(d Announcements H;
a

tlab Grader homework, emailed Thursday,
1 (of 9) homeworks Due 21 April, Binary graded.
2 this week

Jupyter homework?: translate matlab to Jupiter, TA Harshul hégupta@eng.ucsd.edu or me
| would like this to happen.

“GPU” homework. NOAA climate data in Jupyter on the datahub.ucsd.edu, 15 April.
Projects: Any computer language
Podcast might work eventually.

Today:

* Stanford CNN

* Gaussian, Bishop 2.3

* Gaussian Process 6.4

* Linear regression 3.0-3.2

Wednesday 10 April
Stanford CNN, Linear models for regression 3, Applications of Gaussian processes.



Bayes and Softmax (Bishop p. 198)

* Bayes: Parametric Approach: Linear Classifier
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Softmax to Logistic Regression (Bishop p. 198)
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Softmax with Gaussian(Bishop p. 198)
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Entropy 1.6

Hlz] = = p(x)log, p(x)

Important quantity in
* coding theory
* statistical physics
* machine learning
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The Kullback-Leibler Divergence

P true distribution, g is approximating
distribution
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KL homework

e Supportof Pand Q=> “only >0” don’t use isnan isinf

e After you pass. Take your time to clean up. Get close to 50
e—f



Lecture 3

e Homework

e Pod-cast lecture on-line

* Next lectures:
— | posted a rough plan.

— ltis flexible though so please come with suggestions



Bayes for linear model
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Bayes’ Theorem for Gaussian Variables

Given
p(x) = N (x|p, A7)
we have p(ylx) = N(y|Ax+b,L_1)
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Sequential Estimation of mean (Bishop 2.3.5)

Contribution of the N data point, x,
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Bayesian Inference for the Gaussian (Bishop2.3.6)

Assume o? is known. Given i.i.d. data
the likelihood function for p is given by X = {mla ey iUN}

[“) p(x|p) :1;[ p(an|p) = 27T012>N/26Xp{_%2($n—,u)2}.
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* This has a Gaussian shape as a function of u (but it is not a distribution over p).



Bayesian Inference for the Gaussian (Bishop2.3.6)
Combined with a Gaussian prior over p, p(u) — N (,u‘,uo, 08) .

this gives the posterior
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Bayesian Inference for the Gaussian (3)
 Example: forN=0,1, 2 and 10.

p(p|x) =N (plpy, o%)




Bayesian Inference for the Gaussian (4)

Sequential Estimation
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The posterior obtained after observing N-1 data points becomes the prior when we
observe the Nt data point.

Conjugate prior: pgsterior and prior are in the same family. The prior is called
a conjugate prior for the likelihood function.



Gaussian Process (Bishop 6.4, Murphy15)
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This is what a Gaussian process

tn:yn+€n

f(X) ~ GP(m(x), K,(X, X/))

posterior looks like with 4 data points . : .

and a squared exponential
covariance function. The bold blue
line is the predictive mean, while the
light blue shade is the predictive
uncertainty (2 standard deviations).
The model uncertainty is small near
the data, and increases as we move
away from the data points.
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Figure 15.2 Left: some functions sampled from a GP prior with SE kernel. Right: some samples from a GP
posterior, after conditioning on 5 noise-free observations. The shaded area represents [E | f(x)] +2std( f(x).
Based on Figure 2.2 of (Rasmussen and Williams 2006). Figure generated by gprDemoloiseFree.



Gaussian Process (Murphy ch15)
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Gaussian Process (Murphy ch15)
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The conditional is Gaussian:

p(f*|X*,X,f) = N(f*|u*72*)
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Figure 15.2 Left: some functions sampled from a GP prior with SE kernel. Right: some samples from a GP
posterior, after conditioning on 5 noise-free observations. The shaded area represents [E | f(x)] +2std( f(x).
Based on Figure 2.2 of (Rasmussen and Williams 2006). Figure generated by gprDemoloiseFree.



