
AnnouncementsClass is  176.

Matlab Grader homework, 
1 and 2 (of less than 9) homeworks Due 22 April tonight, Binary graded.
For HW1, please get word count <100
Homework 3 (not released yet) due ~29 April

Jupiter “GPU” home work released Wednesday. Due 10 May

Projects: 19 Groups formed. Look at Piazza for help

Today: 
Stanford CNN 8
Linear models for classification, Backpropagation

Wednesday 
Stanford CNN 9, Kernel methods (Bishop 6), 
Play with Tensorflow playground before class http://playground.tensorflow.org

http://playground.tensorflow.org/
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CPU vs GPU
# Cores Clock Speed Memory Price

CPU
(Intel Core 
i7-7700k)

4
(8 threads with 
hyperthreading
)

4.4 GHz Shared with system $339

CPU
(Intel Core 
i7-6950X)

10 
(20 threads 
with 
hyperthreading
)

3.5 GHz Shared with system $1723

GPU
(NVIDIA 
Titan Xp)

3840 1.6 GHz 12 GB GDDR5X $1200

GPU
(NVIDIA 
GTX 1070)

1920 1.68 GHz 8 GB GDDR5 $399

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks
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Programming GPUs

● CUDA (NVIDIA only)
○ Write C-like code that runs directly on the GPU
○ Higher-level APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower :(

● Udacity: Intro to Parallel Programming 
https://www.udacity.com/course/cs344
○ For deep learning just use existing libraries

13



GPU is efficient with matrices
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Example: Matrix Multiplication

A x B
B x C

A x C

=

12



Main packages 2017 
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Today

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

Mostly these

A bit about these

CNTK 
(Microsoft)

Paddle 
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...

+Keras



DL frame work gives:
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The point of deep learning frameworks

(1) Easily build big computational graphs
(2) Easily compute gradients in computational graphs
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)

25
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input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Recall: Computational Graphs
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The point of deep learning frameworks
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy
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Computational Graphs
x y z

*

a
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b
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c

Numpy

TensorFlow
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CNN class
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My Advice:
TensorFlow is a safe bet for most projects. Not perfect but has 
huge community, wide usage. Maybe pair with high-level wrapper 
(Keras, Sonnet, etc)
I think PyTorch is best for research. However still new, there can be 
rough patches.
Use TensorFlow for one graph over many machines
Consider Caffe, Caffe2, or TensorFlow for production deployment
Consider TensorFlow or Caffe2 for mobile



What NN is this?



Classification vs regression
Range 1 to range N



What is “linear” classification?
Classification is intrinsically non-linear

It puts non-identical things in the same class, so a difference in input vector 
sometimes causes zero change in the answer 

“Linear classification” means that the part that adapts is linear
The adaptive part is followed by a fixed non-linearity. 
It may be preceded by a fixed non-linearity (e.g. nonlinear basis functions).
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Representing the target values for classification
For two classes, we use an output with target values 1 for the 
“positive” class and 0 (or -1) for the other class

For probabilistic class labels the target value is P(t=1) and 
the model output  can also represent P(y=1).

For N classes we often use a vector of N target values 
containing an 1 at the correct class and 0 elsewhere.

For probabilistic labels we can then use a vector of class 
probabilities as the target vector.



Three approaches to classification
Use discriminant functions directly without probabilities:

Convert input vector into real values. A simple operation (like 
thresholding) can get the class.

Choose real values to maximize the useable information about the 
class label that is in the real value.

Infer conditional class probabilities:
Compute the conditional probability of each class.

Then make a decision that minimizes some loss function
Compare the probability of the input under separate, class-
specific, generative models.

E.g. fit a multivariate Gaussian to the input vectors of each 
class and see which Gaussian makes a test data vector most 
probable. (Is this the best bet?)

)|( xkCclassp =



The planar decision surface 
in data-space for the simple 
linear discriminant function:

00 ³+ wTxw

X on plane => y=0 => 

Distance from plane

Discriminant functions



Discriminant functions for N>2 classes
One possibility is using N two-way discriminant functions.

Each function discriminates one class from the rest.
Another is using N(N-1)/2 two-way discriminant functions

Each function discriminates between two particular classes.
Both methods have problems 

More than one good 
answer

Two-way preferences 
need not be  transitive! 



A simple solution (4.1.2)
Use N discriminant functions,                     
and pick the max.

This is guaranteed to give consistent and 
convex decision regions if y is linear.

( ) ( )BAjBAk

BjBkAjAk

yy
thatpositiveforimplies

yyandyy

xxxx

xxxx

)1()1(
)(

)()()()(

aaaa
a

-+>-+

>>

...,, kji yyy

Decision boundary?



PCA don’t work well



picture showing the advantage of Fisher’s linear 
discriminant

When projected onto the line 
joining the class means, the 
classes are not well separated.

Fisher chooses a direction that makes 
the projected classes much tighter, 
even though their projected means are 
less far apart.



Math of Fisher’s linear discriminants
What linear transformation is best for discrimination?
The projection onto the vector separating the class 
means seems sensible:

But we also want small variance within each class:

Fisher’s objective function is:
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We have done probabilistic classification!



Probabilistic Models for Discrimination (Bishop p 196)

Use a generative model of the input vectors for each class, 
see which model makes a input vector most probable.
The posterior probability of class 1 is:
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An example for continuous inputs
Assume input vectors for each class are Gaussian, all classes 
have the same covariance matrix.

For two classes, C1 and C0, the posterior is a logistic:
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The role of the inverse covariance matrix

If the Gaussian is spherical no need to worry 
about the covariance matrix.
So, start by transforming the data space to 
make the Gaussian spherical

This is called “whitening” the data.
It pre-multiplies by the matrix square 
root of the inverse covariance matrix. 

In transformed space, the weight vector is 
the difference between transformed means.
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Posterior when covariance matrices are different for each class 
(Bishop Fig )

The decision surface is planar when 
the covariance matrices are the same 
and quadratic when not.



The logistic function
The output is a smooth function 
of the inputs and the weights.
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The natural error function for the logistic

Fitting logistic model using 
maximum likelihood, requires 
minimizing the negative log 
probability of the correct answer 
summed over the training set.
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Logistic regression (Bishop 205)
𝑝 𝐶# 𝒙 = 𝜎(𝒘)𝒙)
Observations 
Likelihood
𝑦 = 𝜎(𝒘)𝒙)

𝑝 𝑦 𝒙,𝒘 =

𝑝 𝑇 𝒙,𝒘 =

Log-likelihood

Minimize	–log	like
Derivative

∇𝒘𝐸𝒘 =

𝐸𝒘 = −𝑙𝑛(𝑝 𝑇 𝒙,𝒘 )=

Using the chain rule to get the error derivatives
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Cross-entropy or “softmax” function for multi-class classification
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Lecture 8: Backpropagation



Number of parameters
𝒕 = 𝒘)𝒙 ,N measurement, M parameters

How large a w can we determine?

𝒕 = 𝜑(𝒘, 𝒙)
How large a w can we determine?

Consider a neural network, with one hidden layer, each layer 
having N=M=100 nodes

How large is W?
How many observations is needed to estimate W?



Why we need backpropagation
Networks without hidden units are very limited in the input-output 
mappings they can model.

More layers of linear units do not help. Its still linear.
Fixed output non-linearities are not enough

We need multiple layers of adaptive non-linear hidden units, 
giving a universal approximator. But how to train such nets?

We need an efficient way of adapting all the weights, not just 
the last layer. Learning the weights going into hidden units is 
equivalent to learning features. 
Nobody is telling us directly what hidden units should do.



The idea behind backpropagation

Don’t know what the hidden units should be, but we can compute 
how fast the error changes as we change a hidden activity.

Instead of using desired activities to train the hidden units, use 
error derivatives w.r.t. hidden activities.
Each hidden activity affect many output units and have many 
separate effects on the error. 
Error derivatives for all the hidden units is computed efficiently. 
Once we have the error derivatives for the hidden activities, its 
easy to get the error derivatives for the weights going into a 
hidden unit.



Non-linear neurons with smooth derivatives

For backpropagation, we need 
neurons that have well-behaved 
derivatives.

Typically they use the logistic 
function
The output is a smooth function 
of inputs and weights.
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CNN lecture 4 explain Backpropagation simple
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example
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add gate: gradient distributor

Patterns in backward flow

Q: What is a max gate?
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add gate: gradient distributor

Patterns in backward flow

max gate: gradient router

mul gate: gradient switcher



Bernoulli distribution
Random variable 𝑥 ∈ 0,1
Coin flipping: heads=1, tails=0

Bernoulli Distribution

ML for Bernoulli
Given: 



Maximum Likelihood and Least Squares (from lecture 3)
Computing the gradient and setting it to zero yields

Solving for w,  

where

The Moore-Penrose 
pseudo-inverse,       .



LSQ for classification

184 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.3 Illustration of the decision regions for a mul-
ticlass linear discriminant, with the decision
boundaries shown in red. If two points xA

and xB both lie inside the same decision re-
gion Rk, then any point bx that lies on the line
connecting these two points must also lie in
Rk, and hence the decision region must be
singly connected and convex.

Ri

Rj

Rk

xA

xB

x̂

where 0 ! λ ! 1. From the linearity of the discriminant functions, it follows that

yk(x̂) = λyk(xA) + (1 − λ)yk(xB). (4.12)

Because both xA and xB lie inside Rk, it follows that yk(xA) > yj(xA), and
yk(xB) > yj(xB), for all j ̸= k, and hence yk(x̂) > yj(x̂), and so x̂ also lies
inside Rk. Thus Rk is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here,
based on two discriminant functions y1(x) and y2(x), or else use the simpler but
equivalent formulation described in Section 4.1.1 based on a single discriminant
function y(x).

We now explore three approaches to learning the parameters of linear discrimi-
nant functions, based on least squares, Fisher’s linear discriminant, and the percep-
tron algorithm.

4.1.3 Least squares for classification
In Chapter 3, we considered models that were linear functions of the parame-

ters, and we saw that the minimization of a sum-of-squares error function led to a
simple closed-form solution for the parameter values. It is therefore tempting to see
if we can apply the same formalism to classification problems. Consider a general
classification problem with K classes, with a 1-of-K binary coding scheme for the
target vector t. One justification for using least squares in such a context is that it
approximates the conditional expectation E[t|x] of the target values given the input
vector. For the binary coding scheme, this conditional expectation is given by the
vector of posterior class probabilities. Unfortunately, however, these probabilities
are typically approximated rather poorly, indeed the approximations can have values
outside the range (0, 1), due to the limited flexibility of a linear model as we shall
see shortly.

Each class Ck is described by its own linear model so that

yk(x) = w T
k x + wk0 (4.13)

where k = 1, . . . , K. We can conveniently group these together using vector nota-
tion so that

y(x) = W̃Tx̃ (4.14)

Consider a training set {𝒙N, 𝒕N}, 𝑛 = 1…N
Define X and T
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where W̃ is a matrix whose kth column comprises the D + 1-dimensional vector
w̃ k = (wk0, w T

k )T and x̃ is the corresponding augmented input vector (1,xT)T with
a dummy input x0 = 1. This representation was discussed in detail in Section 3.1. A
new input x is then assigned to the class for which the output yk = w̃ T

k x̃ is largest.
We now determine the parameter matrix W̃ by minimizing a sum-of-squares

error function, as we did for regression in Chapter 3. Consider a training data set
{xn, tn} where n = 1, . . . , N , and define a matrix T whose nth row is the vector tT

n ,
together with a matrix X̃ whose nth row is x̃T

n . The sum-of-squares error function
can then be written as

ED(W̃) =
1
2

Tr
{

(X̃W̃ − T)T(X̃W̃ − T)
}

. (4.15)

Setting the derivative with respect to W̃ to zero, and rearranging, we then obtain the
solution for W̃ in the form

W̃ = (X̃TX̃)−1X̃TT = X̃†T (4.16)

where X̃† is the pseudo-inverse of the matrix X̃, as discussed in Section 3.1.1. We
then obtain the discriminant function in the form

y(x) = W̃Tx̃ = TT
(
X̃†

)T

x̃. (4.17)

An interesting property of least-squares solutions with multiple target variables
is that if every target vector in the training set satisfies some linear constraint

aTtn + b = 0 (4.18)

for some constants a and b, then the model prediction for any value of x will satisfy
the same constraint so thatExercise 4.2

aTy(x) + b = 0. (4.19)

Thus if we use a 1-of-K coding scheme for K classes, then the predictions made
by the model will have the property that the elements of y(x) will sum to 1 for any
value of x. However, this summation constraint alone is not sufficient to allow the
model outputs to be interpreted as probabilities because they are not constrained to
lie within the interval (0, 1).

The least-squares approach gives an exact closed-form solution for the discrimi-
nant function parameters. However, even as a discriminant function (where we use it
to make decisions directly and dispense with any probabilistic interpretation) it suf-
fers from some severe problems. We have already seen that least-squares solutionsSection 2.3.7
lack robustness to outliers, and this applies equally to the classification application,
as illustrated in Figure 4.4. Here we see that the additional data points in the right-
hand figure produce a significant change in the location of the decision boundary,
even though these point would be correctly classified by the original decision bound-
ary in the left-hand figure. The sum-of-squares error function penalizes predictions
that are ‘too correct’ in that they lie a long way on the correct side of the decision

LSQ solution:

And prediction
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Using “least squares” for classification
It does not work as well as better methods, but it is easy:

It reduces classification to least squares regression.

logistic regression

least squares 
regression
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hand figure produce a significant change in the location of the decision boundary,
even though these point would be correctly classified by the original decision bound-
ary in the left-hand figure. The sum-of-squares error function penalizes predictions
that are ‘too correct’ in that they lie a long way on the correct side of the decision
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where W̃ is a matrix whose kth column comprises the D + 1-dimensional vector
w̃ k = (wk0, w T

k )T and x̃ is the corresponding augmented input vector (1,xT)T with
a dummy input x0 = 1. This representation was discussed in detail in Section 3.1. A
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k x̃ is largest.
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error function, as we did for regression in Chapter 3. Consider a training data set
{xn, tn} where n = 1, . . . , N , and define a matrix T whose nth row is the vector tT

n ,
together with a matrix X̃ whose nth row is x̃T

n . The sum-of-squares error function
can then be written as

ED(W̃) =
1
2

Tr
{

(X̃W̃ − T)T(X̃W̃ − T)
}

. (4.15)

Setting the derivative with respect to W̃ to zero, and rearranging, we then obtain the
solution for W̃ in the form

W̃ = (X̃TX̃)−1X̃TT = X̃†T (4.16)

where X̃† is the pseudo-inverse of the matrix X̃, as discussed in Section 3.1.1. We
then obtain the discriminant function in the form

y(x) = W̃Tx̃ = TT
(
X̃†

)T

x̃. (4.17)

An interesting property of least-squares solutions with multiple target variables
is that if every target vector in the training set satisfies some linear constraint

aTtn + b = 0 (4.18)

for some constants a and b, then the model prediction for any value of x will satisfy
the same constraint so thatExercise 4.2

aTy(x) + b = 0. (4.19)

Thus if we use a 1-of-K coding scheme for K classes, then the predictions made
by the model will have the property that the elements of y(x) will sum to 1 for any
value of x. However, this summation constraint alone is not sufficient to allow the
model outputs to be interpreted as probabilities because they are not constrained to
lie within the interval (0, 1).

The least-squares approach gives an exact closed-form solution for the discrimi-
nant function parameters. However, even as a discriminant function (where we use it
to make decisions directly and dispense with any probabilistic interpretation) it suf-
fers from some severe problems. We have already seen that least-squares solutionsSection 2.3.7
lack robustness to outliers, and this applies equally to the classification application,
as illustrated in Figure 4.4. Here we see that the additional data points in the right-
hand figure produce a significant change in the location of the decision boundary,
even though these point would be correctly classified by the original decision bound-
ary in the left-hand figure. The sum-of-squares error function penalizes predictions
that are ‘too correct’ in that they lie a long way on the correct side of the decision


