
Announcements
Matlab Grader homework, emailed Thursday,
1 (of 9) homeworks Due 21 April, Binary graded.
2 this week

Jupyter homework?: translate matlab to Jupiter, TA Harshul h6gupta@eng.ucsd.edu or me 
I would like this to happen. 

“GPU” homework. NOAA climate data in Jupyter on the datahub.ucsd.edu, 15 April.

Projects: Any computer language

Podcast might work eventually.

Today: 
• Stanford CNN
• Gaussian, Bishop 2.3
• Gaussian Process 6.4
• Linear regression 3.0-3.2

Wednesday 10 April
Stanford CNN, Linear models for regression 3, Applications of Gaussian processes.



Bayes and Softmax (Bishop p. 198)
• Bayes:

• Classification of  N classes:

correct, it is at least approximately correct for processes
involving images and sound.15(?)

B. Introduction to probabilities

The best (Or, a theoretically robust?) way to im-
plement machine learning methods is to use the tools of
probability, which have been critical in the development
of modern science and engineering. Bayesian inference,
resampling?

Almost all machine-learning tasks can be formulated
as making inferences about missing or latent data from
the observed data.

1. Bayesian machine learning

Two simple rules are of fundamental importance for
Bayesian ML [Ghahramani 2015]. The sum rule

p(x) =
X

y2Y

p(x, y) , (2)

and the product rule

p(x, y) = p(y|x)p(x) . (3)

Here x and y are unknown observed quantities. The sum
rule states that the marginal p(x) is obtained by summing
the joint p(x, y) over y. The product rule states that the
joint p(x, y) is obtained as a product of the conditional
p(y|x) and the marginal p(x).

Bayes’s rule is obtained from these two rules

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)P
y2Y

p(x, y)
(4)

b) Softmax function

The softmax function is often used in the last step of
a NN for classification. We here demonstrate that it can
be derived from simple Bayesian principles12 (p 198).

The input to node n is xn, with in total N nodes. For
each node we wish to classify whether the data belongs
to class Cn

p(Cn|x) =
p(x|Cn)p(Cn)P
N

k=1 p(x|Ck)p(Ck)
(5)

=
exp(an)P
N

k=1 exp(ak)
(6)

with

an = ln (p(x|Cn)p(Cn)) (7)

Assuming x is Gaussian N (µn,⌃) and p(Cn) is uni-
form, it can be shown that (7) can be expressed in terms
of the weights

an = wT

n
x+ w0

wn = ⌃�1
µn

w0 =
�1

2
µ
T

n
⌃�1

µn + ln(p(Cn)) (8)

Thus, from a Bayesian perspective, it makes sense to use
the softmax criterion.

For the binary classification problem this becomes

p(C1|x) =
p(x|C1)p(C1)P2

k=1 p(x|Ck)p(Ck)
(9)

=
exp(a1)P2
k=1 exp(ak)

=
1

1 + exp(�a)
(10)

with

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
(11)

thus for binary classification we should use logistic sig-
moid (10).

C. Machine learning: Supervised and unsupervised learning

ML methods generally can be categorized as either
supervised or unsupervised learning tasks. In supervised
learning, the task is to learn a predictive mapping from
inputs to outputs given labeled input and output pairs.
Supervised learning is the most widely used ML category,
and includes familiar methods such as linear regression
(a.k.a. ridge regression) and nearest-neighbor classifiers,
as well as more sophisticated support vector machine
(SVM) and neural network (NN) models- sometimes re-
ferred to as artificial NNs, due to their weak relationship
to neural structure in the biological brain. In unsuper-
vised learning, no labels are given and the task is to dis-
cover interesting or useful structure within the data. This
has many useful applications, which include data visual-
ization, exploratory data analysis, and feature learning.
Though the learned features are optimal according to the
desired measure, they may not be useful. Unsupervised
methods such as PCA, K-means,14 and Gaussian mix-
ture models (GMMs) have been used for decades. Newer
methods include t-SNE,24 dictionary learning, and deep
representations (e.g. autoencoders). An important point
is that the results of unsupervised methods can be used
either directly, such as for discovery of latent factors or
data visualization, or as part of a supervised learning
framework, where they supply transformed versions of
the features to improve supervised learning performance.

In the following we discuss in more depth the dis-
tinctions between supervised and unsupervised learning
methods, describe a few specific ML methods in each cat-
egory, and provide illustrative examples of each. For a
more in-depth treatment of these subjects, please refer
to the excellent machine learning textbooks.12,13,16,17

1. Supervised learning

In supervised ML, the task is to learn a predictive
mapping from inputs to outputs given labeled input and
output pairs, where the data may be imperfect

yi = f(xi) + n, (12)

where xi 2 RN is a vector of N input variables called
features. The features can be real, imaginary, or cate-

4 J. Acoust. Soc. Am. / 6 April 2019 JASA

correct, it is at least approximately correct for processes
involving images and sound.15(?)

B. Introduction to probabilities

The best (Or, a theoretically robust?) way to im-
plement machine learning methods is to use the tools of
probability, which have been critical in the development
of modern science and engineering. Bayesian inference,
resampling?

Almost all machine-learning tasks can be formulated
as making inferences about missing or latent data from
the observed data.

1. Bayesian machine learning

Two simple rules are of fundamental importance for
Bayesian ML [Ghahramani 2015]. The sum rule

p(x) =
X

y2Y

p(x, y) , (2)

and the product rule

p(x, y) = p(y|x)p(x) . (3)

Here x and y are unknown observed quantities. The sum
rule states that the marginal p(x) is obtained by summing
the joint p(x, y) over y. The product rule states that the
joint p(x, y) is obtained as a product of the conditional
p(y|x) and the marginal p(x).

Bayes’s rule is obtained from these two rules

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)P
y2Y

p(x, y)
(4)

b) Softmax function

The softmax function is often used in the last step of
a NN for classification. We here demonstrate that it can
be derived from simple Bayesian principles12 (p 198).

The input to node n is xn, with in total N nodes. For
each node we wish to classify whether the data belongs
to class Cn

p(Cn|x) =
p(x|Cn)p(Cn)P
N

k=1 p(x|Ck)p(Ck)
(5)

=
exp(an)P
N

k=1 exp(ak)
(6)

with

an = ln (p(x|Cn)p(Cn)) (7)

Assuming x is Gaussian N (µn,⌃) and p(Cn) is uni-
form, it can be shown that (7) can be expressed in terms
of the weights

an = wT

n
x+ w0

wn = ⌃�1
µn

w0 =
�1

2
µ
T

n
⌃�1

µn + ln(p(Cn)) (8)

Thus, from a Bayesian perspective, it makes sense to use
the softmax criterion.

For the binary classification problem this becomes

p(C1|x) =
p(x|C1)p(C1)P2

k=1 p(x|Ck)p(Ck)
(9)

=
exp(a1)P2
k=1 exp(ak)

=
1

1 + exp(�a)
(10)

with

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
(11)

thus for binary classification we should use logistic sig-
moid (10).

C. Machine learning: Supervised and unsupervised learning

ML methods generally can be categorized as either
supervised or unsupervised learning tasks. In supervised
learning, the task is to learn a predictive mapping from
inputs to outputs given labeled input and output pairs.
Supervised learning is the most widely used ML category,
and includes familiar methods such as linear regression
(a.k.a. ridge regression) and nearest-neighbor classifiers,
as well as more sophisticated support vector machine
(SVM) and neural network (NN) models- sometimes re-
ferred to as artificial NNs, due to their weak relationship
to neural structure in the biological brain. In unsuper-
vised learning, no labels are given and the task is to dis-
cover interesting or useful structure within the data. This
has many useful applications, which include data visual-
ization, exploratory data analysis, and feature learning.
Though the learned features are optimal according to the
desired measure, they may not be useful. Unsupervised
methods such as PCA, K-means,14 and Gaussian mix-
ture models (GMMs) have been used for decades. Newer
methods include t-SNE,24 dictionary learning, and deep
representations (e.g. autoencoders). An important point
is that the results of unsupervised methods can be used
either directly, such as for discovery of latent factors or
data visualization, or as part of a supervised learning
framework, where they supply transformed versions of
the features to improve supervised learning performance.

In the following we discuss in more depth the dis-
tinctions between supervised and unsupervised learning
methods, describe a few specific ML methods in each cat-
egory, and provide illustrative examples of each. For a
more in-depth treatment of these subjects, please refer
to the excellent machine learning textbooks.12,13,16,17

1. Supervised learning

In supervised ML, the task is to learn a predictive
mapping from inputs to outputs given labeled input and
output pairs, where the data may be imperfect

yi = f(xi) + n, (12)

where xi 2 RN is a vector of N input variables called
features. The features can be real, imaginary, or cate-
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Parametric Approach: Linear Classifier
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parameters
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W

f(x,W) 10 numbers giving 
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3072x1

10x1 10x3072
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Softmax to Logistic Regression (Bishop p. 198)correct, it is at least approximately correct for processes
involving images and sound.15(?)

B. Introduction to probabilities

The best (Or, a theoretically robust?) way to im-
plement machine learning methods is to use the tools of
probability, which have been critical in the development
of modern science and engineering. Bayesian inference,
resampling?

Almost all machine-learning tasks can be formulated
as making inferences about missing or latent data from
the observed data.

1. Bayesian machine learning

Two simple rules are of fundamental importance for
Bayesian ML [Ghahramani 2015]. The sum rule

p(x) =
X

y2Y

p(x, y) , (2)

and the product rule

p(x, y) = p(y|x)p(x) . (3)

Here x and y are unknown observed quantities. The sum
rule states that the marginal p(x) is obtained by summing
the joint p(x, y) over y. The product rule states that the
joint p(x, y) is obtained as a product of the conditional
p(y|x) and the marginal p(x).

Bayes’s rule is obtained from these two rules

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)P
y2Y

p(x, y)
(4)

b) Softmax function

The softmax function is often used in the last step of
a NN for classification. We here demonstrate that it can
be derived from simple Bayesian principles12 (p 198).

The input to node n is xn, with in total N nodes. For
each node we wish to classify whether the data belongs
to class Cn

p(Cn|x) =
p(x|Cn)p(Cn)P
N

k=1 p(x|Ck)p(Ck)
(5)

=
exp(an)P
N

k=1 exp(ak)
(6)

with

an = ln (p(x|Cn)p(Cn)) (7)

Assuming x is Gaussian N (µn,⌃) and p(Cn) is uni-
form, it can be shown that (7) can be expressed in terms
of the weights

an = wT

n
x+ w0

wn = ⌃�1
µn

w0 =
�1

2
µ
T

n
⌃�1

µn + ln(p(Cn)) (8)

Thus, from a Bayesian perspective, it makes sense to use
the softmax criterion.

For the binary classification problem this becomes

p(C1|x) =
p(x|C1)p(C1)P2

k=1 p(x|Ck)p(Ck)
(9)

=
exp(a1)P2
k=1 exp(ak)

=
1

1 + exp(�a)
(10)

with

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
(11)

thus for binary classification we should use logistic sig-
moid (10).

C. Machine learning: Supervised and unsupervised learning

ML methods generally can be categorized as either
supervised or unsupervised learning tasks. In supervised
learning, the task is to learn a predictive mapping from
inputs to outputs given labeled input and output pairs.
Supervised learning is the most widely used ML category,
and includes familiar methods such as linear regression
(a.k.a. ridge regression) and nearest-neighbor classifiers,
as well as more sophisticated support vector machine
(SVM) and neural network (NN) models- sometimes re-
ferred to as artificial NNs, due to their weak relationship
to neural structure in the biological brain. In unsuper-
vised learning, no labels are given and the task is to dis-
cover interesting or useful structure within the data. This
has many useful applications, which include data visual-
ization, exploratory data analysis, and feature learning.
Though the learned features are optimal according to the
desired measure, they may not be useful. Unsupervised
methods such as PCA, K-means,14 and Gaussian mix-
ture models (GMMs) have been used for decades. Newer
methods include t-SNE,24 dictionary learning, and deep
representations (e.g. autoencoders). An important point
is that the results of unsupervised methods can be used
either directly, such as for discovery of latent factors or
data visualization, or as part of a supervised learning
framework, where they supply transformed versions of
the features to improve supervised learning performance.

In the following we discuss in more depth the dis-
tinctions between supervised and unsupervised learning
methods, describe a few specific ML methods in each cat-
egory, and provide illustrative examples of each. For a
more in-depth treatment of these subjects, please refer
to the excellent machine learning textbooks.12,13,16,17

1. Supervised learning

In supervised ML, the task is to learn a predictive
mapping from inputs to outputs given labeled input and
output pairs, where the data may be imperfect

yi = f(xi) + n, (12)

where xi 2 RN is a vector of N input variables called
features. The features can be real, imaginary, or cate-
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Softmax with Gaussian(Bishop p. 198)

correct, it is at least approximately correct for processes
involving images and sound.15(?)

B. Introduction to probabilities

The best (Or, a theoretically robust?) way to im-
plement machine learning methods is to use the tools of
probability, which have been critical in the development
of modern science and engineering. Bayesian inference,
resampling?

Almost all machine-learning tasks can be formulated
as making inferences about missing or latent data from
the observed data.

1. Bayesian machine learning

Two simple rules are of fundamental importance for
Bayesian ML [Ghahramani 2015]. The sum rule

p(x) =
X

y2Y

p(x, y) , (2)

and the product rule

p(x, y) = p(y|x)p(x) . (3)

Here x and y are unknown observed quantities. The sum
rule states that the marginal p(x) is obtained by summing
the joint p(x, y) over y. The product rule states that the
joint p(x, y) is obtained as a product of the conditional
p(y|x) and the marginal p(x).

Bayes’s rule is obtained from these two rules

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)P
y2Y

p(x, y)
(4)

b) Softmax function

The softmax function is often used in the last step of
a NN for classification. We here demonstrate that it can
be derived from simple Bayesian principles12 (p 198).

The input to node n is xn, with in total N nodes. For
each node we wish to classify whether the data belongs
to class Cn

p(Cn|x) =
p(x|Cn)p(Cn)P
N

k=1 p(x|Ck)p(Ck)
(5)

=
exp(an)P
N

k=1 exp(ak)
(6)

with

an = ln (p(x|Cn)p(Cn)) (7)

Assuming x is Gaussian N (µn,⌃) and p(Cn) is uni-
form, it can be shown that (7) can be expressed in terms
of the weights

an = wT

n
x+ w0

wn = ⌃�1
µn

w0 =
�1

2
µ
T

n
⌃�1

µn + ln(p(Cn)) (8)

Thus, from a Bayesian perspective, it makes sense to use
the softmax criterion.

For the binary classification problem this becomes

p(C1|x) =
p(x|C1)p(C1)P2

k=1 p(x|Ck)p(Ck)
(9)

=
exp(a1)P2
k=1 exp(ak)

=
1

1 + exp(�a)
(10)

with

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
(11)

thus for binary classification we should use logistic sig-
moid (10).

C. Machine learning: Supervised and unsupervised learning

ML methods generally can be categorized as either
supervised or unsupervised learning tasks. In supervised
learning, the task is to learn a predictive mapping from
inputs to outputs given labeled input and output pairs.
Supervised learning is the most widely used ML category,
and includes familiar methods such as linear regression
(a.k.a. ridge regression) and nearest-neighbor classifiers,
as well as more sophisticated support vector machine
(SVM) and neural network (NN) models- sometimes re-
ferred to as artificial NNs, due to their weak relationship
to neural structure in the biological brain. In unsuper-
vised learning, no labels are given and the task is to dis-
cover interesting or useful structure within the data. This
has many useful applications, which include data visual-
ization, exploratory data analysis, and feature learning.
Though the learned features are optimal according to the
desired measure, they may not be useful. Unsupervised
methods such as PCA, K-means,14 and Gaussian mix-
ture models (GMMs) have been used for decades. Newer
methods include t-SNE,24 dictionary learning, and deep
representations (e.g. autoencoders). An important point
is that the results of unsupervised methods can be used
either directly, such as for discovery of latent factors or
data visualization, or as part of a supervised learning
framework, where they supply transformed versions of
the features to improve supervised learning performance.

In the following we discuss in more depth the dis-
tinctions between supervised and unsupervised learning
methods, describe a few specific ML methods in each cat-
egory, and provide illustrative examples of each. For a
more in-depth treatment of these subjects, please refer
to the excellent machine learning textbooks.12,13,16,17

1. Supervised learning

In supervised ML, the task is to learn a predictive
mapping from inputs to outputs given labeled input and
output pairs, where the data may be imperfect

yi = f(xi) + n, (12)

where xi 2 RN is a vector of N input variables called
features. The features can be real, imaginary, or cate-
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correct, it is at least approximately correct for processes
involving images and sound.15(?)

B. Introduction to probabilities

The best (Or, a theoretically robust?) way to im-
plement machine learning methods is to use the tools of
probability, which have been critical in the development
of modern science and engineering. Bayesian inference,
resampling?

Almost all machine-learning tasks can be formulated
as making inferences about missing or latent data from
the observed data.

1. Bayesian machine learning

Two simple rules are of fundamental importance for
Bayesian ML [Ghahramani 2015]. The sum rule

p(x) =
X

y2Y

p(x, y) , (2)

and the product rule

p(x, y) = p(y|x)p(x) . (3)

Here x and y are unknown observed quantities. The sum
rule states that the marginal p(x) is obtained by summing
the joint p(x, y) over y. The product rule states that the
joint p(x, y) is obtained as a product of the conditional
p(y|x) and the marginal p(x).

Bayes’s rule is obtained from these two rules

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)P
y2Y

p(x, y)
(4)

b) Softmax function

The softmax function is often used in the last step of
a NN for classification. We here demonstrate that it can
be derived from simple Bayesian principles12 (p 198).

The input to node n is xn, with in total N nodes. For
each node we wish to classify whether the data belongs
to class Cn

p(Cn|x) =
p(x|Cn)p(Cn)P
N

k=1 p(x|Ck)p(Ck)
(5)

=
exp(an)P
N

k=1 exp(ak)
(6)

with

an = ln (p(x|Cn)p(Cn)) (7)

Assuming x is Gaussian N (µn,⌃) and p(Cn) is uni-
form, it can be shown that (7) can be expressed in terms
of the weights

an = wT

n
x+ w0

wn = ⌃�1
µn

w0 =
�1

2
µ
T

n
⌃�1

µn + ln(p(Cn)) (8)

Thus, from a Bayesian perspective, it makes sense to use
the softmax criterion.

For the binary classification problem this becomes

p(C1|x) =
p(x|C1)p(C1)P2

k=1 p(x|Ck)p(Ck)
(9)

=
exp(a1)P2
k=1 exp(ak)

=
1

1 + exp(�a)
(10)

with

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
(11)

thus for binary classification we should use logistic sig-
moid (10).

C. Machine learning: Supervised and unsupervised learning

ML methods generally can be categorized as either
supervised or unsupervised learning tasks. In supervised
learning, the task is to learn a predictive mapping from
inputs to outputs given labeled input and output pairs.
Supervised learning is the most widely used ML category,
and includes familiar methods such as linear regression
(a.k.a. ridge regression) and nearest-neighbor classifiers,
as well as more sophisticated support vector machine
(SVM) and neural network (NN) models- sometimes re-
ferred to as artificial NNs, due to their weak relationship
to neural structure in the biological brain. In unsuper-
vised learning, no labels are given and the task is to dis-
cover interesting or useful structure within the data. This
has many useful applications, which include data visual-
ization, exploratory data analysis, and feature learning.
Though the learned features are optimal according to the
desired measure, they may not be useful. Unsupervised
methods such as PCA, K-means,14 and Gaussian mix-
ture models (GMMs) have been used for decades. Newer
methods include t-SNE,24 dictionary learning, and deep
representations (e.g. autoencoders). An important point
is that the results of unsupervised methods can be used
either directly, such as for discovery of latent factors or
data visualization, or as part of a supervised learning
framework, where they supply transformed versions of
the features to improve supervised learning performance.

In the following we discuss in more depth the dis-
tinctions between supervised and unsupervised learning
methods, describe a few specific ML methods in each cat-
egory, and provide illustrative examples of each. For a
more in-depth treatment of these subjects, please refer
to the excellent machine learning textbooks.12,13,16,17

1. Supervised learning

In supervised ML, the task is to learn a predictive
mapping from inputs to outputs given labeled input and
output pairs, where the data may be imperfect

yi = f(xi) + n, (12)

where xi 2 RN is a vector of N input variables called
features. The features can be real, imaginary, or cate-
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correct, it is at least approximately correct for processes
involving images and sound.15(?)

B. Introduction to probabilities

The best (Or, a theoretically robust?) way to im-
plement machine learning methods is to use the tools of
probability, which have been critical in the development
of modern science and engineering. Bayesian inference,
resampling?

Almost all machine-learning tasks can be formulated
as making inferences about missing or latent data from
the observed data.

1. Bayesian machine learning

Two simple rules are of fundamental importance for
Bayesian ML [Ghahramani 2015]. The sum rule

p(x) =
X

y2Y

p(x, y) , (2)

and the product rule

p(x, y) = p(y|x)p(x) . (3)

Here x and y are unknown observed quantities. The sum
rule states that the marginal p(x) is obtained by summing
the joint p(x, y) over y. The product rule states that the
joint p(x, y) is obtained as a product of the conditional
p(y|x) and the marginal p(x).

Bayes’s rule is obtained from these two rules

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)P
y2Y

p(x, y)
(4)

b) Softmax function

The softmax function is often used in the last step of
a NN for classification. We here demonstrate that it can
be derived from simple Bayesian principles12 (p 198).

The input to node n is xn, with in total N nodes. For
each node we wish to classify whether the data belongs
to class Cn

p(Cn|x) =
p(x|Cn)p(Cn)P
N

k=1 p(x|Ck)p(Ck)
(5)

=
exp(an)P
N

k=1 exp(ak)
(6)

with

an = ln (p(x|Cn)p(Cn)) (7)

Assuming x is Gaussian N (µn,⌃) and p(Cn) is uni-
form, it can be shown that (7) can be expressed in terms
of the weights

an = wT

n
x+ w0

wn = ⌃�1
µn

w0 =
�1

2
µ
T

n
⌃�1

µn + ln(p(Cn)) (8)

Thus, from a Bayesian perspective, it makes sense to use
the softmax criterion.

For the binary classification problem this becomes

p(C1|x) =
p(x|C1)p(C1)P2

k=1 p(x|Ck)p(Ck)
(9)

=
exp(a1)P2
k=1 exp(ak)

=
1

1 + exp(�a)
(10)

with

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
(11)

thus for binary classification we should use logistic sig-
moid (10).

C. Machine learning: Supervised and unsupervised learning

ML methods generally can be categorized as either
supervised or unsupervised learning tasks. In supervised
learning, the task is to learn a predictive mapping from
inputs to outputs given labeled input and output pairs.
Supervised learning is the most widely used ML category,
and includes familiar methods such as linear regression
(a.k.a. ridge regression) and nearest-neighbor classifiers,
as well as more sophisticated support vector machine
(SVM) and neural network (NN) models- sometimes re-
ferred to as artificial NNs, due to their weak relationship
to neural structure in the biological brain. In unsuper-
vised learning, no labels are given and the task is to dis-
cover interesting or useful structure within the data. This
has many useful applications, which include data visual-
ization, exploratory data analysis, and feature learning.
Though the learned features are optimal according to the
desired measure, they may not be useful. Unsupervised
methods such as PCA, K-means,14 and Gaussian mix-
ture models (GMMs) have been used for decades. Newer
methods include t-SNE,24 dictionary learning, and deep
representations (e.g. autoencoders). An important point
is that the results of unsupervised methods can be used
either directly, such as for discovery of latent factors or
data visualization, or as part of a supervised learning
framework, where they supply transformed versions of
the features to improve supervised learning performance.

In the following we discuss in more depth the dis-
tinctions between supervised and unsupervised learning
methods, describe a few specific ML methods in each cat-
egory, and provide illustrative examples of each. For a
more in-depth treatment of these subjects, please refer
to the excellent machine learning textbooks.12,13,16,17

1. Supervised learning

In supervised ML, the task is to learn a predictive
mapping from inputs to outputs given labeled input and
output pairs, where the data may be imperfect

yi = f(xi) + n, (12)

where xi 2 RN is a vector of N input variables called
features. The features can be real, imaginary, or cate-
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Bayesian Inference for the Gaussian (Bishop2.3.6)
Assume s2 is known. Given i.i.d. data
the likelihood function for µ is given by

• This has a Gaussian shape as a function of µ (but it is not a distribution over µ).
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• Combined with a Gaussian prior over µ,

• this gives the posterior



Bayesian Inference for the Gaussian (3)
• Example:                                       for N = 0, 1, 2 and 10.

Prior



Bayesian Inference for the Gaussian (4)
Sequential Estimation

The posterior obtained after observing N-1 data points becomes the prior when we 
observe the N th data point.

Conjugate prior: posterior and prior are in the same family. The prior is called 
a conjugate prior for the likelihood function.
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Figure 6.4 Samples from Gaus-
sian processes for a ‘Gaussian’ ker-
nel (left) and an exponential kernel
(right).
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6.4.2 Gaussian processes for regression
In order to apply Gaussian process models to the problem of regression, we need

to take account of the noise on the observed target values, which are given by

tn = yn + ϵn (6.57)

where yn = y(xn), and ϵn is a random noise variable whose value is chosen inde-
pendently for each observation n. Here we shall consider noise processes that have
a Gaussian distribution, so that

p(tn|yn) = N (tn|yn, β−1) (6.58)

where β is a hyperparameter representing the precision of the noise. Because the
noise is independent for each data point, the joint distribution of the target values
t = (t1, . . . , tN )T conditioned on the values of y = (y1, . . . , yN )T is given by an
isotropic Gaussian of the form

p(t|y ) = N (t|y , β−1IN ) (6.59)

where IN denotes the N ×N unit matrix. From the definition of a Gaussian process,
the marginal distribution p(y ) is given by a Gaussian whose mean is zero and whose
covariance is defined by a Gram matrix K so that

p(y ) = N (y |0,K). (6.60)

The kernel function that determines K is typically chosen to express the property
that, for points xn and xm that are similar, the corresponding values y(xn) and
y(xm) will be more strongly correlated than for dissimilar points. Here the notion
of similarity will depend on the application.

In order to find the marginal distribution p(t), conditioned on the input values
x1, . . . ,xN , we need to integrate over y . This can be done by making use of the
results from Section 2.3.3 for the linear-Gaussian model. Using (2.115), we see that
the marginal distribution of t is given by

p(t) =
∫

p(t|y )p(y ) dy = N (t|0,C ) (6.61)
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Gaussian Process (Bishop 6.4)
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tic discriminative models, leading to the framework of Gaussian processes. We shall
thereby see how kernels arise naturally in a Bayesian setting.

In Chapter 3, we considered linear regression models of the form y(x, w ) =
w Tφ(x) in which w is a vector of parameters and φ(x) is a vector of fixed nonlinear
basis functions that depend on the input vector x. We showed that a prior distribution
over w induced a corresponding prior distribution over functions y(x, w ). Given a
training data set, we then evaluated the posterior distribution over w and thereby
obtained the corresponding posterior distribution over regression functions, which
in turn (with the addition of noise) implies a predictive distribution p(t|x) for new
input vectors x.

In the Gaussian process viewpoint, we dispense with the parametric model and
instead define a prior probability distribution over functions directly. At first sight, it
might seem difficult to work with a distribution over the uncountably infinite space of
functions. However, as we shall see, for a finite training set we only need to consider
the values of the function at the discrete set of input values xn corresponding to the
training set and test set data points, and so in practice we can work in a finite space.

Models equivalent to Gaussian processes have been widely studied in many dif-
ferent fields. For instance, in the geostatistics literature Gaussian process regression
is known as kriging (Cressie, 1993). Similarly, ARMA (autoregressive moving aver-
age) models, Kalman filters, and radial basis function networks can all be viewed as
forms of Gaussian process models. Reviews of Gaussian processes from a machine
learning perspective can be found in MacKay (1998), Williams (1999), and MacKay
(2003), and a comparison of Gaussian process models with alternative approaches is
given in Rasmussen (1996). See also Rasmussen and Williams (2006) for a recent
textbook on Gaussian processes.

6.4.1 Linear regression revisited
In order to motivate the Gaussian process viewpoint, let us return to the linear

regression example and re-derive the predictive distribution by working in terms
of distributions over functions y(x, w ). This will provide a specific example of a
Gaussian process.

Consider a model defined in terms of a linear combination of M fixed basis
functions given by the elements of the vector φ(x) so that

y(x) = w Tφ(x) (6.49)

where x is the input vector and w is the M -dimensional weight vector. Now consider
a prior distribution over w given by an isotropic Gaussian of the form

p(w ) = N (w |0, α−1I) (6.50)

governed by the hyperparameter α, which represents the precision (inverse variance)
of the distribution. For any given value of w , the definition (6.49) defines a partic-
ular function of x. The probability distribution over w defined by (6.50) therefore
induces a probability distribution over functions y(x). In practice, we wish to eval-
uate this function at specific values of x, for example at the training data points

304 6. KERNEL METHODS

tic discriminative models, leading to the framework of Gaussian processes. We shall
thereby see how kernels arise naturally in a Bayesian setting.

In Chapter 3, we considered linear regression models of the form y(x, w ) =
w Tφ(x) in which w is a vector of parameters and φ(x) is a vector of fixed nonlinear
basis functions that depend on the input vector x. We showed that a prior distribution
over w induced a corresponding prior distribution over functions y(x, w ). Given a
training data set, we then evaluated the posterior distribution over w and thereby
obtained the corresponding posterior distribution over regression functions, which
in turn (with the addition of noise) implies a predictive distribution p(t|x) for new
input vectors x.

In the Gaussian process viewpoint, we dispense with the parametric model and
instead define a prior probability distribution over functions directly. At first sight, it
might seem difficult to work with a distribution over the uncountably infinite space of
functions. However, as we shall see, for a finite training set we only need to consider
the values of the function at the discrete set of input values xn corresponding to the
training set and test set data points, and so in practice we can work in a finite space.

Models equivalent to Gaussian processes have been widely studied in many dif-
ferent fields. For instance, in the geostatistics literature Gaussian process regression
is known as kriging (Cressie, 1993). Similarly, ARMA (autoregressive moving aver-
age) models, Kalman filters, and radial basis function networks can all be viewed as
forms of Gaussian process models. Reviews of Gaussian processes from a machine
learning perspective can be found in MacKay (1998), Williams (1999), and MacKay
(2003), and a comparison of Gaussian process models with alternative approaches is
given in Rasmussen (1996). See also Rasmussen and Williams (2006) for a recent
textbook on Gaussian processes.

6.4.1 Linear regression revisited
In order to motivate the Gaussian process viewpoint, let us return to the linear

regression example and re-derive the predictive distribution by working in terms
of distributions over functions y(x, w ). This will provide a specific example of a
Gaussian process.

Consider a model defined in terms of a linear combination of M fixed basis
functions given by the elements of the vector φ(x) so that

y(x) = w Tφ(x) (6.49)

where x is the input vector and w is the M -dimensional weight vector. Now consider
a prior distribution over w given by an isotropic Gaussian of the form

p(w ) = N (w |0, α−1I) (6.50)

governed by the hyperparameter α, which represents the precision (inverse variance)
of the distribution. For any given value of w , the definition (6.49) defines a partic-
ular function of x. The probability distribution over w defined by (6.50) therefore
induces a probability distribution over functions y(x). In practice, we wish to eval-
uate this function at specific values of x, for example at the training data points

6.4. Gaussian Processes 305

x1, . . . ,xN . We are therefore interested in the joint distribution of the function val-
ues y(x1), . . . , y(xN ), which we denote by the vector y with elements yn = y(xn)
for n = 1 , . . . , N . From (6.49), this vector is given by

y = Φw (6.51)

where Φ is the design matrix with elements Φnk = φk(xn). We can find the proba-
bility distribution of y as follows. First of all we note that y is a linear combination of
Gaussian distributed variables given by the elements of w and hence is itself Gaus-
sian. We therefore need only to find its mean and covariance, which are given fromExercise 2.31
(6.50) by

E[y] = ΦE[w] = 0 (6.52)

cov[y] = E
[
yyT

]
= ΦE

[
wwT

]
ΦT =

1
α
ΦΦT = K (6.53)

where K is the Gram matrix with elements

Knm = k(xn,xm) =
1
α

φ(xn)Tφ(xm) (6.54)

and k(x,x′) is the kernel function.
This model provides us with a particular example of a Gaussian process. In gen-

eral, a Gaussian process is defined as a probability distribution over functions y(x)
such that the set of values of y(x) evaluated at an arbitrary set of points x1, . . . ,xN

jointly have a Gaussian distribution. In cases where the input vector x is two di-
mensional, this may also be known as a Gaussian random field. More generally, a
stochastic process y(x) is specified by giving the joint probability distribution for
any finite set of values y(x1), . . . , y(xN ) in a consistent manner.

A key point about Gaussian stochastic processes is that the joint distribution
over N variables y1, . . . , yN is specified completely by the second-order statistics,
namely the mean and the covariance. In most applications, we will not have any
prior knowledge about the mean of y(x) and so by symmetry we take it to be zero.
This is equivalent to choosing the mean of the prior over weight values p(w|α) to
be zero in the basis function viewpoint. The specification of the Gaussian process is
then completed by giving the covariance of y(x) evaluated at any two values of x,
which is given by the kernel function

E [y(xn)y(xm)] = k(xn,xm). (6.55)

For the specific case of a Gaussian process defined by the linear regression model
(6.49) with a weight prior (6.50), the kernel function is given by (6.54).

We can also define the kernel function directly, rather than indirectly through a
choice of basis function. Figure 6.4 shows samples of functions drawn from Gaus-
sian processes for two different choices of kernel function. The first of these is a
‘Gaussian’ kernel of the form (6.23), and the second is the exponential kernel given
by

k(x, x′) = exp (−θ |x − x′|) (6.56)

which corresponds to the Ornstein-Uhlenbeck process originally introduced by Uh-
lenbeck and Ornstein (1930) to describe Brownian motion.
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6.4.2 Gaussian processes for regression
In order to apply Gaussian process models to the problem of regression, we need

to take account of the noise on the observed target values, which are given by

tn = yn + ϵn (6.57)

where yn = y(xn), and ϵn is a random noise variable whose value is chosen inde-
pendently for each observation n. Here we shall consider noise processes that have
a Gaussian distribution, so that

p(tn|yn) = N (tn|yn, β−1) (6.58)

where β is a hyperparameter representing the precision of the noise. Because the
noise is independent for each data point, the joint distribution of the target values
t = (t1, . . . , tN )T conditioned on the values of y = (y1, . . . , yN )T is given by an
isotropic Gaussian of the form

p(t|y ) = N (t|y , β−1IN ) (6.59)

where IN denotes the N ×N unit matrix. From the definition of a Gaussian process,
the marginal distribution p(y ) is given by a Gaussian whose mean is zero and whose
covariance is defined by a Gram matrix K so that

p(y ) = N (y |0,K). (6.60)

The kernel function that determines K is typically chosen to express the property
that, for points xn and xm that are similar, the corresponding values y(xn) and
y(xm) will be more strongly correlated than for dissimilar points. Here the notion
of similarity will depend on the application.

In order to find the marginal distribution p(t), conditioned on the input values
x1, . . . ,xN , we need to integrate over y . This can be done by making use of the
results from Section 2.3.3 for the linear-Gaussian model. Using (2.115), we see that
the marginal distribution of t is given by

p(t) =
∫

p(t|y )p(y ) dy = N (t|0,C ) (6.61)
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where the covariance matrix C has elements

C(xn,xm) = k(xn,xm) + β−1δnm. (6.62)

This result reflects the fact that the two Gaussian sources of randomness, namely
that associated with y(x) and that associated with ϵ, are independent and so their
covariances simply add.

One widely used kernel function for Gaussian process regression is given by the
exponential of a quadratic form, with the addition of constant and linear terms to
give

k(xn,xm) = θ0 exp
{
−θ1

2
∥xn − xm∥2

}
+ θ2 + θ3xT

nxm. (6.63)

Note that the term involving θ3 corresponds to a parametric model that is a linear
function of the input variables. Samples from this prior are plotted for various values
of the parameters θ0, . . . , θ3 in Figure 6.5, and Figure 6.6 shows a set of points sam-
pled from the joint distribution (6.60) along with the corresponding values defined
by (6.61).

So far, we have used the Gaussian process viewpoint to build a model of the
joint distribution over sets of data points. Our goal in regression, however, is to
make predictions of the target variables for new inputs, given a set of training data.
Let us suppose that tN = (t1, . . . , tN )T, corresponding to input values x1, . . . ,xN ,
comprise the observed training set, and our goal is to predict the target variable tN+1

for a new input vector xN+1. This requires that we evaluate the predictive distri-
bution p(tN+1|tN ). Note that this distribution is conditioned also on the variables
x1, . . . ,xN and xN+1. However, to keep the notation simple we will not show these
conditioning variables explicitly.

To find the conditional distribution p(tN+1|t), we begin by writing down the
joint distribution p(tN+1), where tN+1 denotes the vector (t1, . . . , tN , tN+1)T. We
then apply the results from Section 2.3.1 to obtain the required conditional distribu-
tion, as illustrated in Figure 6.7.

From (6.61), the joint distribution over t1, . . . , tN+1 will be given by

p(tN+1) = N (tN+1|0,C N+1) (6.64)

where C N+1 is an (N + 1) × (N + 1) covariance matrix with elements given by
(6.62). Because this joint distribution is Gaussian, we can apply the results from
Section 2.3.1 to find the conditional Gaussian distribution. To do this, we partition
the covariance matrix as follows

C N+1 =
(

C N k
kT c

)
(6.65)

where C N is the N × N covariance matrix with elements given by (6.62) for n, m =
1, . . . , N , the vector k has elements k(xn,xN+1) for n = 1, . . . , N , and the scalar
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x1, . . . ,xN and xN+1. However, to keep the notation simple we will not show these
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To find the conditional distribution p(tN+1|t), we begin by writing down the
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tion, as illustrated in Figure 6.7.

From (6.61), the joint distribution over t1, . . . , tN+1 will be given by

p(tN+1) = N (tN+1|0,C N+1) (6.64)
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(6.62). Because this joint distribution is Gaussian, we can apply the results from
Section 2.3.1 to find the conditional Gaussian distribution. To do this, we partition
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C N k
kT c

)
(6.65)

where C N is the N × N covariance matrix with elements given by (6.62) for n, m =
1, . . . , N , the vector k has elements k(xn,xN+1) for n = 1, . . . , N , and the scalar
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where the covariance matrix C has elements
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2
∥xn − xm∥2

}
+ θ2 + θ3xT

nxm. (6.63)
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pled from the joint distribution (6.60) along with the corresponding values defined
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Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above
each plot denotes (θ0, θ1, θ2, θ3).

c = k(xN+1,xN+1)+β−1. Using the results (2.81) and (2.82), we see that the con-
ditional distribution p(tN+1|t) is a Gaussian distribution with mean and covariance
given by

m(xN+1) = kTC−1
N t (6.66)

σ2(xN+1) = c − kTC−1
N k. (6.67)

These are the key results that define Gaussian process regression. Because the vector
k is a function of the test point input value xN+1, we see that the predictive distribu-
tion is a Gaussian whose mean and variance both depend on xN+1. An example of
Gaussian process regression is shown in Figure 6.8.

The only restriction on the kernel function is that the covariance matrix given by
(6.62) must be positive definite. If λi is an eigenvalue of K, then the corresponding
eigenvalue of C will be λi + β−1. It is therefore sufficient that the kernel matrix
k(xn,xm) be positive semidefinite for any pair of points xn and xm, so that λi ! 0,
because any eigenvalue λi that is zero will still give rise to a positive eigenvalue
for C because β > 0. This is the same restriction on the kernel function discussed
earlier, and so we can again exploit all of the techniques in Section 6.2 to construct

Measurement  model

Multiple Measurement  model

Integrating out 

Predicting observation tN+1

The conditional  p(tN+1| tN+1) is Gaussian 



Nonparametric Methods (1) Bishop 2.5

• Parametric distribution models (… Gaussian) are restricted to specific 
forms, which may not always be suitable; for example, consider 
modelling a multimodal distribution with a single, unimodal model.

• Nonparametric approaches make few assumptions about the overall 
shape of the distribution being modelled.

• 1000 parameters versus 10 parameters

• Nonparametric models (not histograms) requires storing and 
computing with the entire data set. 

• Parametric models, once fitted, are much more efficient in terms of 
storage and computation.



Linear regression: Linear Basis Function Models (1)
Generally

• where fj(x) are known as basis functions.
• Typically, f0(x) = 1, so that w0 acts as a bias.
• Simplest case is linear basis functions: fd(x) = xd.

http://playground.tensorflow.org/

http://playground.tensorflow.org/


Some types of basis function in 1-D

Sigmoids Gaussians                Polynomials

Sigmoid and Gaussian basis functions can also be used in multilayer 
neural networks, but neural networks learn the parameters of the basis 
functions. This is more powerful but also harder and messier.



Two types of linear model that are equivalent with respect to 
learning

• The first and second model has the same number of adaptive 
coefficients as the number of basis functions +1.

• Once we have replaced the data by basis functions outputs, fitting 
the second model is exactly the same the first model.
– No need to clutter math with basis functions

)(...)()()(

...)(

22110

22110

xwxxwx,

xwwx,

F=+++=

=+++=
T

T

wwwy

xwxwwy

ff

bias



Maximum Likelihood and Least Squares (1)

• Assume observations from a deterministic function with added 
Gaussian noise:

• or,

• Given observed inputs,                            , and targets                       , 
we obtain the likelihood function  

where



Maximum Likelihood and Least Squares (2)
Taking the logarithm, we get

Where the sum-of-squares error is



Maximum Likelihood and Least Squares (3)
Computing the gradient and setting it to zero yields

Solving for w,  

where
The Moore-Penrose 
pseudo-inverse,       .



Maximum Likelihood and Least Squares (4)
Maximizing with respect to the bias, w0, alone, 

We can also maximize with respect to b, giving



Geometry of Least Squares
Consider

S is spanned by                    

wML minimizes the distance between 
t and its orthogonal projection on S, 
i.e. y.

N-dimensional
M-dimensional



Least mean squares: An alternative approach for big datasets

This is “on-line“ learning. It is efficient if the dataset is redundant and simple to 
implement.
• It is called stochastic gradient descent if the training cases are picked 

randomly.
• Care must be taken with the learning rate to prevent divergent 

oscillations. Rate must decrease with tau to get a good fit.
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Regularized least squares
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The squared weights penalty is mathematically compatible with 
the squared error function, giving a closed form for the optimal 
weights:

identity matrix



A picture of the effect of the regularizer
• The overall cost function is the sum of 

two parabolic bowls. 
• The sum is also a parabolic bowl.
• The combined minimum lies on the line 

between the minimum of the squared 
error and the origin.

• The L2 regularizer just shrinks the 
weights.



A problem with the regularizer
• The solution should be independent of the units we of the input vector.
• If components have different units (e.g. age and height), we have a problem.

– If we measure age in months and height in meters, the relative values of the 
two weights are very different than if we use years and millimeters. The 
squared penalty has very different effects.

• A way to avoid the units problem: Whiten the data so that the input components 
all have unit variance and no covariance. This stops the regularizer from being 
applied to the whitening matrix.

– … this can cause other problems when input components are almost perfectly 
correlated.

– We really need a prior on the weight on each input component.  
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Other regularizers

• We do not need to use the squared error, provided we are willing to do more 
computation.

• Other powers of the weights can be used.



The lasso: penalizing the absolute values of the weights

• Finding the minimum requires quadratic programming but its still 
unique because the cost function is convex (a bowl plus an inverted 
pyramid)

• As lambda is increased, many of the weights go to exactly zero. 
– This is great for interpretation, and it is also pretty good for 

preventing overfitting.
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Geometrical view of the lasso compared with a penalty on 
the squared weights

Notice w1=0 at the 
optimum



Minimizing the absolute error

• This minimization involves solving a linear programming problem.
• It corresponds to maximum likelihood estimation if the output noise 

is modeled by a Laplacian instead of a Gaussian.
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The bias-variance trade-off
(a figment of the frequentists lack of imagination?)

• Imagine a training set drawn at random from a whole set of training 
sets. 

• The squared loss can be decomposed into a
– Bias = systematic error in the model’s estimates
– Variance = noise in the estimates cause by sampling noise in the 

training set. 
• There is also  additional loss due to that the target values are noisy. 
– We eliminate this extra, irreducible loss from the math by using 

the average target values (i.e. the unknown, noise-free values)
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“Bias” term is the squared error of the  average, 
over training datasets D, of the estimates.

Bias: average between prediction  and desired.

“Variance” term: variance over training datasets D, 
of the model estimate.

The bias-variance decomposition



Regularization parameter affects the bias and variance terms

low bias
high bias

low variancehigh variance

4.2-= el 31.-= el 6.2e=l

True model
average

20 realizations



An example of the bias-variance trade-off



Beating the bias-variance trade-off
• We can reduce the variance term by averaging lots of models trained 

on different datasets. 
– This seems silly. If we had lots of different datasets it would be 

better to combine them into one big training set.
• With more training data there will be much less variance.

• Weird idea: We can create different datasets by bootstrap sampling 
of our single training dataset. 
– This is called “bagging” and it works surprisingly well.

• If we have enough computation its better doing it Bayesian: 
– Combine the predictions of many models using the posterior 

probability of each parameter vector as the combination weight.



The Bayesian approach
• Consider a simple linear model that only has two parameters:

• It is possible to display the full posterior distribution over the two-
dimensional parameter space.

• The likelihood term is a Gaussian, so if we use a Gaussian prior the 
posterior will be Gaussian:
– This is a conjugate prior. It means that the prior is just like having 

already observed some data.

xwwxy 10),( +=w



Bayesian Linear Regression (1)
• Define a conjugate prior over w

•Combining this with the likelihood function and using  results 
for marginal and conditional Gaussian distributions, gives the 
posterior 

• where 



Bayesian Linear Regression (2)
• A common choice for the prior is 

•for which
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Bishop Fig 3.7

With no data we sample lines 
from the prior.

With 20 data points, the prior 
has little effect

! = #0 +#1' +( 0,0.2
W0=-0.3, w1=0.5



Using the posterior distribution
If we can afford the computation, we ought to average the predictions 
of all parameters weighted with the posterior distribution:
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Predictive Distribution (1)
• Predict t for new values of x by integrating over w:

• where



Predictive distribution for noisy sinusoidal data modeled by  
linear combining 9 radial basis functions.



A way to see the covariance of predictions for different values of x
We sample models at random from the posterior and show the 
mean  of the each model’s predictions



Bayesian model comparison
• We usually need to decide between many different models: 

– Different numbers of basis functions
– Different types of basis functions
– Different strengths of regularizers

• The frequentist way to decide between models is to hold back a validation set and 
pick the model that does best on the validation data.
– This gives less training data. We can use a small validation set and evaluate 

models by training many different times using different small validation sets.  
But this is tedious.

• The Bayesian alternative is to use all of the data for training each model and to 
use the “evidence” to pick the best model (or to average over models).

• The evidence is the marginal likelihood with the parameters integrated out.



Definition of the evidence
The evidence is the normalizing term in the expression for the 
posterior probability of a weight vector given a dataset and a model 
class
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Using the evidence

• Now we use the evidence for a model class in exactly the same way 
as we use the likelihood term for a particular setting of the 
parameters
– The evidence gives a posterior distribution over model classes, 

provided we have a prior.

– For simplicity in making predictions we often pick the model class 
with the highest posterior probability. This is called model 
selection.
• But we should still average over the parameter vectors for that model class 

using the posterior distribution.
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How the model complexity affects the evidence

Increasingly complicated data à



Determining the hyperparameters that specify the prior 
variance  and the variance of the output noise.

• Ideally, when making a prediction, we integrate out 
hyperparameters, just like we integrate out the weights
– But this is infeasible even when everything is Gaussian.

• Empirical Bayes (also called the evidence approximation) means 
integrating out the parameters but maximizing over the 
hyperparameters. 
– Its more feasible and often works well.
– It creates ideological disputes.



Empirical Bayes

• The equation above is the right predictive distribution (assuming we do not have 
hyperpriors for alpha and beta).

• The equation below is a more tractable approximation that works well if the 
posterior distributions for alpha and beta are highly peaked (so the distributions 
are well approximated by their most likely values)
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When is minimizing the squared error equivalent to Maximum Likelihood 
Learning?

Minimizing the squared residuals is equivalent 
to maximizing the log probability of the 
correct answer under a Gaussian centered at 
the model’s guess.

t = correct
answer

y = model’s estimate 
of most probable 
value
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Nonparametric Methods (2)

Histogram methods partition the data 
space into distinct bins with widths ¢i and 
count the number of observations, ni, in 
each bin.

• Often, the same width is used for all 
bins, Di = D.

• D acts as a smoothing parameter.
• In a D-dimensional space, using M bins 

in each dimension will require MD bins! 
=> it only work for marginals.



Nonparametric Methods (3)

•Assume observations drawn from a 
density p(x) and consider a small region R
containing x such that

•The probability that K out of N
observations lie inside R is  Bin(KjN,P ) and 
if N is large

If the volume of R, V, is sufficiently 
small, p(x) is approximately 
constant over R and

Thus

V  small, yet K>0, therefore N 
large?



Nonparametric Methods (4)
Kernel Density Estimation: fix V, estimate K from the data. 
Let R be a hypercube centred on x and define the kernel 
function (Parzen window)

• It follows  that 

• and hence



Nonparametric Methods (5)

To avoid discontinuities in p(x), 
use a smooth kernel, e.g. a 
Gaussian

Any kernel such that

will work.

h acts as a smoother.



Nonparametric Methods (6)

Nearest Neighbour Density 
Estimation: fix K, estimate V
from the data. Consider a 
hypersphere centred on x and 
let it grow to a volume, V ?, 
that includes K of the given N 
data points. Then

K acts as a smoother.



K-Nearest-Neighbours for Classification (1)
• Given a data set with Nk data points from class Ck and                          

,  we have

• and correspondingly

• Since                           , Bayes’ theorem gives

K = 1
K = 3



K-Nearest-Neighbours for Classification (3)

• K acts as a smother
• For                , the error rate of the nearest-neighbour (K=1) classifier is never more 
than twice the optimal error (from the true conditional class distributions).



Minimizing squared error

tXXXw

xw

xw

TT

n
T

n
n

T

terror

y

1*

2

)(

)(

-=

-=

=

å

optimal 
weights inverse of the 

covariance 
matrix of input 
vectors

the transposed  design 
matrix has one input 
vector per column

vector of 
target values



The loss function

• Fitting a model to data is typically done by finding the 
parameter values that minimize some loss function.

• There are many possible loss functions. What criterion should 
we use for choosing one?
– Choose one that makes the math easy (squared error)
– Choose one that makes the fitting correspond to maximizing 

the likelihood of the training data given some noise model 
for the observed outputs. 

– Choose one that makes it easy to interpret the learned 
coefficients (easy if mostly zeros)

– Choose one that corresponds to the real loss on a practical 
application (losses are often asymmetric)

SKIP



Linear models
• It is mathematically easy to fit linear models to data.

– We can learn a lot about model-fitting in this relatively simple case.
• There are many ways to make linear models more powerful while retaining their 

nice mathematical properties:
– Using non-linear, non-adaptive basis functions, we get generalised linear 

models that learn non-linear mappings from input to output but are linear in 
their parameters – only the linear part of the model learns.

– Using kernel methods we can handle expansions of the raw data that use a 
huge number of non-linear, non-adaptive basis functions. 

– Using large margin kernel methods we can avoid overfitting even when with 
huge numbers of basis functions.

• But linear methods will not solve most AI problems.
– They have fundamental limitations.
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An example where minimizing the squared error gives terrible 
estimates

• Suppose we have a network of 500 
computers and they all have slightly 
imperfect clocks.

• After doing statistics 101 we decide to 
improve the clocks by averaging all the times 
to get a least squares estimate
– Then we broadcast the average to all of 

the clocks.

• Problem: The probability of being wrong by 
ten hours is more than one hundredth of the 
probability of being wrong by one hour. In 
fact, its about the same!
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Why shrinkage helps

residual à

0
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If we move all the blue residuals towards the green arrow by an 
amount proportional to their difference, we are bound to reduce the 
average squared magnitudes of the residuals. So if we pick a blue 
point at random, we reduce the expected residual.

only the red 
points get worse
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