
AnnouncementsClass is 170.

Matlab Grader homework,
1 and 2 (of less than 9) homeworks Due 22 April tonight, Binary graded.
167, 165,164 has done the homework. (If you have not done HW talk to me/TA!)
Homework 3 due 5 May
Homework 4 (SVM +DL) due ~24 May

Jupiter “GPU” home work released Wednesday. Due 10 May

Projects: 39 Groups formed. Look at Piazza for help.
Guidelines is on Piazza
May 5 proposal due. TAs and Peter can approve.

Today:
• Stanford CNN 10, CNN and seismics

Wednesday
• Stanford CNN 11, SVM, (Bishop 7),
• Play with Tensorflow playground before class http://playground.tensorflow.org

Solve the spiral problem

http://playground.tensorflow.org/

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201712

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201712

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201713

Recurrent Neural Networks: Process Sequences

e.g. Sentiment Classification
sequence of words -> sentimentFei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201714

Recurrent Neural Networks: Process Sequences

e.g. Machine Translation
seq of words -> seq of words

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201715

Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201711

Vanilla Neural Networks

“Vanilla” Neural Network

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201720

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201722

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201725

h0 fW h1 fW h2 fW h3

x3

…

x2x1

RNN: Computational Graph

hT

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201729

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201735

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201722

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201736

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201740

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample:

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a time,
feed back to model

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201744

Truncated Backpropagation through time
Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201796

Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation
1997

Vanilla RNN LSTM Cell state

Hidden state h(t)
Cell state c(t)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201797

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from
before (h)

W

i

f

o

g

vector from
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

f: Forget gate, Whether to erase cell
i: Input gate, whether to write to cell
g: Gate gate (?), How much to write to cell
o: Output gate, How much to reveal cell

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017

☉

98

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack

Classifying emergent and
impulsive seismic noise in

continuous seismic
waveforms

Christopher W Johnson NSF Postdoctoral Fellow

UCSD / Scripps Institution of Oceanography

Local Time
16 20 0 4 8 12 16

The problem
• Identify material failures in the

upper 1 km of the crust

• Separate microseismicity (M<1)

• 59-74% of daily record is not
random noise
• Earthquake <1%
• Air-traffic ~7%
• Wind ~6%

• Develop new waveform classes
• air-traffic, vehicle-traffic, wind,

human, instrument, etc.
Ben-Zion et al., GJI 2015

4/27/19 Christopher W Johnson – ECE228 CNN 2

The data
• 2014 deployment for ~30 days

• 1100 vertical 10Hz geophones
• 10-30 m spacing
• 500 samples per second
• 1.6 Tb of waveform data

• Experiment design optimized to
explore properties and deformation
in the shallow crust; upper 1km
• High res. velocity structure
• Imaging the damage zone
• Microseismic detection

~600 m

Ben-Zion et al., GJI 2015
4/27/19 Christopher W Johnson – ECE228 CNN 3

Earthquake detection
• Distributed region sensor

network
• Source location random, but

expected along major fault lines
• P-wave (compression) & S-wave

(shear) travel times
• Grid search / regression to

obtain location
• Requires robust detections for

small events

4/27/19 Christopher W Johnson – ECE228 CNN 4

from IRIS website

Recent advances in seismic detection

• 3-component
seismic data
(east, north, vert)

• CNN
• Each component

is channel
• Softmax

probability

4/27/19 Christopher W Johnson – ECE228 CNN 5

Ross et al., BSSA 2018

Recent advances in seismic detection
• Example of continuous waveform

• Every sample is classified as noise, P-wave, or S-wave
• Outperforms traditional methods utilizing STA/LTA

4/27/19 Christopher W Johnson – ECE228 CNN 6

Ross et al., BSSA 2018

Future direction is seismology
• Utilize accelerometer in everyone’s smart phone

4/27/19 Christopher W Johnson – ECE228 CNN 7

Kong et al., SRL, 2018

Research Approach and Objectives
• Need labeled data. This is >80% of the work!

• Earthquakes
• Arrival time obtained from borehole seismometer within array

• Define noise
• Develop new algorithm to produce 2 noise labels

• Signal processing / spectral analysis
• Calculate earthquake SNR

• Discard events with SNR ~1
• Waveforms to spectrogram

• Matrix of complex values
• Retain amplitude and phase

• Each input has 2 channels
• This is not a rule, just a choice

4/27/19 Christopher W Johnson – ECE228 CNN 8

Deep learning model – Noise Labeling
• Labeling is expensive

• 1 day with 1100 geophones
• ~1800 CPU hrs on 3.4GHz Xeon Gold

(1.7hr/per daily record)
• ~9000 CPU hrs on 2.6 GHz Xeon E5

on COMET (5x decrease)

• Noise training data
• 1s labels
• 1100 stations for 3 days
• Use consecutive 4 s intervals
• Calculate spectrogram

Image from Meng, Ben-Zion, and Johnson, in GJI revisions
4/27/19 Christopher W Johnson – ECE228 CNN 9

Deep learning model – Assemble data
• Obtain earthquake arrival times

• Extract 4s waveforms 1s before p-wave arrival
• Vary start time within ±0.75s before p-wave
• Use each event 5x to retain equal weight with noise
• Filter 5-30 Hz, require SNR > 1.5
• Obtain ~480,000 p-wave examples
• Incorporates spatial variability across array

• Precalculate 2 noise labels
• Use 4s of continuous labels

• Data set contains ~1.2 million labeled wavelets
• Each API has input format
• Shuffle data – Data must contain variability in subsets

P-wave

Noise
4/27/19 Christopher W Johnson – ECE228 CNN 10

Deep learning model - Labels
• Earthquake • Random noise • Not random noise

• STFT
• Normalize waveform
• Retain amp & phase
• 2 layer input matrix

• Start with 3 labels
• Equal number in each class
• It is possible that non-random

noise contains earthquakes
4/27/19 Christopher W Johnson – ECE228 CNN 11

Research Approach and Objectives
• Build Convolutional Neural Network

• Filter size, # layers, activation func (ReLU),
• Pooling, batch normalization
• FCN, softmax

• Get the model working before fine tuning
• Hyperparameters

• Learning rate
• Good start is 0.01; Adjust up/down by an order of magnitude
• Test decay

• Slow the learning rate with each epoch

• Test model design
• Improve model by systematically adjusting

• If too many things change at once, which one helps / hurts
• Batch size

• 32-256 is a good start

4/27/19 Christopher W Johnson – ECE228 CNN 12

Software
• SKlearn

• Data preprocessing
• Train, Validate, Test
• Shuffle

• Model performance
• Classification report

• Keras / Tensorflow
• Keras uses Tensorflow backend

• Great place to start learning

• Pytorch
• Use if familiar with Python and CNN
• Model is a class

• Many examples exist

4/27/19 Christopher W Johnson – ECE228 CNN 13

Convolutional Neural Network

The model design varies but
this is the general setup

4/27/19 Christopher W Johnson – ECE228 CNN 14

251 x 41

251 x 41 x 32

ReLU
Pooling 2x2

125 x 20 x 64

ReLU
Pooling 2x2

62 x 10 x 128

Convolutional Neural Network
• Convolutional

• Scan matrix by translating a mask or
template and taking inner product

• Each mask contains filter weights
• Add bias to convolution output
• Repeat for set number of output layers

all using different weights

• Weights and biases are the only
parameters
• Number of parameters increases to the

millions if using multiple hidden layers

from http://deeplearning.stanford.edu/
4/27/19 Christopher W Johnson – ECE228 CNN 15

Convolutional Neural Network

• Rectifier
• Rectified linear unit (ReLU)
• Remove negative values
• Otherwise the problem is linear

• Can also try
• tanh, Leaky ReLU, etc

from algorithmia.com
4/27/19 Christopher W Johnson – ECE228 CNN 16

Convolutional Neural Network

• Pooling
• Down sample
• Reduce dimensionality of

subsequent layers
• Common techniques

• Max pooling (non-linear)
• Avg. pooling (linear)

• After each pooling the filter
kernel is ‘zoomed out’ from the
input matrix

from algorithmia.com
4/27/19 Christopher W Johnson – ECE228 CNN 17

Convolutional Neural Network
• Advanced feature extraction technique

• Each layer has many filters detecting various features

Output ConvNet features to a
standard neural network

4/27/19 Christopher W Johnson – ECE228 CNN 18

Convolutional Neural Network
• Designed to learn complex neural

decision path
• Hidden layers with ReLU activation

• Weights are trainable parameters

• Output final layer to softmax
activation function
• sum(output layer) = 1
• Probability estimate for final layer

• Stochastic gradient descent
• Adam optimization

• Variable learning rate

• ConvNet models require >50k
LABELED training examples; even
more for very complex problems

Softmax Activation

4/27/19 Christopher W Johnson – ECE228 CNN 19

How is that actually done?

4/27/19 Christopher W Johnson – ECE228 CNN 20

Very simple Keras with Tensorflow backend example
model = Sequential()
First filter
model.add(Conv2D(64, (5, 5), activation='relu', padding='same', input_shape=(n, o, p)))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
Second filter
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
Convolution operators are multi-dimension matrix. Flatten to array
model.add(Flatten())
Send extracted features from convolutions to fully connected Neural Network
model.add(Dense(1024, activation='relu'))
model.add(BatchNormalization())
Hidden layer
model.add(Dense(1024, activation='relu'))
model.add(BatchNormalization())
Output layer with softmax activation
model.add(Dense(3, activation='softmax'))

Model performance (on test data!!)
• Type I Error (precision)

• Quantify false positive
• Prediction correct

• !"#$ %&'()(*$
!"#$ %&'()(*$+,-.'$ %&'()(*$

• Type II Error (recall)
• Quantify false negative
• Prediction misclassifies

• !"#$ %&'()(*$
!"#$ %&'()(*$+,-.'$ /$0-)(*$

• F1-score
• Good = low FP and low FN
• Bad = high FP and high FN
• Perfect == 1
• Failure == 0

4/27/19 Christopher W Johnson – ECE228 CNN 21

• Model training w/ ~930,000 2-layer
spectral amp and phase
• ~1 hour training time

• Validation and test
• Good precision on earthquakes
• Mislabeled noise data is expected
• Random noise and non-random noise

shows 80-88% precision
• Non-random will contain some

earthquakes producing

Training metrics
Validation Set # 168587

precision recall f1-score support
EQ 0.99 0.93 0.96 56107
RN 0.88 0.93 0.91 56298
NRN 0.86 0.87 0.87 56182

weighted avg 0.91 0.91 0.91 168587

Test Set # 50000
precision recall f1-score support

EQ 0.98 0.85 0.91 16799
RN 0.87 0.93 0.90 16677
NRN 0.80 0.86 0.83 16524

weighted avg 0.89 0.88 0.88 50000

Deep learning model - Training

4/27/19 Christopher W Johnson – ECE228 CNN 22

Deep learning model - Training

• Earthquakes
• High precision ~99%
• Recall ~93%

• Not-random noise
expected to have
mislabeled input

• Random noise
• Precision ~88%
• Recall ~93%

• Non-random noise
• Precision ~86%
• Recall ~87%

4/27/19 Christopher W Johnson – ECE228 CNN 23

Deep learning model – Eq Detections
• 1.5 minutes to classify 1 s

interval for entire daily
record

• Results for J-day 149
• 19 catalog events
• 64 CNN detections
• 10 node minimum for detection
• Node stack average

• Time shifted to max cc
• Borehole seismometer

comparison
• Filtered 5-30 Hz

• Similar results for all days
processed

• Comparable to RF model but
faster

4/27/19 Christopher W Johnson – SIO Geophysics Seminar 24

Remarks

• CNN can classify subtle variations in waveforms
• Used spectrogram here
• Time domain waveforms also will perform well if trained correctly

• Advantages
• Trained model can classify waveforms more efficiently
• Potential to discover new observations

• Other possible directions
• Recurrent Neural Networks

• Incorporate time information
• Denoise with autoencoders

4/27/19 Christopher W Johnson – ECE228 CNN 25

Kernels

Information unchanged, but now we
have a linear classifier on the
transformed points.

With the kernel trick, we just need kernel
! ", $ = &(")) &($)

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x
(1)

|{z}
house’s list price

, x
(2)

|{z}
estimated worth

, x
(3)

|{z}
length of time on market

, x
(4)

|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x
(1)2

, x
(2)2

, x
(1)
x
(2)
⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x
(1)2

z
(1)2 + x

(2)2
z
(2)2 + x

(1)
x
(2)
z
(1)
z
(2)
.

Example 2:

[x(1), x(2), x(3)] ! �

⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space

Image by MIT OpenCourseWare.

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x
(1)

|{z}
house’s list price

, x
(2)

|{z}
estimated worth

, x
(3)

|{z}
length of time on market

, x
(4)

|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x
(1)2

, x
(2)2

, x
(1)
x
(2)
⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x
(1)2

z
(1)2 + x

(2)2
z
(2)2 + x

(1)
x
(2)
z
(1)
z
(2)
.

Example 2:

[x(1), x(2), x(3)] ! �

⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space

Image by MIT OpenCourseWare.

Lecture 10

Support Vector Machines

Non Bayesian!

Features:

• Kernel

• Sparse representations

• Large margins

Regularize for plausibility

• Which one is best?

• We maximize the margin

Regularize for Plausibility (Generalizability)

Stephen Wright () Big Data Perspective January 2016 11 / 29

Regularize for Plausibility (Generalizability)

Stephen Wright () Big Data Perspective January 2016 11 / 29

500 Chapter 14. Kernels

Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.

R1

R0

y = 0

y > 0

y < 0

w

x

r = f(x)
∥w∥

x⊥

− w0
∥w∥

(a)

y = 0

y = 1

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

(b)

Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0 , otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0 .
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).

Regularize for plausibilityRegularize for Plausibility (Generalizability)

Stephen Wright () Big Data Perspective January 2016 11 / 29

Support Vector Machines

• The line that maximizes the minimum

margin is a good bet.

– The model class of “hyper-planes with a margin m”

has a low VC dimension if m is big.

• This maximum-margin separator is

determined by a subset of the datapoints.

– Datapoints in this subset are called

“support vectors”.

– It is useful computationally if only few

datapoints are support vectors, because

the support vectors decide which side of

the separator a test case is on.

The support vectors are

indicated by the circles around

them.

Lagrange multiplier (Bishop App E)

max $ % subject to . % = 0

Taylor	expansion
. 9 + ; = . 9 + <=∇ . 9

? %, A = $ % + A.(%)

Lagrange multiplier (Bishop App E)

max $ 9 subject to . 9 > 0
? 9, A = $ 9 + A.(9)

Either ∇ f 9 = G
Then . 9 is	inactive,	A=0

Or . 9 = 0 but	A >0

Thus optimizing ? 9, A with the

Karesh-Kuhn-Trucker (KKT)

equations

. 9 ≥ 0
A ≥ 0

A. 9 = 0

Testing a linear SVM

• The separator is defined as the set of points for which:

casenegativeaitssaybifand

casepositiveaitssaybifso

b

c

c

0.

0.

0.

<+

>+

=+

xw

xw

xw

