Class is 176.

Announcements

Matlab Grader homework,

1 and 2 (of less than 9) homeworks Due 22 April **tonight**, Binary graded. For HW1, please get word count <100 Homework 3 (not released yet) due ~29 April

Jupiter "GPU" home work released Wednesday. Due 10 May

Projects: 19 Groups formed. Look at Piazza for help

Today: Stanford CNN 8 Linear models for classification, Backpropagation

Wednesday Stanford CNN 9, Kernel methods (Bishop 6), Play with Tensorflow playground before class <u>http://playground.tensorflow.org</u>

CPU vs GPU

	# Cores	Clock Speed	Memory	Price	CPU: Fewer cores,
CPU (Intel Core i7-7700k)	4 (8 threads with hyperthreading)	4.4 GHz	Shared with system	\$339	 but each core is much faster and much more capable; great at sequential tasks GPU: More cores, but each core is much slower and "dumber"; great for parallel tasks
CPU (Intel Core i7-6950X)	10 (20 threads with hyperthreading)	3.5 GHz	Shared with system	\$1723	
GPU (NVIDIA Titan Xp)	3840	1.6 GHz	12 GB GDDR5X	\$1200	
GPU (NVIDIA GTX 1070)	1920	1.68 GHz	8 GB GDDR5	\$399	

Programming GPUs

- CUDA (NVIDIA only)
 - Write C-like code that runs directly on the GPU
 - Higher-level APIs: cuBLAS, cuFFT, cuDNN, etc
- OpenCL
 - \circ $\,$ Similar to CUDA, but runs on anything $\,$
 - Usually slower :(
- Udacity: Intro to Parallel Programming <u>https://www.udacity.com/course/cs344</u>
 - For deep learning just use existing libraries

GPU is efficient with matrices

Example: Matrix Multiplication

Main packages 2017

+Keras

DL frame work gives:

- (1) Easily build big computational graphs
- (2) Easily compute gradients in computational graphs
- (3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)

DL frame work gives:

- (1) Easily build big computational graphs
- (2) Easily compute gradients in computational graphs
- (3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)

Computational Graphs

Numpy

```
import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x * y
b = a + z
c = np.sum(b)
```


Computational Graphs Numpy Х import numpy as np * np.random.seed(0) N, D = 3, 4а x = np.random.randn(N, D)y = np.random.randn(N, D)z = np.random.randn(N, D)a = x * yb = a + zc = np.sum(b)grad c = 1.0grad b = grad c * np.ones((N, D)) grad a = grad b.copy() grad z = grad b.copy()grad x = grad a * y grad y = grad a * x

Ζ + b Σ С

TensorFlow

Basic computational graph import numpy as np np.random.seed(0) import tensorflow as tf

N, D = 3, 4

x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = tf.placeholder(tf.float32)

```
a = x * y
b = a + z
c = tf.reduce_sum(b)
```

grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z])

CNN class

My Advice:

TensorFlow is a safe bet for most projects. Not perfect but has huge community, wide usage. Maybe pair with high-level wrapper (Keras, Sonnet, etc)

I think **PyTorch** is best for research. However still new, there can be rough patches.

Use **TensorFlow** for one graph over many machines

Consider Caffe, Caffe2, or TensorFlow for production deployment

Consider **TensorFlow** or **Caffe2** for mobile

What NN is this?

Classification vs regression

Range 1 to range N

What is "linear" classification?

Classification is intrinsically non-linear

It puts non-identical things in the same class, so a difference in input vector sometimes causes zero change in the answer

"Linear classification" means that the part that adapts is linear

The adaptive part is followed by a fixed non-linearity.

It may be preceded by a fixed non-linearity (e.g. nonlinear basis functions).

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0,$$

adaptive linear function

$$Decision = f(y(\mathbf{x}))$$

$$\uparrow$$
fixed non-linear function

Representing the target values for classification

For two classes, we use an output with target values **1** for the "positive" class and **0** (or **-1**) for the other class

For probabilistic class labels the target value is **P(t=1)** and the model output can also represent **P(y=1)**.

For **N** classes we often use a vector of N target values containing an **1** at the correct class and **0** elsewhere.

For probabilistic labels we can then use a vector of class probabilities as the target vector.

Three approaches to classification

Use **discriminant functions** directly without probabilities:

Convert input vector into real values. A simple operation (like thresholding) can get the class.

Choose real values to maximize the useable information about the class label that is in the real value.

Infer conditional class probabilities:

$$p(class = C_k \mid \mathbf{x})$$

Compute the conditional probability of each class.

Then make a decision that minimizes some loss function

Compare the probability of the input under separate, class-specific, generative models.

E.g. fit a multivariate **Gaussian** to the input vectors of each class and see which Gaussian makes a test data vector most probable. (Is this the best bet?)

The planar decision surface in data-space for the simple linear discriminant function: T

$$\mathbf{w}' \mathbf{x} + w_0 \ge 0$$

X on plane => y=0 =>

Distance from plane

Discriminant functions for N>2 classes One possibility is using N two-way discriminant functions. Each function discriminates one class from the rest. Another is using N(N-1)/2 two-way discriminant functions Each function discriminates between two particular classes. Both methods have problems

 $C_1 \leftarrow C_3$ R_1 C_1 C_1 R_2 C_2 R_2 C_2 C_2

Two-way preferences need not be transitive!

answer

A simple solution (4.1.2)

Decision boundary?

PCA don't work well

picture showing the advantage of Fisher's linear discriminant

When projected onto the line joining the class means, the classes are not well separated.

Fisher chooses a direction that makes the projected classes much tighter, even though their projected means are less far apart.

Math of Fisher's linear discriminants

What linear transformation is best for discrimination? The projection onto the vector separating the class means seems sensible:

But we also want small variance within each class:

Fisher's objective function is:

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2} = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1) (\mathbf{m}_2 - \mathbf{m}_1)^T$$

$$\mathbf{S}_{W} = \sum_{n \in C_{1}} (\mathbf{x}_{n} - \mathbf{m}_{1}) (\mathbf{x}_{n} - \mathbf{m}_{1})^{T} + \sum_{n \in C_{2}} (\mathbf{x}_{n} - \mathbf{m}_{2}) (\mathbf{x}_{n} - \mathbf{m}_{2})^{T}$$

Optimal solution: $\mathbf{w} \propto \mathbf{S}_W^{-1} (\mathbf{m}_2 - \mathbf{m}_1)$

 $\mathbf{w} \propto \mathbf{m}_2 - \mathbf{m}_1$ $s_1^2 = \sum_{n \in C_1} (y_n - m_1)$ $s_2^2 = \sum_{n \in C_2} (y_n - m_2)$

 \cdot

 $y = \mathbf{w}^T \mathbf{x}$

$$V(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2} \leftarrow \text{within}$$

We have done probabilistic classification!

Probabilistic Models for Discrimination (Bishop p 196)

Use a generative model of the input vectors for each class, see which model makes a input vector most probable. The posterior probability of class 1 is:

$$p(C_1 | \mathbf{x}) = \frac{p(C_1)p(\mathbf{x} | C_1)}{p(C_1)p(\mathbf{x} | C_1) + p(C_0)p(\mathbf{x} | C_0)} = \frac{1}{1 + e^{-z}}$$

where
$$z = \ln \frac{p(C_1)p(\mathbf{x} | C_1)}{p(C_0)p(\mathbf{x} | C_0)} = \ln \frac{p(C_1 | \mathbf{x})}{1 - p(C_1 | \mathbf{x})}$$

z is called the **logit** and is given by the **log odds**

An example for continuous inputs

Assume input vectors for each class are Gaussian, all classes have the same covariance matrix.

$$p(\mathbf{x} | C_k) = a \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)\right\}$$

For two classes, C_1 and C_0 , the posterior is a logistic:

$$p(C_1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + w_0)$$

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\mathbf{\mu}_1 - \mathbf{\mu}_0)$$

$$w_0 = -\frac{1}{2}\mathbf{\mu}_1^T \mathbf{\Sigma}^{-1} \mathbf{\mu}_1 + \frac{1}{2}\mathbf{\mu}_0^T \mathbf{\Sigma}^{-1} \mathbf{\mu}_0 + \ln \frac{p(C_1)}{p(C_0)}$$

See lecture 2

The role of the inverse covariance matrix

If the Gaussian is spherical no need to worry about the covariance matrix.

So, start by transforming the data space to make the Gaussian spherical

This is called "whitening" the data. It pre-multiplies by the matrix square root of the inverse covariance matrix.

In transformed space, the weight vector is the difference between transformed means.

 $\mathbf{w} = \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)$ gives the same value for $\mathbf{w}^T \mathbf{x}$ as: $\mathbf{w}_{aff} = \boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\mu}_1 - \boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\mu}_0$ and $\mathbf{x}_{aff} = \boldsymbol{\Sigma}^{-\frac{1}{2}} \mathbf{x}$ gives for $\mathbf{w}_{aff}^T \mathbf{x}_{aff}$

Posterior when covariance matrices are different for each class (Bishop Fig)

The decision surface is planar when the covariance matrices are the same and quadratic when not.

The logistic function

The output is a smooth function of the inputs and the weights.

Its odd to express it in terms of y.

The natural error function for the logistic

Fitting logistic model using E maximum likelihood, requires minimizing the negative log probability of the correct answer summed over the training set.

$$= -\sum_{n=1}^{N} \ln p(t_n | y_n)$$

= $-\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln (1 - y_n)$
if t = 1 if t = 0

$$\frac{\partial E_n}{\partial y_n} = -\frac{t_n}{y_n} + \frac{1-t_n}{1-y_n}$$

error derivative on
training case n
$$= \frac{y_n - t_n}{y_n (1-y_n)}$$

Logistic regression (Bishop 205)

 $p(C_1|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}).$ Observations $\{x_n, t_n\}$ $t_n \in [0, 17]$ Likelihood $y = \sigma(\boldsymbol{w}^T \boldsymbol{x})$ $p(y|x, w) = Bern(y, \mu) = \mu^{y}(i-\mu)^{i-\mu}$ $p(T|\mathbf{x}, \mathbf{w}) = \prod_{n=1}^{N} \mathcal{U}_{n}^{t_{n}} (\mathbf{I} - \mathcal{U}_{n})^{I-t_{n}}$ $Log-likelihood \\ E_w = -ln(p(T|x,w)) = -\sum_{n=1}^{N} (t_n \ln y_n + (I-t_n)ln(I-g_n))$ Minimize –log like vative $\nabla_{w}E_{w} = -\frac{2[t_{n} + \frac{1-t_{n}}{y_{n}} \cdot (-1)] g_{n}(1-g_{n}) \chi_{n}}{= \frac{2[t_{n} - \frac{1}{y_{n}}]\chi_{n}}{W_{i}t_{i}} = \frac{W_{i}t_{i}}{W_{i}t_{i}} - \frac{W_{i}t_{i}}{W_{i}t_{i}} = \frac{W_{i}t_{i}}{W_{i}t_{i}} - \frac{W_{i}t_{i}}{W_{i}t_{i}} = \frac{W_{i}t_{i}}{W_{i}t_{i}} + \frac{W_{i}t_{i}}{W_{i}} + \frac{W_{i$ Derivative With Wi - JSEw

Cross-entropy or "softmax" function for multi-class classification

The output units use a non-local non-linearity:

The natural cost function is the negative log prob of the right answer

Lecture 8: Backpropagation

Number of parameters

$t = w^T x$, N measurement, M parameters

How large a **w** can we determine?

 $t = \varphi(w, x)$ How large a w can we determine?

Consider a neural network, with one hidden layer, each layer having N=M=100 nodes

How large is **W**?

How many observations is needed to estimate W?

Why we need backpropagation

Networks without hidden units are very limited in the input-output mappings they can model.

More layers of linear units do not help. Its still linear.

Fixed output non-linearities are not enough

We need multiple layers of adaptive non-linear hidden units, giving a universal approximator. But how to train such nets?

We need an efficient way of adapting **all** the weights, not just the last layer. Learning the weights going into hidden units is equivalent to learning features.

Nobody is telling us directly what hidden units should do.

The idea behind backpropagation

Don't know what the hidden units should be, but we can compute how fast the error changes as we change a hidden activity.

- Instead of using desired activities to train the hidden units, use error derivatives w.r.t. hidden activities.
- Each hidden activity affect many output units and have many separate effects on the error.
- Error derivatives for all the hidden units is computed efficiently.
- Once we have the error derivatives for the hidden activities, its easy to get the error derivatives for the weights going into a hidden unit.

Non-linear neurons with smooth derivatives

For backpropagation, we need neurons that have well-behaved derivatives.

Typically they use the logistic function

The output is a smooth function of inputs and weights.

Computational graphs

CNN lecture 4 explain Backpropagation simple

Backpropagation: a simple example

f(x, y, z) = (x + y)ze.g. x = -2, y = 5, z = -4 q=x+y $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$ $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$ f = qz $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial u}, \frac{\partial f}{\partial z}$

Want:

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$rac{\partial f}{\partial q} = z,$$
 $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$

Patterns in backward flow

add gate: gradient distributorQ: What is a max gate?

Patterns in backward flow

add gate: gradient distributormax gate: gradient routermul gate: gradient switcher

Bernoulli distribution

Random variable $x \in \{0,1\}$

Coin flipping: heads=1, tails=0

$$p(x=1|\mu) = \mu$$

Bernoulli Distribution $Bern(x|\mu) = \mu^x (1-\mu)^{1-x}$

$$\mathbb{E}[x] = \mu$$
$$\operatorname{var}[x] = \mu(1-\mu)$$

ML for Bernoulli

Given:
$$\mathcal{D} = \{x_1, \dots, x_N\}, m \text{ heads (1), } N - m \text{ tails (0)}$$

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} \ln p(x_n|\mu) = \sum_{n=1}^{N} \{x_n \ln \mu + (1 - x_n) \ln(1 - \mu)\}$$
$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{m}{N}$$

Maximum Likelihood and Least Squares (from lecture 3) Computing the gradient and setting it to zero yields

 $\nabla_{\mathbf{w}} \ln p(\mathbf{t} | \mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$ Solving for w, $\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$ The Moore-Penrose pseudo-inverse, $\mathbf{\Phi}^{\dagger}$. where $\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}.$

$$\left(\begin{array}{ccc} \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{array} \right)$$

LSQ for classification

Each class C_k is described by its own linear model so that

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0} \tag{4.13}$$

where $k = 1, \ldots, K$. We can conveniently group these together using vector notation so that $\sim -$

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}} \widetilde{\mathbf{x}} \tag{4.14}$$

Consider a training set { x_n , t_n }, n = 1 ... NDefine **X** and **T**

LSQ solution: $\widetilde{\mathbf{W}} = (\widetilde{\mathbf{X}}^{\mathrm{T}}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}^{\mathrm{T}}\mathbf{T} = \widetilde{\mathbf{X}}^{\dagger}\mathbf{T} \qquad (4.16)$ And prediction $\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}}\widetilde{\mathbf{x}} = \mathbf{T}^{\mathrm{T}} \left(\widetilde{\mathbf{X}}^{\dagger}\right)^{\mathrm{T}}\widetilde{\mathbf{x}}. \qquad (4.17)$ Using "least squares" for classification It does not work as well as better methods, but it is easy: It reduces classification to least squares regression.

LSQ solution:

 $\widetilde{\mathbf{W}} = (\widetilde{\mathbf{X}}^{\mathrm{T}}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}^{\mathrm{T}}\mathbf{T} = \widetilde{\mathbf{X}}^{\dagger}\mathbf{T}$ (4.16) **And prediction** $\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}}\widetilde{\mathbf{x}} = \mathbf{T}^{\mathrm{T}} \left(\widetilde{\mathbf{X}}^{\dagger}\right)^{\mathrm{T}}\widetilde{\mathbf{x}}.$ (4.17)