Projects

3-4 person groups preferred

Deliverables: Poster & Report & main code (plus proposal, midterm slide)

Topics your own or chose from suggested topics. Some physics/engineering inspired.

April 26 groups due to TA (if you don’t have a group, ask in piazza we can help). TAs will construct groups after that.

May 5 proposal due. TAs and Peter can approve.
Proposal: One page: Title, a large paragraph, data, weblinks, references.

May 20 Midterm slide presentation. Presented to a subgroup of class.

June 5 final poster. Uploaded June 3
Report and code due Saturday 15 June.

Q: Can the final project be shared with another class?
If the other class allows it it should be fine. You cannot turn in an identical project for both classes, but you can share common infrastructure/code base(datasets across the two classes.

No cut and paste from other sources without making clear that this part is a copy. This applies to other reports or things from internet. Citations are important.
Last time: Data Preprocessing

Before normalization: classification loss very sensitive to changes in weight matrix; hard to optimize

After normalization: less sensitive to small changes in weights; easier to optimize
Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another? What does gradient descent do? Very slow progress along shallow dimension, jitter along steep direction.

Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large.
What if the loss function has a local minima or saddle point?

Zero gradient, gradient descent gets stuck

Saddle points much more common in high dimension
Optimization: Problems with SGD

Our gradients come from minibatches so they can be noisy!

\[
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)
\]

\[
\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W)
\]

\[
\text{SGD + Momentum}
\]

\[
x_{t+1} = x_t - \alpha \nabla f(x_t)
\]

\[
v_{t+1} = \rho v_t + \nabla f(x_t)
\]

\[
x_{t+1} = x_t - \alpha v_{t+1}
\]

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99
Adam (full form)

```python
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
    x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7)
```

Momentum

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta1 = 0.9, beta2 = 0.999, and learning_rate = 1e-3 or 5e-4 is a great starting point for many models!
SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

=> **Learning rate decay over time!**

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:
\[\alpha = \alpha_0 e^{-kt} \]

1/t decay:
\[\alpha = \frac{\alpha_0}{1 + kt} \]
How to improve single-model performance?

Regularization: Add term to loss

\[L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W) \]

In common use:

L2 regularization
\[R(W) = \sum_k \sum_l W_{k,l}^2 \] (Weight decay)

L1 regularization
\[R(W) = \sum_k \sum_l |W_{k,l}| \]

Elastic net (L1 + L2)
\[R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}| \]
Regularization: Dropout

In each forward pass, randomly set some neurons to zero.
Probability of dropping is a hyperparameter; 0.5 is common.
Homework

Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

- has an ear
- has a tail
- is furry
- has claws
- mischievous look

cat score

X
Regularization: Data Augmentation

Data Augmentation
Get creative for your problem!

Random mix/combinations of:
- translation
- rotation
- stretching
- shearing,
- lens distortions, … (go crazy)

+ simulated data using physical model.
Transfer Learning with CNNs

1. Train on Imagenet
 - FC-1000
 - FC-4096
 - FC-4096
 - MaxPool
 - Conv-512
 - Conv-512
 - Image

2. Small Dataset (C classes)
 - FC-C
 - FC-4096
 - FC-4096
 - MaxPool
 - Conv-512
 - Conv-512
 - Image
 - Reinitialize this and train
 - Freeze these

3. Bigger dataset
 - FC-C
 - FC-4096
 - FC-4096
 - MaxPool
 - Conv-512
 - Conv-512
 - Image
 - Train these
 - Freeze these
 - With bigger dataset, train more layers

 Lower learning rate when finetuning; 1/10 of original LR is a good starting point

Razavian et al., “CNN Features Off-the-Shelf: An Astounding Baseline for Recognition”, CVPR Workshops 2014
Predicting Weather with Machine Learning:
Intro to ARMA and Random Forest

Emma Ozanich
PhD Candidate,
Scripps Institution of Oceanography
Background

Shi et al NIPS 2015 –
- Predicting rain at different time lags
- Shows convolutional lstm vs nowcast models vs fully-connected lstm
- Used radar echo (image) inputs
 - Hong Kong, 2011-2013,
 - 240 frames/day
 - Selected top 97 rainy days
 - Note: <10% of data used!
- Preprocessing: k-means clustering to denoise
- ConvLSTM has better performance and lower false alarm (lower left)

CSI: hits/(hits+misses+false) FAR: false/(hits+false) POD: hits/(hits+misses)
false = false alarm
Background

McGovern et al 2017 BAM –
• Decision trees used in meteorology since mid-1960s

Predicting rain at different time lags

Fig. 1. An example of a decision tree for predicting if hail will occur. A version of this decision tree first appeared in Gagne (2016).

Background

McGovern et al 2017 BAM –
• Green contours = hail occurred (truth)
• Physics based method: Convection-allowing model (CAM)
 o Doesn’t directly predict hail
• Random forest predicts hail size (Γ) distribution based on weather
• HAILCAST = diagnostic measure based on CAMs
• Updraft Helicity = surrogate variable from CAM

Decision Trees

- Algorithm made up of conditional control statements

Homework Deadline tonight?
 - Yes: Do homework
 - No: Party invitation?
 - Yes: Go to the party
 - No: Do I have friends?
 - Yes: Hang out with friends
 - No: Read a book
McGovern et al 2017 BAM –

- Decision trees used in meteorology since mid-1960s

Decision Trees

Fig. 1. An example of a decision tree for predicting if hail will occur. A version of this decision tree first appeared in Gagne (2016).
Regression Tree

- Divide data into distinct, non-overlapping regions R_1, \ldots, R_J
- Below $y_i = \text{color} = \text{continuous target} (<\text{blue} = 1 \text{ and } >\text{red} = 0)$.
- $x_i, i = 1, \ldots, 5$ samples
- $x_i = [X_1, X_2]$, with $P = 2$ features.
- $j = 1, \ldots, 5$ (5 regions).

Hastie et al 2017, Chap. 9 p 307.
Tree-building

- Or, consecutively partition a region into non-overlapping rectangles
- $y_i =$ color = continuous target ($<\text{blue} = 1$ and $>\text{red} = 0$).
- $x_i, i = 1,\ldots, 5$ samples
- $x_i = [X_1, X_2]$, with $P = 2$ features.
- $j = 1,\ldots, 5$ (5 regions).

Hastie et al 2017, Chap. 9 p 307.
Regression Tree

- How to optimize a regression tree?
- Randomly select \(t_1 \)

\[
R_1(j, t_1) = \{X | X_j \leq t_1\}
\]

\[
R_2(j, t_1) = \{X | X_j > t_1\}, \ j = 1
\]

- Assign region labels:

\[
\hat{c}_m = \text{ave}(y_i | x_i \in R_m).
\]

 - Example-

 \[
 \hat{c}_1 = \bullet
 \]

 \[
 \hat{c}_2 = \bullet
 \]

\[
\hat{c}_1 = \bullet
\]

\[
\hat{c}_2 = \bullet
\]
Regression Tree

- Compute the cost of the tree, $Q_m(T)$,
- Minimize $Q_m(T)$ by changing t_1

$$N_m = \# \{ x_i \in R_m \},$$

$$Q_m(T) = \frac{1}{N_m} \sum_{x_i \in R_m} (y_i - \hat{c}_m)^2,$$

![Diagram of Regression Tree](image)
Regression Tree

- Algorithm to build tree T_b
- In our simple case, $m = 1$ and $p = 2$
- Daughter nodes are equivalent to regions

1. Select m variables at random from the p variables.
2. Pick the best variable/split-point among the m.
3. Split the node into two daughter nodes.
Bootstrap samples

• Select a subset of the total samples, \((x^*_i, y^*_i), i = 1, ..., N\)
• Draw samples uniformly at random with replacement
• Example: If \(I = 5\) originally, we could choose \(N = 2\)

• Samples are drawn assuming equal probability:

 o If \(x_i, y_i\) is drawn more often, it is more likely

 \[
P_{\hat{F}}\{(X, Y) = (x, y)\} = \begin{cases} \frac{1}{n} & \text{if } (x, y) = (x_i, y_i) \text{ for some } i \\ 0 & \text{otherwise} \end{cases}
 \]

 o \((X,Y)\) are the expectations of the underlying distributions
Random Forest

- Example of binary classification tree from Hastie et al 2017
- Orange: trained on all data
- Green: trained from different bootstrap samples
- Then, average the (green) trees

Hastie et al 2017, Chap. 8 p. 284
Random Forest

- Bootstrap + bagging => more robust RF on future test data
- Train each tree T_b on bootstrap sampling

Algorithm 15.1 Random Forest for Regression or Classification.

1. For $b = 1$ to B:

 (a) Draw a bootstrap sample Z^* of size N from the training data.

 (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.

 i. Select m variables at random from the p variables.

 ii. Pick the best variable/split-point among the m.

 iii. Split the node into two daughter nodes.

2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:

\[
\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x).
\]

Hastie et al 2017, Chap. 15 p. 588
Timeseries (TS)

- Timeseries: one or more variables sampled in the same location at successive time steps
ARMA

- Autoregressive moving-average:
 - (weakly) stationary stochastic process
 - Polynomials model process and errors as polynomial of prior values

- Autogressive (order p)
 - Linear model of past (lagged) and future values
 - p lags
 \[
 X_t = c + \sum_{i=1}^{p} \varphi_i X_{t-i} + \varepsilon_t
 \]
 - φ_i are (weights) parameters
 - c is constant
 - ε_t is white noise (WGN)
 - Note, for stationary processes, $|\varphi| < 1$.

- Moving-average (order q)
 - Linear model of past errors
 - q lags
 - Below, assume $<X_t>=0$ (expectation is 0)
 \[
 X_t = c + \sum_{i=1}^{q} \theta_i \varepsilon_{t-i} + \varepsilon_t
 \]
ARMA

• Autoregressive moving-average:
 o (weakly) stationary stochastic process
 o Linear model of prior values = expected value term + error term + WGN

• ARMA: AR(p) + MA(q)

\[
X_t = c + \sum_{i=1}^{p} \varphi_i X_{t-i} + \sum_{i=1}^{q} \theta_i \varepsilon_{t-i} + \varepsilon_t
\]
Data retrieval

Just a few public data sources for physical sciences...

- NOAA:
 - Reanalysis/model data, research cruises, station observations, gridded data products, atmospheric & ocean indices timeseries, heat budgets, satellite imagery
- NASA:
 - EOSDIS, gridded data products (atmospheric), satellite imagery, reanalysis/model data, meteorological stations, DAAC’s in US
- IMOS:
 - ocean observing hosted by Australian Ocean Data Network
- USGS Earthquake Archives
- CPC/NCEI:
 - gridded and raw meteorological and oceanographic
- ECMWF
 - global-scale weather forecasts and assimilated data

Possible data formats:
- CSV
- NetCDF
- HDF5/HDF-EOS
- Binary
- JPEG/PNG
- ASCII text

...
Basic data cleaning

• “[ML for physical sciences] is 80% cleaning and 20% models” ~ paraphrased, Dr. Gerstoft
• Basic cleaning for NOAA GSOD to HW – necessary
 o Remove unwanted variables (big data is slow)
 o Replaced “9999” filler values with NaN
 o Converted strings to floats (i.e. for wind speed)
 o Created a DateTime index

• Physical data needs cleaning, reorganizing
• Quality-controlled data still causes bugs
• Application-specific
Data for HW

• BigQuery:
 o Open-source database hosted by Google
 o Must have Google account
 o 1 TB data free/month

NOAA GSOD dataset
Data for HW

• How to get BigQuery data?
• bigquery package in Jupyter Notebook (SQL server)

Simple SQL query

Query client and convert to Pandas DF

Yearly datasets

Pickle the DF

More complex queries may include dataframe joins, aggregations, or subsetting
Tutorial Notebook

- Open “In-Class Tutorial"
- We will do:
 1. Load preprocessed data
 2. Define timeseries index
 3. Look at data
 4. Visualize station
 5. Detrend data
 6. Smooth data
 7. Try ARMA model
Tutorial Notebook

- Load packages, (pre-processed) data with Pandas

```python
import pandas as pd
import numpy as np
from numpy.random import randint
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import time
from mpl_toolkits.basemap import Basemap
import scipy.signal as sig
from statsmodels.tsa.arima_model import ARMA
from pandas.plotting import autocorrelation_plot

In [60]:
```

Load our pre-processed data.

```python
In [2]:
t0 = time.time()
dataset_path = '/datasets/NOAA_SST/'
data = pd.read_pickle(dataset_path + 'noaa_gsod/Combined_noaa_gsod') # load weather data
stations = pd.read_pickle(dataset_path + 'noaa_gsod.stations') # load station data

# # USE ONLY 2008-2018 # #
data = data.loc[data.index >= pd.Timestamp(2008, 1, 1)]
data = data.drop(columns=['yr', 'year', 'da', 'mo']) # don't need these anymore
print(time.time()-t0)
```

22.46479368209839
```
Timeseries processing

- We may be missing data, but that’s ok for now
- Replace with neighbor data, smooth, fill with mean
Tutorial Notebook

Where is my station located?

In [5]:
   
   my_station = stations.loc[stations['usaf'] == my_station_number]
   my_station.head()
   
   Out[5]:

<table>
<thead>
<tr>
<th>usaf</th>
<th>wban</th>
<th>name</th>
<th>country</th>
<th>state</th>
<th>call</th>
<th>lat</th>
<th>lon</th>
<th>elev</th>
<th>begin</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>1867</td>
<td>041560</td>
<td>HVERAVELLIR</td>
<td>IC</td>
<td>None</td>
<td>64.867</td>
<td>-16.567</td>
<td>0.0</td>
<td>20080115</td>
<td>20190401</td>
<td></td>
</tr>
</tbody>
</table>

In [6]:

   fig = plt.figure(figsize=(15,7))

   # create a Basemap projection, cylindrical centered at 0
   n = Basemap(projection='cyl', llcrnrlat=-90, urcrnrlat=90,
               llcrnrlon=-180, urcrnrlon=180, resolution='l')

   # draw the oceans and countries and lines
   n.drawcountries(fill_color='xkcd:lightblue')
   n.fillcontinents(color='xkcd:green', lake_color='xkcd:lightblue')
   n.drawmeridians(np.arange(0., 350., 30.), labels=[True,False,False,True])
   n.drawparallels(np.arange(-90., 90, 30.), labels=[False,True,True,False])

   # show my station
   pl, = plt.plot(my_station['lon'],my_station['lat'], 'rp', markersize=10)
   plt.show()
Timeseries processing

- Remove mean (slope=0) or linear (slope ≠ 0)? (linear)
- What can we learn from trend?
Timeseries processing

• Smoothing: median filter
Tutorial Notebook

- Shortened timeseries – Y2018 (final 10%)
- ARMA most effective predicting one step at a time
Tutorial Notebook

- Is ARMA a machine learning technique? (I think so..)
  - Filtering method (like Kalman filter)
  - Data-driven
  - Maximum likelihood
  - Conclusion: statistics-based
Tutorial Notebook

- Autocorrelation:
  - A statistical method to find temporal (or spatial) relations in data
  - When can reject the null hypothesis that the data is statistically similar?
  - E.g. How many time steps before the data is decorrelated

![Autocorrelation Chart](image-url)

- The chart shows autocorrelation values with lags.
- The dashed line represents the raw data, while the solid line represents the median filter.
- The point where the autocorrelation value drops below a certain threshold indicates the number of lags before the data is decorrelated.
- In this case, it is approximately 40 lags.

- The y-axis represents the autocorrelation values, ranging from -1.00 to 1.00.
- The x-axis represents the lag values, ranging from 50 to 300.
Tutorial Notebook

- Median filter increases decorrelation scale
  - By averaging neighbor samples
- Raw series is more random
- Use raw timeseries
Tutorial Notebook

- **ARMA algorithm:**
  1. Train on all previous data
  2. Predict one time step
  3. Add next value to training data
  4. Repeat
Homework

• How to load and preview data with Pandas

import packages

load data

find where data is after 2008
Homework

- How to load and preview data with Pandas
Homework

• Randomly select a station
• Check if the station has enough data
  o May reduce “3650” to lower number, i.e. 1000, but be aware you may have nans in data – just look at it!

```python
In [7]:

select random station
rs = np.unique(data['stn'].values) # find unique stations with data
rand_stat = rs[randint(len(rs))] # pick a random station

ideally we should check < len(np.unique(data.index)), but many are shorter
while (len(data.loc[data['stn'] == rand_stat]) < 3650): # If not enough data
 if len(stations.loc[stations['usaf'] == rand_stat]): # If station info available
 if (stations.loc[stations['usaf'] == rand_stat].iloc[0]['wban'] != 99999): # If station number not unique
 rand_stat = rs[randint(len(rs))] # get a new station
 else:
 rand_stat = rs[randint(len(rs))] # get a new station

select_station = stations.loc[stations['usaf'] == rand_stat] # get location, etc, for random station
features = data.loc[data['stn'] == rand_stat] # pick weather at random station
features = features.drop(columns=['stn'])
features = features.drop(columns=['max'])
features = features.drop(columns=['min'])
features = features.sort_index()
select_station.head() # see where it is
```

select random station

find data that matches station

remove data related to temperature

<table>
<thead>
<tr>
<th>usaf</th>
<th>wban</th>
<th>name</th>
<th>country</th>
<th>state</th>
<th>call</th>
<th>lat</th>
<th>lon</th>
<th>elev</th>
<th>begin</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>5946</td>
<td>71220</td>
<td>DEASE LAKE (AUT)</td>
<td>CA</td>
<td>Home</td>
<td>CWKK</td>
<td>58.433</td>
<td>-130.033</td>
<td>0802.0</td>
<td>19930829</td>
<td>20190326</td>
</tr>
</tbody>
</table>
Homework

- Manually time-delay data
- Pandas “shift()”

Time-shift the data

```python
In [8]:
columns = features.columns
for co in columns:
 # one day lag
 features[co + '_lag1'] = features[co].shift(periods=1)

 # two days lag
 features[co + '_lag2'] = features[co].shift(periods=2)

 # three days lag
 features[co + '_lag3'] = features[co].shift(periods=3)

features = features.iloc[3:]
print(str(len(features)) + ' samples, ' + str(len(features.columns)) + ' features.')
features.head()
```

3926 samples, 20 features.

```
Out[8]:
 temp slip wdsp mxpsd prcp temp_lag1 temp_lag2 temp_lag3 slip_lag1 slip_lag2 slip_lag3 wdsp_lag1 wdsp_lag2 wdsp_lag3
0 2008-01-04 9.5 982.6 2.4 5.8 0.08 5.5 0.0 -1.7 991.0 998.5 1024.8 4.6 2.5
1 2008-01-05 6.6 978.9 2.2 4.9 0.03 9.5 5.5 0.0 982.6 991.0 998.5 2.4 4.6
2 2008-01-06 11.4 987.0 2.8 5.8 0.12 6.6 9.5 5.5 978.9 982.6 991.0 2.2 2.4
3 2008-01-07 -7.3 1005.2 3.7 7.0 0.00 11.4 6.6 9.5 987.0 978.9 982.6 2.8 2.2
4 2008-01-08 -8.9 1005.8 5.3 9.9 0.00 -7.3 11.4 6.6 1005.2 987.0 978.9 3.7 2.8
```
Homework

- (Map is supposed to show red “X” for station)

I can barely see it!!
Homework

• Snapshots from “timeseries_prediction_Temp.ipynb”

Create train/val/test

```
In [8]:
ylabel = features['temp'] # use today's temperature as the label
features = features.drop(columns='temp') # don't put it in training data
Use 20% test split (80% training + validation)
ntrain = int(len(features) * 0.8)
x_test = features.iloc[ntrain:]
y_test = ylabel[ntrain:]

Split remaining 80% into training-validation sets (of original data)
x_train, x_val, y_train, y_val = train_test_split(features.iloc[0:ntrain,:], ylabel[0:ntrain],
 test_size=0.2, random_state=1)

Scale features. Fit scaler on training only.
scaler = MinMaxScaler() #scale features between 0 and 1
x_train = scaler.fit_transform(x_train)
x_val = scaler.transform(x_val)
x_test = scaler.transform(x_test)
```

- **training label = temperature**
- **split data into train/test with the help of Sklearn**
- **scaling features improves learning**
Homework

- Random forest model in a couple lines
- You may want to write a “plot.py” function

```python
clf = RandomForestRegressor(n_estimators=100, max_depth=10, random_state=0) # define Random Forest object
clf.fit(x_train, y_train) # train Random Forest
y = clf.predict(x_test) # predict temperature

plot predictions
plt.figure(figsize=(15,7))
plt.subplot(1,2,1)
plt.plot(features.iloc[ntrain:].index, y_test, 'b-o') # plot actual temperature
plt.plot(features.iloc[ntrain:].index, y, 'r-*') # plot predicted temperature
plt.xticks(features.iloc[ntrain:].index[::30], rotation=45) # set xticks to monthly
myFmt = mdates.DateFormatter('%b-%d-%y')
plt.gca().xaxis.set_major_formatter(myFmt)
plt.ylabel('Daily Temperature (degree Fahrenheit)', fontsize=12)
plt.legend(('Temperature', 'Random Forest Prediction'), fontsize=12, loc=1)
plt.show()

Plot the feature importances
fi = clf.feature_importances_ # get feature importances
fi_sort = np.argsort(fi)[::-1] # sort importances most to least
plt.subplot(1,2,2)
plt.bar(range(nfeatures), fi[fi_sort[0:nfeatures]], width=1,
 tick_label=features.columns.values[[fi_sort[0:nfeatures]]]) # plot features
plt.ylabel('Feature Importance (avg across trees)', fontsize=12)
plt.xticks(rotation=45)
plt.show()
```

Define, train, and predict with random forest
plotting true and predicted temperature
look at feature importances
Homework

• Congratulations!
• We showed that tomorrow’s temperature is usually similar to today’s (at this Canada station)

unsurprising result: validates intuition
Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has similar data, train a big ConvNet there
2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of pretrained models so you don’t need to train your own

Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision