Announcements

Class is now 176.

Matlab Grader homework, emailed Thursday,
1 and 2 (of less than 9) homeworks Due 21 April, Binary graded.
Homework 3 (nor released yet) due 28 April

Jupiter “GPU” home work released Wednesday. First part of class will focus
on this. Presented by graduate student Emma Ozanich.

Today:
Stanford CNN
Linear models for regression

Wednesday 10 April
Stanford CNN, Linear models for classification (Bishop 4),

Projects

3-4 person groups preferred
Deliverables: Poster & Report & main code (plus proposal, midterm slide)

Topics your own or chose form suggested topics. Some physics inspired.

April 26 groups due to TA (if you don’t have a group, ask in piaza we can
help). TAs will construct group after that.

May 5 proposal due. TAs and Peter can approve.
Proposal: One page: Title, A large paragraph, data, weblinks, references.
Something physical

May 20 Midterm slide presentation. Presented to a subgroup of class.

June 5 final poster. Uploaded June 3
Report and code due Saturday 15 June.

Activation Functions

L0 (o))

*@® synapse
axon from a neuron ™
. WoIo

cell body f (Z Wiy 4 b)
- Z w;x; + b f i >
- output axon
activation
function

W22

Activation Functions

S|gmo|d Leaky RelLU)
_ 1 max(0.1x, x)
O'(LIJ) 14e =
-0 g 10 L] 10

tanh

Maxout
tanh(x)

max(wi z + by, wl x + by)

RelLU ELU

max(0,2) MO

Consider what happens when the input to a neuron (x)

IS always positive:

Z(()

>@ synapse
axon from a neuron
woTo

cell body

i (wa - b)

activation
function

output axon

f sz’xi +b

What can we say about the gradients on w?

Consider what happens when the input to a neuron is

always positive... owed
gradient
update
directions
l
f E wz CIIz —|_ b allowed zig zag path
” gradient
(] update
directions
hypothetical
What can we say about the gradients on w? optimal w
Always all positive or all negative :(vector

(this is also why you want zero-mean data!)

X
oL _ 90 0L
dr Oz Oo

oo
or

RelLU
gate

RELU

o(x) = max(0, x)

OL
oo

What happens when x = -107?
What happens when x = 07?
What happens when x = 10?

10

AL

active ReLU

DATA CLOUD

dead RelLU

will never activate
=> never update

TLDR: In practice:

- Use RelU. Be careful with your learning rates
- Try out Leaky RelLU / Maxout / ELU

- Try out tanh but don’t expect much

- Don’t use sigmoid

Step 1: Preprocess the data

original data zero-centered data normalized data
10 10 10
A
0 - 0 - 0 , I
\/
-10 -10

1g -10 -5 0 5 19 -10 e 0 5 10

X -= np.mean(X, axis = 0) . X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

Batch Normalization [loffe and Szegedy, 2015]

Normalize:
k k
) (k) _ E[g;()]
k
\/V'ar[x()] Note, the network can learn:
And then allow the network to squash v (k) — \/Var[:z;(’“)]

the range if it wants to:

Bk) = E[:n(’“)]

to recover the identity

y®) = AWk | gk)

mapping.

Batch Normalization [loffe and Szegedy, 2015]

Input: Values of x over a mini-batch: B = {1, }; Note: at test time BatchNorm layer
Parameters to be learned: v, 3 functions differently:
Output: {y; = BN, g(z;)}
L The mean/std are not computed
B < — Z T; // mini-batch mean | based on the batch. Instead, a single
i=1 fixed empirical mean of activations

og LS Z(mz — pg)? // mini-batch variance during training is used.

L =1
. T; — 1B p i (e.g. can be estimated during training
i 5 = NOTMANZE! - with running averages)

Y; + YZ; + B = BN, g(z;) // scale and shift

Babysitting the Learning Process

Step 1: Preprocess the data

original data zero-centered data normalized data

s Sté2: Choose the architecture:
, -.-say we start with one hidden layer of 50 neurons:

X -=

50 hidden —_
neurons
/ output layer 10 output
CIFAR-10 input neurons, one
images, 3072 layer hidden layer per class

numbers

Hyperparameters

Hyperparameters to play with:
- network architecture
- learning rate, its decay schedule, update type

Cross-validation strategy - regularization (L2/Dropout strength)

coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)

Random Search for

Ra N d om S ea rCh VS. G r| d S earc h Hyper-Parameter Optimization

Bergstra and Bengio, 2012
Grid Layout Random Layout

°
o
°
Unimportant Parameter
o
Unimportant Parameter

Important Parameter Important Parameter

Monitor and visualize the loss curve

25

Loss

0.0
0

20

Epoch

100

loss

low learning rate

high learning rate

good learning rate

Summary TLDRs

We looked in detail at:

- Activation Functions (use RelLU)

- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier init)

- Batch Normalization (use)

- Babysitting the Learning process

- Hyperparameter Optimization
(random sample hyperparams, in log space when appropriate)

Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

Vw 1np(t|W, /6) =0 Z {tn — WT¢(Xn)} ¢(Xn)T = 0.

Solving for w,

! The Moore-Penrose
|

where

' —1 pseudo-inverse, H
WL — (<I>T<I>) &t

¢0(X1) ¢1(X1) ¢M—1(X1)
(Cbo(Xz) ¢1(x2) - ¢M—1(X2)\

\ do(xn) di(xn) - dri(xy) /

Geometry of Least Squares

Consider
y = PwumrL = [P1,-- - @] WL
yeSCT te7

ﬁ N-dimensional
M-dimensional

Sis spanned by @q,...,p

wp, Mminimizes the distance between t and its
orthogonal projectionon S, i.e. y.

Least mean squares: An alternative approach for big datasets

WT-I-l — WT . 77 VEn(T)

1 t
weights after | t -
seeing training learning squared error derivatives
case tau+1 rate w.r.t. the weights on the

training case at time tau.

This is “on-line“ learning. It is efficient if the dataset is redundant and simple
to implement.

It is called stochastic gradient descent if the training cases are
picked randomly.

Care must be taken with the learning rate to prevent divergent
oscillations. Rate must decrease with tau to get a good fit.

ét

ZL_

Ea‘ (%, W’%)

—

Bias-variance (from lecture 1)
Bias-variance tradeoff

Concept: Complex models can learn data-label relationships well, bu
may not extrapolate to new cases.

High Bias Low Bias
Low Variance High Variance

— ——

Prediction Error

Training Sample

Low High
Model Complexity

p(t]z,x,t) = / p(t]z, w)p(wlx, t) dw

We focus on Gaussians!

The bias-variance decomposition

average target «

model estimate for Value for test
testcase n trained c7se n
on dataset D

<iy\(xn1;D)—tn}2 >D = {(y(xn;D)> . }2

<.>means + < {y(xn;D) — < y(Xn;D) >D }2 >D

expectation over D

“Variance” term: variance over training datasets D,
of the model estimate.

Bias” term is the squared error of the average,
over training datasets D, of the estimates.

Bias: average between prediction and desired.

Regularization parameter affects the bias and variance

high variance low variance

20 realizations

1t 14

True model : t
average d [

high bias
low bias

An example of the bias-variance trade-off

0.15
(bias)’
0.12 variance
(bias)2 + variance
0.09 | test error
0.06
0.03
0
-3 -2 —1 0 1 2

Beating the bias-variance trade-off

Reduce the variance term by averaging lots of models trained on
different datasets.
Seems silly. For lots of different datasets it is better to combine

them into one big training set.
More training data has much less variance.

Weird idea: We can create different datasets by bootstrap
sampling of our single training dataset.

This is called "bagging” and it works surprisingly well.
If we have enough computation its better doing it Bayesian:

Combine the predictions of many models using the posterior
probability of each parameter vector as the combination

weight.

The bias-variance trade-off
(a figment of the frequentists lack of imagination?)

Imagine a training set drawn at random from a whole set of
training sets.
The squared loss can be decomposed into a

Bias = systematic error in the model’'s estimates

Variance = noise in the estimates cause by sampling noise In

the training set.

There is also additional loss due to noisy target values.
We eliminate this extra, irreducible loss from the math by
using the average target values (i.e. the unknown, noise-free

values)

9 Order Polynomial

Bayesian Linear Regression (Bishop 3.3)

Define a conjugate prior over w
p(w) = N(w|myo, So).
Combining this with the likelihood function and using results
for multiplying Gaussians, gives the posterior
p(wlt) = N(w|muy, Sy) my = Sy (Sglmo -+ ,B(I)Tt)
Sy, = S;'+pele.

A common simpler prior

p(w) = N(w|0,a 1)

Which qgi
ich gives e — GSyETE

Sy = ol+p39'®.

From lecture 3:

Bayes for linear model
y = AJ[5/+ n n~N(0,C,) y~N(Ax,C,) prior: x~N(0, Cy)

p(x|y)~p¥|x)p(x)~N(x}, C,) mean xp = CATCLly

a @ P rn)— CHrivie Gl=ATCA+ Gy
- —l
= o 3Y-Px)T /(f{ - Ax) C-J-k'g‘x

T
- KX 4X+x-re,<x) P
T Ls ~/
X/ T,
r e
— T+ = ~
Ce = 4¢, '4+§ T~

Interpretation of solution

my = (ASy®'t
Sy = ol+ 39 ®.
Draw it

Sequential, conjugate prior

p(x|y)~p(yx)p(x)~N(Ax, C,) N(0, C,)~N(xy, C,)
Covariance C,'=A"C;'A+ C;?

Likelihood, prior/posterior Bishop Fig 3.7
y =w,+wyx + N(0,0.2)
Data generated with. wy=-0.3, w;=0.5

likelihood prior/posterior data space
1 - 1
w1 Y
g . With no data we sample
lines from the prior.

" " 0 x I
1
Y
0
-1
-1 0 z 1
1
Y
0 O.
-1

1 0 g ! -1 0 x |1
1
’ g With 20 data points, the
0 (0] . .

e”00| prior has little effect
S O

_

=
S

S
—_
o
=

8

—

Predictive distributions

marginal

Prior predictive

Predictive Distribution

Predict t for new values of x by integrating over w (Giving the
marginal distribution of t):

p(tlt, o, f) =] p(t|w, B)p(wlt, a, B) dw
T)
| Nl (x), 0% (x)

training data

precision of prior
precision of output noise

my = (ASy®'t

Sl = al+pe'a.
where N &

Predictive distribution for noisy sinusoidal data modeled
by linear combining 9 radial basis functions.

1
0.3 t
0.5 0f =
0.25 | n
—f 0 1 g z 1
1 L.
t
0 =
] L

A way to see the covariance of predictions for different values of x

We sample models at random from the posterior and show the
mean of each model’s predictions

I \“*”
/ » V'};"\'\-:-‘
t \ ,.rx’f k‘\
/
/ \
/ \
o / \
\
\.

Equivalent Kernel BisHOP 3.3.3

The predictive mean can be written
y(x,my) = m%cb() = Bp(x) ' Sy® 't

= Zﬁqﬁ SN (xn)tn
n=1

ﬁ

N
_ Z Equivalent kernel or
1 smoother matrix.

This is a weighted sum of the training data target values, t,.

Equivalent Kernel

Weight of t, depends on distance between x and x,;
nearby Xx,, carry more weight.

Equivalent Kernel
The kernel as a covariance function: consider

covly(x),y(x)] = cov[p(x)'w,wle(x')]
= ¢(x)'Sno(x') = 7 k(x,x').

We can avoid the use of basis functions and define the kernel function directly,
leading to Gaussian Processes (Chapter 6).

No need to determine weights.

Like all kernel functions, the equivalent kernel can be expressed as an inner
product:

k(x,2) = (%) T (z)
P(x) = 528 p(x)

