Class is 170. Announcements

Matlab Grader homework,

1 and 2 (of less than 9) homeworks Due 22 April tonight, Binary graded.

For HW1, please get word count <100

167, 165,164 has done the homework. (If you have not done it talk to me/TA!)
Homework 3 (released ~tomorrow) due ~5 May

Jupiter “GPU” home work released Wednesday. Due 10 May

Projects: 27 Groups formed. Look at Piazza for help.
Guidelines is on Piazza
May 5 proposal due. TAs and Peter can approve.

Today:
« Stanford CNN 9, Kernel methods (Bishop 6),
« Linear models for classification, Backpropagation

Monday
« Stanford CNN 10, Kernel methods (Bishop 6), SVM,
« Play with Tensorflow playground before class hitp://playground.tensorflow.org

http://playground.tensorflow.org/

Projects

3-4 person groups preferred

Deliverables: Poster & Report & main code (plus proposal,
midterm slide)

Topics your own or chose form suggested topics. Some
physics inspired.

April 26 groups due to TA (if you don’t have a group, ask in
piaza we can help). TAs will construct group after that.

May 5 proposal due. TAs and Peter can approve.

Proposal: One page: Title, A large paragraph, data, weblinks,
references.

Something physical

DataSet

80 % preparation, 20 % ML

Kagqgle:
nttps://inclass.kaggle.com/datasets

nttps://www.kaggle.com

UCI datasets: http://archive.ics.uci.edu/ml/index.php

Past projects...

Ocean acoustics data

https://inclass.kaggle.com/datasets
https://www.kaggle.com/
http://archive.ics.uci.edu/ml/index.php

In 2017 Many choose the source localization
two CNN projects,

Many thanks for the fun projects! Below are the final projects from the class. Only the report is posted, the
corresponding code is just as important.

1

NN DNk W

8.
9.
10.
11.

12.
13.
14.

. Source localization in an ocean waveguide using supervised machine learning, Group3, Group6, Groups,

Group10, Groupll, Groupl5

. Indoor positioning framework for most Wi-Fi-enabled devices, Groupl
. MyShake Seismic Data Classification, Group2

. Multi Label Image Classification, Group4

. Face Recognition using Machine Learning, Group7

. Deep Learning for Star-Galaxy Classification, Group9

. Modeling Neural Dynamics using Hidden Markov Models,

Groupl2

Star Prediction Based on Yelp Business Data And Application in Physics, Group13

Si K edge X-ray spectrum absorption interpretation using Neural Network, Group14

Plankton Classification Using VGG16 Network, Groupl6

A Survey of Convolutional Neural Networks: Motivation, Modern Architectures, and Current Applications in
the Earth and Ocean Sciences, Groupl7

Use satellite data to track the human footprint in the amazon rainforest, Group18

Automatic speaker diarization using machine learning techniques, Group19

Predicting Coral Colony Fate with Random Forest, Group20

[Q N | Dl R

2018: Best reports 6,10,12 15;

poor 17; alone is hard 20.

interesting 19, 47

Group|Topic Authors Poster |(Report
1 Rennplgment?uon of source locall_zatlon i an ocean Jinzhao Feng, Zhuoxi Zeng, Yu Zhang Poster |Paper
waveguide using supervised learning
2 ?l'llgcgl:sne learning methods for ship detection in satelite Yifan Li, Huadong Zhang, Xiaoshi Li, Quianfeng Guo Poster |Paper
3 Transparent Conductor Prediction Yan Sun, Yiyuan Xing, Xufan Xiong, Tianduo Hao Poster |Paper
4 Ship identification in sateklite Images Weilun Zhang, Zhaoliang Zheng, Mingchen Mao, Poster (Paper
5 Fruit Recognition Eskil Jarslkog, Richard Wang, Joel Andersson Poster (Paper
6 RSNA Bone Age Prediction JZl;]alil Camilo Castillo, Yitian Tong, Jiyang Zhao, Fengcan Poster [Paper
7 Facial Expression Classification into Emotions gﬁ;‘; Orozco, Christopher Lee, Yevgeniy Arabadzhi, Deval Poster |Paper
8 Urban Scene Segmentation for Autonomous Vehicles g;:la(f’-ir(l?hcn Huang, Eddie Tseng, Ping-Chun Chiang, Chih- Poster (Paper
9 Face Detection Using Deep Learning Yu Shen, Kuan-Wei Chen, Yizhou Hao, Min Hsuan Wu Poster [Paper
10 Understanding the Amazon Rainforest using Neural Naveen Dharshana Ketagoda, Christian Jonathan Koguchi, Poster [Paper
Networks Niral Lalit Pathak, Samuel Sunarjo LOSTEL | Tapet
11 Mercedes-Benz Bench Test Time Estimation Lanjihong Ma, Kexiong Wu, Bo Xiao, Zihang Yu Poster (Paper
. . _— Osman Cihan Kilinc, Kazim Ergun, Yuming Qiao,
12 Vegetation Classification in Hyperspectral Image Fengjunyan Li Poster [Paper
13 Threat Detection Using AlexNet on TSA scans Amartya Bhattacharyya, Christine H Lind, Rahul Shirpurkar [Poster |Paper
14 Flagellates Classification via Transfer Learning Eric Ho, Brian Henriquez, Jeffrey Yeung Poster (Paper
15 Biomedical Image Segmentation Lucas Tindall, Amir Persekian, Max Jiao Poster [Paper
16 (‘gzﬁ’)‘?akes using Generative Adversarial Networks ..\ ;210 Shen, Ruixian Liu, Ju Bai, Zheng Li Poster [Paper
17 g:tgwl(;)rk Cassification via Convelutional Neural Yizhou Chen; Xiaotong Chen; Xuanzhen Xu Poster |Paper
18 Dog Breed Identification Wenting Shi, Jiaquan Chen, Fangyu Liu, Muyun Liu Poster |Paper
19 Impact of Skewed Distributions on an Automated Will Chapman, Emal Fatima, William Jenkins, Steven Tien, Poster [Paper

Plankton Classifier

Shawheen Tosifian

amn

Dland Al Matnndinem ssnina Qinala chat Al Dae Madtanéns.

Toaxrasin ~ LTk

DaAactaw

Danmaw

Bayes and Softmax (Bishop p. 198)

Bayes:

p(ylz)p(z) _ plylz)p(z)
p(y) > ey (T, Y)

p(zly) =

Classification of N classes:

C, |x) = p(x|Cpn)p(Cp)
PG > n_1 P(xICk)p(Cr)
_ exp(an)

2521 exp(ar)
with

a, = In (p(X|Cn)p(Cn))

Parametric Approach: Linear Classifier
3072x1

f(x,W)|=[WK +[b
10x1 10x3072

— f(x,W) ——

f
\W

10x1

Image

10 numbers giving
class scores

Array of 32x32x3 numbers
3072 numbers total)

Softmax to Logistic Regression (Bishop p. 198)

o) = PXICOP(C)
pCib) > i1 p(x[Ck)p(Cr)
_ exp(ay) _ 1
Si_iexp(ay) 1+exp(—a)
with
L PeEICOp(C)

p(x|C2)p(C2)

o a; =In[p(x|C)p(Cy)]
e a=ay—a,

1
° p(C1|X) — T+exp(az—a;)

The Kullback-Leibler Divergence

P true distribution, g is approximating
distribution

KLlo) = ~ [poomatax— (= [560 1npx) ix)
_ —/p(x)ln{%} dx

N
1
L(p|lq) ~ Nz::{ In q(x,]0) + Inp(x,,)}

KL(pllq) = 0 KL(p|lq) # KL(q||p)

Cross entropy
« KL divergence (p true g approximating)

Dixi3(Pl19) = X puln(py) -27 Prln(gy)
=—H(p)+H(p,q)

« Cross entropy
H(p,q) = H(q) + Dk1y(Pll9)= -X7 Paln(gn)

« Implementations

tf.losses.sparse_softmax_cross_entropy
torch.nn.CrossEntropyLoss()

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/losses/CategoricalCrossentropy
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/losses/CategoricalCrossentropy
https://pytorch.org/docs/stable/nn.html

Cross-entropy or “softmax” function for multi-class classification

Z.
e l
The output units use a non-local non-linearity: Vi = Z z;
e
J
y1 y2 y3 output units oy,
—=y; (1=y;)
0z;

21 |42 |43
target value

The natural cost function is the negative log prob E = sz In Y;
of the right answer

= Z OE 5)/] y, —t;
82 8)/] 0z;

Reminder: 1x1 convolutions

preserves spatial
dimensions, reduces depth!

Projects depth to lower
dimension (combination of
feature maps)

1x1 CONV
56 with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

Summary: CNN Architectures

Case Studies
- AlexNet
- VGG
- GooglLeNet
- ResNet

56

56

Case Study: ResNet

[He et al., 2015]

Very deep networks using residual
connections

- 152-layer model for ImageNet

- ILSVRC’15 classification winner
(3.57% top 5 error)

- Swept all classification and
detection competitions in
ILSVRC’15 and COCQO’15!

Softmax]
FC 1000]
Pool |

]

3x3 conv 64
3x3 conv, 64

1 3x3 conv, 64 |
relu X ny, 64

F(X) + X L_3x3conv.64]

X nv, 64

3x3 conv, 128 I>
3x3 conv, 128 |
3x3 conv, 128 |
3x3 conv, 128 |

F(x) 1 relu ide)rftity

3x3 conv, 128 |
3x3 conv, 128 /2 |

3x3 cony, 64 |
3x3 conv, 64

3x3 conv, 64 |

Residual block oo O

3x3 conv. 64 |
3x3 conv, 64]

—

Pool]

Input]

Case Study: ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

56-layer
56-layer

Training error
Test error

[terations [terations

S6-layer model performs worse on both training and test error
-> The deeper model performs worse, but it's not caused by overfitting!

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

Case Study: ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

H(x) = F(x) + x T relu
Ho < TR
Use layers to
fit residual
X F(x) = H(x) - x
relu RO Wrelu identity in(st)ead (()f)
| H(x) directly
X X

“Plain” layers Residual block

Kernels
 Kernel function

k(x,x") = ¢p(x) " o(x'). (6.1)

« Kernel trick: substitute the inner product of freatures with

Kernels

We might want to consider something more complicated than a linear model:

Example 1: [z, 2?)] — ® ([x(l),x(z)]) = [az<1)2,x(2)2,x(1)x(2)]

Information unchanged, but now we 1)
have a linear classifier on the T

transformed points.

With the kernel trick, we just need kernel Input Space Feature Space

k(a,b) = ®&(a)’ @(b)

k(x,x") = ¢(x) " p(x'). (6.1)

Basis expansion

Gaussian Process (Bishop 6.4, Murphy15)

This is what a Gaussian process
posterior looks like with 4 data points
and a squared exponential
covariance function. The bold blue
line is the predictive mean, while the
light blue shade is the predictive
uncertainty (2 standard deviations).
The model uncertainty is small near
the data, and increases as we move

away from the data points.

tn:yn_l_en

f(x) ~ GP(m(x), k(x,x))

'
Y 0) L) 0)

(a) (b}

Figure 15.2 Left: some functions sampled from a GP prior with SE kernel. Right: some samples from a GP
posterior, after conditioning on 5 noise-free observations. The shaded area represents E | f(x)] +2std(f(x).
Based on Figure 2.2 of (Rasmussen and Williams 2006). Figure generated by gprDemoNoiseFree.

Dual representation, Sec 6.2
Primal problem: min E(w)
w

1 A A
E = 2ZNW 2, — 1+ SIwll2 = [1Xw — el3+ S w2

Solution w=X%t=XTX+Al,) X"t
=XTXXT+ M) 1t =X"(K+ My) 't=X"a

The kernel is K = XX7T

Dual representation is : min E(a)

E= ZN{W Xp = ta}*+ -IIWII2 IIKa—t||z+ a'Ka

ais found inverting NxN matrix
w is found inverting MxM matrix
Only kernels, no feature vectors

Dual representation, Sec 6.2
Dual representation is: min E(a)
a

1 A A
E =3 INW %, —)2+ Sl = [Ka — t]3+a"Ka
Prediction
y=w'x=a'Xx =3y aXnX = X ank(xp,x)

« Often a is sparse (... Support vector machines)
 We don’t need to know x or ¢@(x).Just the Kernel

E(a) = |Ka - t||%+§aTKa

Gaussian Kernels

e (Gaussian Kernel
1
k(x,x") = exp (— > (x — 22 1(x— x'))

Diagonal X: (this gives ARD)
N 2
1 X; —X;
k(x,x') = exp ——Z(—)
2 i 0;

Isotropic o7 gives an RBF

20°

x — x'||5
k(x,x") = exp(| ”2>

Gaussian Kernels

e (Gaussian Kernel
1
k(x,x") = exp (— > (x — 22 1(x— x'))

Diagonal X: (this gives ARD)
N 2
1 X; —X;
k(x,x') = exp ——Z(—)
2 i 0;

Isotropic o7 gives an RBF

20°

x — x'||5
k(x,x") = exp(| ”2>

Commonly used kernels

Polynomial: K(X,y)=(X.y+ l)p'\

sausslan 2/267% ’Itz;lzll:tatrr?eetuesr:r
- - —|[x— o
radial basis K (x,y)=e XV inat fhe user

function
_—/

Neural net: K(X,y)=tanh(kx.y — 0)

For the neural network kernel, there is one “hidden unit” per support vector,
so the process of fitting the maximum margin hyperplane decides how many

hidden units to use. Also, it may violate Mercer’s condition.

Example 4:

k(x,z) = (x'z+¢) = <Z W 20) C) (RPN c)
l

= z;;x —|—QCZZC
= i(az(') +Z N(V2c2D) +
j0=1

and in n = 3 dimensions, one possible feature map is:
d(x) = [x<1)2,:1:(1)x(2), o 292 V22 V202?20 c|

and c controls the relative weight of the linear and quadratic terms in the inner
product.

Even more generally, if you wanted to, you could choose the kernel to be any
higher power of the regular inner product.

Can be inner product in infinite dimensional space
Assume x € R! and v > 0.

e VIXi—=xlI* — a=v(xi—x)* — gm X 2yxixi =]

:e—”yxiz—ysz(l_i_zfyxlixj | (27XIIXJ)2 | (27X/)9 |)
1! 2!

2 2 2
—e (1 1+ TTX"' ij "\ 7 X}

» FINISHED HERE 30 April 2018

 Showed also http://playground.tensorflow.org/ in the last
10 min.

http://playground.tensorflow.org/

Sparse Bayesian Learning (SBL)

Model : y = Ax+n
Prior : x ~ N (x;0,I")
I' = diag(v1,...,7Mm)
Likelihood : p(y|x) = N (y; Ax, oLy)

g
. -

- HE EEN
v

Evidence : p(y) = [p(yX)p(x)dx = A'(¥;0,Z)

X

¥, = oIy + ATAY

SBL solution : I' = arg max p(y)
r

= arg min { log |2, | +sz;ly}
r

M.E.Tipping, " Sparse Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research,
June 2001.

Solving a Rank-Deficient System

If A is m-by-n with m > n and full rank n, each of the three statements
x =A\b

A Nice slide, But why?

theoretically computes the same least-squares solution x, although
the backslash operator does it faster.

However, if A does not have full rank, the solution to the least-squares problem is not
unique. There are many vectors x that minimize

norm(A*x -b)

The solution computed by x = A\b is a basic solution; it has at most r nonzero
components, where ris the rank of A. The solution computed by x = pinv(A)*b is the
minimal norm solution because it minimizes norm(x). An attempt to compute a solution
with x = inv(A"™A)*A"*Db fails because A'™*A is singular.

Lecture 10
Support Vector Machines

Non Bayesian!

Features:

« Kernel

« Sparse representations
« Large margins

Regqularize for plausibility
* Which one is best?

* \We maximize the margin

Regqularize for plausibility

Support Vector Machines

The line that maximizes the minimum
margin is a good bet.

— The model class of “hyper-planes with a margin m”
has a low VC dimension if m is big.

This maximum-margin separator is
determined by a subset of the datapoints.

— Datapoints in this subset are called
“support vectors”.

— It is useful computationally if only few
datapoints are support vectors, because
the support vectors decide which side of The support vectors are
the separator a test case is on. indicated by the circles around

them.

Lagrange multiplier (Bishop App E)
max(f(x)) subjectto g(x) =0

1aylor expansion fea
gx+¢&)=gx) +€Vgx)

L(x,1) = f(x) + Ag(x)

Lagrange multiplier (Bishop App E)

max(f (x)) subjectto g(x) > 0
L(x,A) = f(x) + 1g(x) v/

XA

Either Vf(x) =0
Then g(x) is inactive, 1=0

Org(x) =0 butA >0

Thus optimizing L(x, 1) with the
Karesh-Kuhn-Trucker (KKT)
equations

glx)=0
A=0
Ag(x) =0

Testing a linear SVM

* The separator is defined as the set of points for which:

wx+b=0
soif wx“+b>0 sayits a positive case

and if wx°+b<0 sayits a negative case

margin

's0 ®f Discriminant functions

y<0 R, The planar decision surface
In data-space for the simple

linear discriminant function:

W X+WO > ()

Distance fromplane /= Xt r 7/%*’%/’1

g)('-'—U(/‘T)’(L T e\

r= l—%/_/ N —Tiven,
| -
l2 o tr flvy,

y=wi¢(x)+b

LY
X, — X Y, ——
T

Large margin

y >0
y=20

y <0

max——mint
wollwl[n

. Maximum margin (Bishop 7.1)
argmin o [wl* Subject to
s tn (WTqb(Xn) + b) > 1, n=1,...,N. (7.5)

Lagrange function . ;..)= Slwl? - Zan [tn(WT (%) +b) — 1) (1.7)

. o N
Differentiation = S atdlx) (7.8)
’I’L;l
0 = Zantn. (7.9)
. n=1
Dual representation
N N N
= Z Qp — % Z Z A Gtk (Xn, Xom) (7.10)
n=1 n=1m=1
with respect to a subject to the constraints
a, = 0, n=1,..., N, (7.11)
N
> ant, = 0. (7.12)
n=1

This can be solved with quadratic programming

Maximum margin (Bishop 7.1)
« KKT conditions

a, > 0 (7.14)
thy(xn) —1 = 0 (7.15)
an {tny(x,) —1} = 0. (7.16)

either a,, = 0 or t,y(x,) = 1.

« Solving for a,

N
w = Zantnqb(xn) (7.8)
n=1
* Prediction

N
y(x) = antnk(x,x,) +D. (7.13)

n=1

If there is no separating plane...

« Use a bigger set of features.

— Makes the computation slow? “Kernel” trick
makes the computation fast with many features.

« Extend definition of maximum margin to
allow non-separating planes.

— Use “slack” variables &= |tn — y(xn)l

by (xn) =1 —&,, n=1....N (7.20)

Objective function
c;gn +olwlP (7.21)

SVM classification summarized--- Only kernels
Minimize with respect to w, wy

CEN .+ lwll? (Bishop 7.21)

Solution found in dual domain with Lagrange multipliers
- a,,n=1--Nand
This gives the support vectors S
W=)csa,t,@(xn) (Bishop 7.8)
Used for predictions

9 = wo+ WTp() = wo+) a,6,0(5)79(x)

nes

= wo + Z a t k(x,x) (Bishop 7.13)

nes

SVM for regression

= = = = c_jnsensitive
= === = huber

(a) (b)

Figure 14.10 (a) Illustration of £5, Huber and e-insensitive loss functions, where ¢ = 1.5. Figure generated
by huberLossDemo. (b) Illustration of the e-tube used in SVM regression. Points above the tube have
& > 0 and & = 0. Points below the tube have & = 0 and & > 0. Points inside the tube have
& = & = 0. Based on Figure 7.7 of (Bishop 2006a).

SVMs are Perceptrons!

SVM's use each training case, X, to define a feature K(x, .)
where K is user chosen.

— S0 the user designs the features.

SVM do “feature selection” by picking support vectors, and
learn feature weighting from a big optimization problem.

=>SVM is a clever way to train a standard perceptron.
— What a perceptron cannot do, SVM cannot do.

SVM DOES:

— Margin maximization
— Kernel trick

— Sparse

SVM Code for classification (libsvm)
Part of ocean acoustic data set http://noiselab.ucsd.edu/ECE285/SI0209Final.zip
case 'Classify’
% train
model = svmtrain(Y, X,['-c 7.46 -g ' gamma ' -q ' kernel]);
% predict
[predict_label,~, ~] = svmpredict(rand([length(Y),1]), X, model,-q");

Radial Basis Function Kernel

>> modelmodel = struct with fields:
Parameters: [5%1 double]
nr_class: 2
.. totalSV: 36
TR rho: 8.3220

Label: [2x1 double]
sv_indices: [36x1 double]
ProbA: [] ProbB: []
nSV: [2x1 double]
sv_coef: [36x1 double]
SVs: [36x2 double]

Finding the Decision Function libsvm

@ w: maybe infinite variables
@ The dual problem
min 1ozTQoz —e'«
> Corresponds to

(8

whiectto 0o C.i=1...l (Bishop 7.32)
y =5 With y=t

where Q; = yiyio(x;) d(x;) and e =[1,...,1]"
@ At optimum

/
W — Zizl a;yip(x;)
@ A finite problem: #variables = #;craiging_da{;a .

Using these results to eliminate w, b, and {,, } from the Lagrangian, we obtain the
dual Lagrangian in the form

N N
~ 1
L(a) = an =3 Z Z A At tmk (X, Xm) (7.32)

X2

X2

Linear Kernel

Sigmoid Function Kernel

%@@@'°
5'%8 g

. e@@:
':@@;ﬁ:@@“ ,::. * .
-2 0 2

Radial Basis Function Kernel

2

1

Tensorflow Playground

1. Fitting the spiral with default settings fail due to the small training set. The
NN will fit to the training data which is not representative of the true pattern

and the network will generalize poorly. Increasing the ratio of training to test
data to 90% the NN finds the correct shape (1stimage).

Tensorflow Playground

You can fix the generalization problem by adding noise to the data. This allows
the small training set to generalize better as it reduce overfitting of the training
data (2nd image).

Tensorflow Playground

Adding an additional hidden layer the NN fails to classify the shape properly.
Overfitting once again becomes a problem even after you've added noise. This
can be fixed by adding appropriate L2 regularization (third image).

‘NOT USED

Introducing slack variables

« Slack variables are non-negative. When greater than zero they
“cheat” by putting the plane closer to the datapoint than the
margin. We minimize the amount of cheating by picking a value
for lamba.

WX +b>+1-E° for positive cases

WX +b<—-1+E for negative cases

with £°> 0 forall c

+A ch as small as possible

C

The classification rule
The classification rule is simple:

bias + ZWSK(xteSt,xS) > 0

seSV
1T The set of

support vectors

The cleverness is in selecting the support vectors maximizing
the margin and computing the weight for each support vector.

Need choosing a good kernel function and maybe choosing a
lambda for non-separable cases.

Training a linear SVM

* To find the maximum margin separator, solve the optimization
problem:

wXx +b>+1 for positive cases
wXx“ +b<-1 for negative cases

and ||w ||2 is as small as possible

 It's a convex problem. There is one optimum and we can find
it without fiddling with learning rates or weight decay or early
stopping.
— Don’t worry about the optimization problem. It has been
solved. Its called quadratic programming.

A picture of the best plane with a slack variable

Large margin
y >0
y=20

y <0

Support Vector machines (SVM)

. . . 5¢ [Class: -1)
For points x,, and x, on separating line £ et
X, = Xo + dl **:*7‘:"}***;3“*** —_— H;;p;geirﬁ ISQL?ndary’
PR Y
WTXO —|_ b — O, \cjé /* -~ X0
5L
. . . wix, + b dy \ x //.
Thus distance is given by dx.) = ,)
[w] 10 | // it .
£) -."1 -
. . . . 0 5 10
For all point we maximize the margin 2
argmax dy,
w.,b

Sn(WTXn + b)
[w]

subject to

For non-linear relations y — wi¢(x,) + b.

We can formulate it in terms of kernel functions, say Gaussian

- — - -

kg (X Xm) = (%) (%) ks(x,X') = exp(—y|lx — X|]%).

Preventing overfitting when using big sets of features

Suppose we use a big set of features to ensure
that two classes are linearly separable. What is
the best separating line?

The Bayesian answer is using them all

(including ones that do not separate the data.)

Weight each line by its posterior probability (how
well it fits data and prior).

Is there an efficient way to approximate the
Bayesian answer?

A Bayesian Interpretation: Using the maximum
margin separator often gives a pretty good
approximation to using all separators weighted
by their posterior probabilities.

A potential problem and a magic solution

« Mapping input vectors into a very high-D feature space, surely
finding the maximum-margin separator is computationally
intractable?

— The mathematics is all linear, but the vectors have a huge
number of components.

— Taking the scalar product of two vectors is expensive.

« The way to keep things tractable is “the kernel trick”

* The kernel trick makes your brain hurt when you first learn
about it, but it is actually simple.

Preprocessing the input vectors

 |Instead predicting the answer directly from the raw inputs we
could start by extracting a layer of “features”.

— Sensible if certain combinations of input values would be
useful (e.g. edges or corners in an image).

 Instead of learning the features we could design them by hand.

— The hand-coded features are equivalent to a layer of non-
linear neurons with no need to be learned.

— Using a big set of features for a two-class problem, the
classes will almost certainly be linearly separable.
« But surely the linear separator gives poor generalization.

What the kernel trick achieves

Finding the maximum-margin separator is expressed as scalar
products between pairs of datapoints (in high-D feature space).

These scalar products are the only part of the computation that
depends on the dimensionality of the high-D space.

— We need a fast way to do the scalar products to solve the
learning problem in the high-D space.

The kernel trick is a magic way of doing scalar products.

— It relies on mapping to the high-D feature space that allows
fast scalar products.

How to make a plane curved

 Fitting hyperplanes as separators is
mathematically easy.

— The mathematics is linear.

* Replacing the raw input variables
with a much larger set of features we
get a nice property:

— A planar separator in high-D
feature space is a curved \
separator in the low-D input

Space. A planar separator in a 20-D
feature space projected back
to the original 2-D space

|s preprocessing cheating?

* Its cheating if using carefully designed set of task-specific,
hand-coded features and claim that the learning algorithm
solved the whole problem.

— The really hard bit is designing the features.
* Its not cheating if we learn the non-linear preprocessing.
— This makes learning more difficult and more interesting (e.qg.
backpropagation after pre-training)

* Its not cheating if we use a very big set of non-linear features

that is task-independent.
— Support Vector Machines do this.
— They prevent overfitting (first half of lecture)

— They use a huge number of features without requiring as
much computation as seems to be necessary (second half).

A hierarchy of model classes

h4 h3 " h1<h2<h3...

« Some model classes can be arranged in a hierarchy of
Increasing complexity.

* How to pick the best level in the hierarchy for modeling a given
dataset?

A way to choose a model class

* Alow error rate on unseen data.

— This is called “structural risk minimization”

« A guarantee of the following form is helpful:
Test error rate =< train error rate + f(N, h, p)
Where N = size of training set,

h = measure of the model complexity,
p = the probability that this bound fails
We need p to allow for really unlucky test sets.

* Then we choose the model complexity that minimizes the
bound on the test error rate.

The story so far

 Using a large set of non-adaptive features, we might make the
two classes linearly separable.

— But just fitting any separating plane, it will not generalize well
to new cases.

» Fitting the separating plane maximizing the margin (minimum
distance to any data points), gives better generalization.

— Intuitively, maximizing the margin squeezes the surplus
capacity that came from using a high-dimensional feature

space.
This is justified by a lot of clever mathematics which shows that
— large margin separators have lower VC dimension.
— models with lower VC dimension have a smaller gap between training and test error rates.

Dealing with the test data

Choosing a high-D mapping for which the kernel trick works,
we do not use much CPU time for the high-D when finding the
best hyper-plane.

— We cannot express the hyperplane by using its normal
vector in the high-D space because this vector is huge.

— Luckily, we express it in terms of the support vectors.

What about the test data. We cannot compute the scalar
product W. ¢(X) because its in the high-D space.

Deciding which side of the separating hyperplane a test point
lies on, requires a scalar product . w . @#(X)

We express this scalar product as a weighted average of
scalar products using stored support vectors

— Could be slow many support vectors.

Performance

SVM work very well in practice.

— The user must choose the kernel function and its
parameters, but the rest is automatic.

— The test performance is very good.
They can be expensive in time and space for big datasets

— The computation of the maximum-margin hyper-plane
depends on the square of number of training cases.

— Need storing all the support vectors.

SVM's are good if you have no idea about what structure to
Impose.

The kernel trick can also be used for PCA in a high-D space,
thus giving a non-linear PCA in the original space.

