −
1

2
∑

𝐺𝑗
2

𝐻𝑗+𝜆

𝑇
𝑗=1 +𝛾𝑇 

 

III. RESULT AND DISCUSSION 

A. Experiment  

     The experiment we take is to use the cross-validation 

dataset to evaluate our feature preprocessing part, rather than 

testing the model accuracy. Our cross validation test takes 4 

folds by randomly picking 25% of the raw data to form the 

cross-validation dataset. The experiment may seem redundant 

since the model doesn’t need to be much more robust. 

However, the R-square score of this robust ensemble model is 

0.64, which is much higher than the best score in Kaggle 

competition. Then we can conclude that our work on feature 

preprocessing can effectively fit the model. As for the hyper 

parameters from the cross-validation test, we do not want them 

to be stuck in a local minima. Instead of choosing gradient 

decent, we choose the ensemble methods, Bagging and 

Gradient boost, which contribute to further optimization. 

Ensemble learning methods have another advantage in 

prediction for the test dataset with their model combination. 

The reason for that is the single model from cross-validation 

dataset may not be robust enough to fit the real test data. 

B. Results 

     We choose R-square score to be the criterion of accuracy 

of the model we design. The R-square score, in statistics, is 

referred to as ‘coefficient of determination’, which is the 

proportion of the variance in the dependent variable that is 

predictable from the independent variables. Model with higher 

R-square score has the better accuracy. The most general 

formula is 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

 

     Where total sum of squares of residuals is 

𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑖 − 𝑓𝑖)
2

𝑖
= ∑ 𝑒𝑖

2

𝑖
 

     The total sum of squares is 

𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 − �̅�)2

𝑖
 

     Besides, if we divide m for both numerator and 

denominator, the equation will transform as 

𝑅2 = 1 −

∑ (𝑦𝑖 − 𝑓𝑖)
2

𝑖
𝑚⁄

∑ (𝑦𝑖 − �̅�)2
𝑖

= 1 −  
𝑀𝑆𝐸(�̂�, 𝑦)

𝑉𝑎𝑟(𝑦)
 

     Where MSE is Mean Squared Error. 

     Since the project is a discrete problem rather than a 

continuous problem, the coefficient in discrete problem 

cannot be so linearly sensitive. Thus a lower R-Squared score 

is allowed. Before we implement this evaluation, we estimate 

the R-squared could be about 0.5, which is �̅� = 0.5 in the 

equation. 

     As discuss before, we have tried many algorithms in our 

project, and the R-square score of these models is shown in 

Table 1. 

     We can see from the table above, by comparison we can 

find that models with top 3 R-square scores are  

 Gradient Boosting 

 Random Forest  

 Support Vector Machine (SVM) with linear kernel 

 



  

TABLE 1  R-square score of models 

Model R-Square score 

SVM(Linear Kernel) 0.5310703895479278 

SVM(Polynomial Kernel) 0.4292692789452468 

SVM(RBF Kernel) 0.4258513541680711 

K-Nearest Neighbors(uniform) 0.4839903962740162 

K-Nearest Neighbors(discrete) 0.4500349158417103 

Decision Tree 0.30902602134884694 

Random Forest 0.5671153256808917 

Extremely Randomized Forest 0.3853554827238316 

Gradient Boosting 0.6406754701863584 

 

     For training dataset and cross-validation, we have highest 

R-square (which is 0.6435) score using the model 

combination: 

90% Gradient Boost + 8% Forest + 2% Support Vector 

Machine (linear kernel) 

     For test dataset, we add XGBoost and achieve highest score 

assessed by Kaggle. The model combination is 

80% XGBoost + 10% Random Forest + 5% Extremely 

Randomized Forest + 5% Gradient Boosting 

     Comparing our results with existing results on Kaggle, we 

found that our R-square is the highest, which means our model 

can have a better prediction. 

IV. CONCLUSION 

     The major challenge of this project is the curse of 

dimensionality of each data. We start the project with data 

processing by generating the distribution for bench test times 

and then remove the outlier in our dataset. We then generate 

distributions for eight classification features. We set a 

threshold to filter out sparse signal and combine close 

distribution. Considering the R-square scores for each model 

candidate, we found out the best four models are gradient 

boosting, random forests, extremely randomized trees and 

XGBoost. We then assign 5%, 10%, 5% and 80% to each 

model respectively to get our final model. The R-square score 

for our final model is 0.55647. 

     For the future improvements, we believe it is better to use 

deep neural network for data featuring. The reason for that is 

our data roughly has the dimensionality of 400. DNN can 

alleviate our workload on feature extraction by automatically 

doing it. Moreover, DNN could help us with finding the latent 

data structure by generating a feature hierarchy. 
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