

Abstract—Bench tests are crucial for car manufacturers

before their cars hit the road and come to the market.

Bench test planning is challenging for each manufacturer

due to robustness and complexity of the test. There are

several hundreds of features affecting the bench test,

which introduce a lot of uncertainty to the prediction of

bench test time. In this project, we are looking for suitable

machine learning algorithms to predict the bench test

time. The four models we finally choose are XGBoost,

random forests, extremely randomized trees and gradient

boosting. We then combine them into one model by

assigning a weighting factor to each of them, which can

give us the optimal prediction. We evaluate each model by

R-square scores, which shows how good the prediction fits

our regression. With the prediction from our algorithm,

car manufacturers are able to plan their bench tests in a

more efficient pattern without lowering the test quality.

INTRODUCTION

As one of the largest manufacturers of luxury cars, Daimler
has always considered safety and efficiency as priorities on its
production lines. To certificate the quality of each unique car
configuration before they are introduced to markets, engineers
have designed a robust testing system. However, it is pretty
challenging to fasten the test process due to large amount of
potential feature combinations included in these tests.
Moreover, it is still uncertain that how each feature would
affect the whole bench test time. If there was a competent
algorism for predicting bench test time of each car with a given
feature combination included in the test, it would be promising
to manage the test time and maximize the utility that Daimler
has. Our project is relatively abstract because all given features
are classified by encrypting into one or two capital letters.
While we were doing this project, we all just consider these
features as some factors that could alter the bench test time.
Thus, the input of our project is feature combinations. Each
feature 𝑥𝑛 could be either one or zero, which indicates whether
a feature is included in the bench test or not. As the input from
each data point, the feature combination is an array only made
of one or zero. The output for our model candidates is the bench
test time according to a given feature combination included in
the test. We have tried multiple model candidates, among
which we selected best four models, gradient boosting, random
forests, extremely randomized trees and XGBoost. We then
combined these four models together by assigning a weighting
factor to each model. We use this combined model to output a
predict bench test time with an R-square score of 0.55642.

I. DATASETS AND FEATURES

 We use the data from a Mercedes-Benz Greener

Manufacturing competition on the Kaggle website. There are

3367 training data sets, 842 cross-validation datasets and 4209

test datasets. This data contains an anonymized set of

variables, each representing a custom feature in a Mercedes-

Benz car. For example, a variable ‘a’ could be 4WD (4 wheel

drive), while other variables might represent the headlights,

added air suspension, or a head-up display. Variables with

letters are categorical while variables with 0/1 are binary

values, and there are 376 logistic features and 8 classification

features. The ground truth it labeled ‘y’ and represents the

time (in seconds) that the vehicles take to pass the bench test

for each variable.

 We divide the data into 8 classes, and Fig. 1 shows the

feature distribution of class X0.

Fig. 1 Feature distribution from X0 class in histogram

 We can also visualize the data in another way.

Fig. 2 Another way to display feature distribution

A. Feature Selection

 Feature selection is a process where we should select those

features that contribute most to the prediction variable or

output. Having irrelevant features in the datasets can decrease

the accuracy of many models, especially linear algorithms like

linear and logistic regression. In the feature selection process,

we find that there is an abnormal point in the ‘y’ values, which

is 175, as is shown in Fig. 3.

Mercedes-Benz Bench Test Time Estimation

Lanjihong Ma, Kexiong Wu, Bo Xiao, Zihang Yu

Fig. 3 Distribution of y values

 We remove this abnormal point and the distribution of y

values looks like a skewed Gaussian distribution, shown in

Fig. 4.

Fig.4 Distribution of processed y values

B. Feature Extraction

 In this process, we compute the KL divergence for the

classification features and set the threshold as 0.1%. The KL

divergence formula is

𝐷𝐾𝐿(𝑃 ∥ 𝑄) = ∑ 𝑃(𝑖) 𝑙𝑜𝑔
𝑃(𝑖)

𝑄(𝑖)
𝑖

Fig. 5 Distribution before feature combination. Take class X0 as an example,
the Red arrows show the sparse signals which are supposed to be filtered out,

blue and purple arrows show close distributions that need to be combined.

 By implementing the KL divergence, we can find where

the distributions of features are too close, shown in Fig.5. And

Fig. 6 shows the distribution after combination.

Fig. 6 Feature distribution after feature combination

II. METHODS

 To make a better prediction, we choose several algorithms

to build our model, the main methods we use are Gradient

boosting, Random Forest, Support Vector Machine, XGBoost

as well as Extremely Randomized Forest. Besides, we also use

other methods such as Stochastic Gradient Decent, Linear

Regression, etc. as for comparison and evaluation towards our

selected algorithms. And finally, we decide to use a

combination of different algorithms as an optimization to

achieve the best prediction.

A. Gradient Boosting

 Gradient boosting is a machine learning technique for

regression and classification problems, which produces a

prediction model in the form of an ensemble of weak

prediction models, typically decision trees.

 In Gradient boosting, we need to assign a cost function

𝐿(𝑦, 𝐹(𝑥)) and the number of iterations M.

 The first step is initialize the model with a constant value

𝐹0(𝑥) = 𝑎𝑟𝑔 min
𝛾

∑ 𝐿(𝑦𝑖 , 𝛾)

𝑛

𝑖

 Then implement the iteration for m=1 to M and compute

the residuals

𝑟𝑖𝑚 = − [
𝜕𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

𝜕 𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)

 , 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛

 Next we need to set a decision tree ℎ𝑚(𝑥) for the new

training set {(𝑥𝑖 , 𝑟𝑖𝑚)}𝑖=1
𝑛 and compute the following

𝛾𝑚 = argmin
𝛾

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛾ℎ𝑚(𝑥𝑖))

𝑛

𝑖=1

 The last step in the loop is to update the function

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾ℎ𝑚(𝑥)

B. XGBoost

 XGBoost is an optimized distributed gradient boosting

library designed to be highly efficient, flexible and portable. It

implements machine learning algorithms under the Gradient

Boosting framework. XGBoost provides a parallel tree

boosting that solve many data science problems in a fast and

accurate way.

 In XGBoost, the objective function contains two part, the

loss function and the regularization

𝑜𝑏𝑗(𝜃) = 𝐿(𝜃) + Ω(𝜃)

 Tree Ensemble

 As for the XGBoost algorithm, a tree ensemble

often contains a set of classification and regression

trees. We can write y value as

�̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖),
𝐾

𝑘
𝑓𝑘 ∈ ℱ

 Where K is the number of trees, f is a function in

the functional space F, and F is the set of all possible

CARTs. Therefore, our objective to optimize can be

written as:

𝑜𝑏𝑗(𝜃) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖)

𝑛

𝑖

+ ∑ 𝛺(𝑓𝑘)

𝐾

𝑘=1

 Tree Boosting

 For the supervised learning models, we need to

define the objective function and optimize it. Here

we assume our objective function as

𝑜𝑏𝑗(𝜃) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖
(𝑡)

)

𝑛

𝑖

+ ∑ 𝛺(𝑓𝑖)

𝑡

𝑖=1

 Additive Training

 Rather than traditional training methods, in

additive training, we train the trees by fixing what we

have learned, then add one new tree at a time. The

prediction value can be written as

�̂�𝑖
(𝑡)

= ∑ 𝑓𝑘(𝑥𝑖) = �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)

𝑡

𝑖=1

 The objective function will be

𝑜𝑏𝑗(𝑡) = ∑ [𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)

) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑛

𝑖=1

+ 𝛺(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 Where 𝑔𝑖 and ℎ𝑖 are defined as

𝑔𝑖 = 𝜕
�̂�𝑖

(𝑡−1)𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)

)

ℎ𝑖 = 𝜕
�̂�𝑖

(𝑡−1)
2 𝑙(𝑦𝑖 , �̂�𝑖

(𝑡−1)
)

 Regularization

 We define the regularization part as

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

 Finally we get the objective function

𝑜𝑏𝑗(𝑡) = ∑ [𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2] + 𝛾𝑇

𝑇

𝑗=1

 Where 𝐺𝑗 = ∑ 𝑔𝑖𝑖∈𝐼𝑗
 and 𝐻𝑗 = ∑ ℎ𝑖𝑖∈𝐼𝑗

.

 For a given structure, the best solution we can get is

𝑤𝑗
∗=−

𝐺𝑗

𝐻𝑗+𝜆

𝑜𝑏𝑗∗ = −
1

2
∑

𝐺𝑗
2

𝐻𝑗+𝜆

𝑇
𝑗=1 +𝛾𝑇

III. RESULT AND DISCUSSION

A. Experiment

 The experiment we take is to use the cross-validation

dataset to evaluate our feature preprocessing part, rather than

testing the model accuracy. Our cross validation test takes 4

folds by randomly picking 25% of the raw data to form the

cross-validation dataset. The experiment may seem redundant

since the model doesn’t need to be much more robust.

However, the R-square score of this robust ensemble model is

0.64, which is much higher than the best score in Kaggle

competition. Then we can conclude that our work on feature

preprocessing can effectively fit the model. As for the hyper

parameters from the cross-validation test, we do not want them

to be stuck in a local minima. Instead of choosing gradient

decent, we choose the ensemble methods, Bagging and

Gradient boost, which contribute to further optimization.

Ensemble learning methods have another advantage in

prediction for the test dataset with their model combination.

The reason for that is the single model from cross-validation

dataset may not be robust enough to fit the real test data.

B. Results

 We choose R-square score to be the criterion of accuracy

of the model we design. The R-square score, in statistics, is

referred to as ‘coefficient of determination’, which is the

proportion of the variance in the dependent variable that is

predictable from the independent variables. Model with higher

R-square score has the better accuracy. The most general

formula is

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

 Where total sum of squares of residuals is

𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑖 − 𝑓𝑖)
2

𝑖
= ∑ 𝑒𝑖

2

𝑖

 The total sum of squares is

𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 − �̅�)2

𝑖

 Besides, if we divide m for both numerator and

denominator, the equation will transform as

𝑅2 = 1 −

∑ (𝑦𝑖 − 𝑓𝑖)
2

𝑖
𝑚⁄

∑ (𝑦𝑖 − �̅�)2
𝑖

= 1 −
𝑀𝑆𝐸(�̂�, 𝑦)

𝑉𝑎𝑟(𝑦)

 Where MSE is Mean Squared Error.

 Since the project is a discrete problem rather than a

continuous problem, the coefficient in discrete problem

cannot be so linearly sensitive. Thus a lower R-Squared score

is allowed. Before we implement this evaluation, we estimate

the R-squared could be about 0.5, which is �̅� = 0.5 in the

equation.

 As discuss before, we have tried many algorithms in our

project, and the R-square score of these models is shown in

Table 1.

 We can see from the table above, by comparison we can

find that models with top 3 R-square scores are

 Gradient Boosting

 Random Forest

 Support Vector Machine (SVM) with linear kernel

TABLE 1 R-square score of models

Model R-Square score

SVM(Linear Kernel) 0.5310703895479278

SVM(Polynomial Kernel) 0.4292692789452468

SVM(RBF Kernel) 0.4258513541680711

K-Nearest Neighbors(uniform) 0.4839903962740162

K-Nearest Neighbors(discrete) 0.4500349158417103

Decision Tree 0.30902602134884694

Random Forest 0.5671153256808917

Extremely Randomized Forest 0.3853554827238316

Gradient Boosting 0.6406754701863584

 For training dataset and cross-validation, we have highest

R-square (which is 0.6435) score using the model

combination:

90% Gradient Boost + 8% Forest + 2% Support Vector

Machine (linear kernel)

 For test dataset, we add XGBoost and achieve highest score

assessed by Kaggle. The model combination is

80% XGBoost + 10% Random Forest + 5% Extremely

Randomized Forest + 5% Gradient Boosting

 Comparing our results with existing results on Kaggle, we

found that our R-square is the highest, which means our model

can have a better prediction.

IV. CONCLUSION

 The major challenge of this project is the curse of

dimensionality of each data. We start the project with data

processing by generating the distribution for bench test times

and then remove the outlier in our dataset. We then generate

distributions for eight classification features. We set a

threshold to filter out sparse signal and combine close

distribution. Considering the R-square scores for each model

candidate, we found out the best four models are gradient

boosting, random forests, extremely randomized trees and

XGBoost. We then assign 5%, 10%, 5% and 80% to each

model respectively to get our final model. The R-square score

for our final model is 0.55647.

 For the future improvements, we believe it is better to use

deep neural network for data featuring. The reason for that is

our data roughly has the dimensionality of 400. DNN can

alleviate our workload on feature extraction by automatically

doing it. Moreover, DNN could help us with finding the latent

data structure by generating a feature hierarchy.

REFERENCES

[1] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting

System. In 22nd SIGKDD Conference on Knowledge Discovery and

Data Mining, 2016.
[2] Friedman, J. H. "Greedy Function Approximation: A Gradient

Boosting Machine.” February, 1999

[3] Hastie, T.; Tibshirani, R.; Friedman, J. H. (2009). "10. Boosting and
Additive Trees". The Elements of Statistical Learning (2nd ed.). New

York: Springer. pp. 337–384. ISBN 0-387-84857-6. Archived from the

original on 2009-11-10.
[4] Friedman, J. H. "Stochastic Gradient Boosting." (March 1999)

[5] Glantz, Stanton A.; Slinker, B. K. (1990). Primer of Applied

Regression and Analysis of Variance. McGraw-Hill. ISBN 0-07-
023407-8.

[6] Ben-Hur, Asa; Horn, David; Siegelmann, Hava; and Vapnik, Vladimir
N.; "Support vector clustering"; (2001); Journal of Machine Learning

Research, 2: 125–137

[7] Davies, Alex; Ghahramani, Zoubin (2014). "The Random Forest
Kernel and other kernels for big data from random partitions".

arXiv:1402.4293

[8] Davies, Alex; Ghahramani, Zoubin (2014). "The Random Forest
Kernel and other kernels for big data from random partitions".

arXiv:1402.4293

