Announcements
Matlab Grader homework, emailed Thursday,
1 (of 9) homeworks Due 21 April, Binary graded.
2 this week

Jupyter homework?: translate matlab to Jupiter, TA Harshul hégupta@eng.ucsd.edu or me
| would like this to happen.

“GPU” homework. NOAA climate data in Jupyter on the datahub.ucsd.edu, 15 April.
Projects: Any computer language
Podcast might work eventually.

Today:

e Stanford CNN

* Gaussian, Bishop 2.3

* Gaussian Process 6.4

* Linear regression 3.0-3.2

Wednesday 10 April
Stanford CNN, Linear models for regression 3, Applications of Gaussian processes.



Bayes and Softmax (Bishop p. 198)

Bayes:
~ plylz)p(z)  plylz)p(x)
plely) = p(y) Yy p(,Y)

Classification of N classes:

> peq P(x[Cr)p(Cr)

B exp(an )
Zg:l exp(ag)
with

a, = In (p(X|Cn)p(Cn))

Parametric Approach: Linear Classifier
3072x1

f(x,W)|=[WK +[b
10x1 10x3072

— f(x,W) ——

Array of 32x32x3 numbers T
3072 numbers total) \/\l

Image 10x1

10 numbers giving
class scores



Softmax to Logistic Regression (Bishop p. 198)

Cilx) — p(x|C1)p(C1)
PCa) > i1 p(x[Ck)p(Cr)
_ exp(a1) _ 1
Sh_iexp(ar) 1+exp(—a)
with
Y —1n p(x|C1)p(Cy)

p(x|C2)p(C2)



Softmax with Gaussian(Bishop p. 198)

C, %) = p(x[Crn)p(Cr)
P = o I C)
_ exp(ay,)

> o1 exp(ax)
with

an = In (p(x|Cy)p(Cy))

Assuming x is Gaussian N (py,, )

Ap = WZ:X + Wo
W, = E_l,un
1 B
wo = iy X fin + In(p(Cp))



Important quantity in
 coding theory
e statistical physics
* machine learning

Entropy 1.6

probabilities

0.5

025}

H=177

probabilities

0.5

025t

H =3.09




The Kullback-Leibler Divergence

P true distribution, g is approximating
distribution

KLGlo) = ~ [poomatdax— (- [ 560 1px) ix)

_ —/p(x)ln{%} dx

KL(pl/q) = 0 KL(p|/q) # KL(q||p)



KL homework

 Supportof Pand Q=> “only>0"” don’t use isnan isinf

e After you pass. Take your time to clean up. Get close to 50



Lecture 3

* Homework

e Pod-cast lecture on-line

 Next lectures:
— | posted a rough plan.
— ltis flexible though so please come with suggestions



Bayes for linear model
y=Ax+n n~N(0,C,,) y~N(4x,C,) prior: x~N(O,C,)

p(x|y)~p(y1x)p(x)~N(xp, C,) mean xp = CLATCLly
Covariance C,'=A"C,'A+ C;?



Bayes’ Theorem for Gaussian Variables

Given
p(x) = N (x|p, A7)
we have p(y|x) = N(y|Ax+b,L_1)
ply) = N(ylAp+b, L'+ AAT'AT)
p(xly) = NEE{A'L(y —b)+Au},x)
where

> =(A+A'LA)!



Sequential Estimation of mean (Bishop 2.3.5)

Contribution of the N data point, x,

(N) 1 ZN
N
Hao = 2%
n=1
1 1 N—-1
T NN L
1 N —1 (n-1
- NN TN Mo
N—1 1 N—-1
= )+N(X — pags )

~ correction given Xy
> correction weight

> old estimate




Bayesian Inference for the Gaussian (Bishop2.3.6)

Assume c? is known. Given i.i.d. data
the likelihood function for u is given by X = {5171, SR xN}

p(x|u)

];[lp(xn‘/O — (27T(712)N/2 exp {% Z:l(xn — U)Q} .

* This has a Gaussian shape as a function of u (but it is not a distribution over p).



Bayesian Inference for the Gaussian (Bishop2.3.6)

Combined with a Gaussian prior over L,

this gives the posterior

p(p|x) oc p(x|m)p(p).

p(plx) =N (plpn, o)

p(p) = N (plpo, 03) -

B o2 n No? 1 i
UN = NU(%JFUQMO —N08+02 HML; MML = Nn:1flfn
r _ . N
o2 o o%
N=0 N—
MUN O MML
0% o 0




Bayesian Inference for the Gaussian (3)
 Example: forN=0,1, 2and 10.

p(p|x) = N (ulpn, o)




Bayesian Inference for the Gaussian (4)

Sequential Estimation

p(plx) oo p(p)p(x|w)
N—-1
= {p(u) 11 p(fvnu)} ()

2
x N (plun-1,0%_1) p(xN]|p)
The posterior obtained after observing N-1 data points becomes the prior when we
observe the Nt data point.

Conjugate prior: posterior and prior are in the same family. The prior is called
a conjugate prior for the likelihood function.



Gaussian Process (Bishop 6.4, Murphy15)

! tn — Yn + €n
’ f(x) ~ GP(m(x), K(x,x"))

] -1.5 -1 44 0 0s 1

This is what a Gaussian process N 28
posterior looks like with 4 data points
and a squared exponential
covariance function. The bold blue

line is the predictive mean, while the
light blue shade is the predictive 0 ,,
uncertainty (2 standard deviations).

The model uncertainty is small near
the data, and increases as we move
away from the data points.

5 a 5 5 L} 5

{a) {b)

Figure 15.2 Left: some functions sampled from a GP prior with SE kernel. Right: some samples from a GP
posterior, after conditioning on 5 noise-free observations. The shaded area represents E| f(x)] +2std( f(x).
Based on Figure 2.2 of (Rasmussen and Williams 2006). Figure generated by gprDemolNoiseFree.



Gaussian Process (Murphy ch15)

f(x) ~ GP(m(x), k(x,x")) m(x) = E[f(x)]
r(x,x) = E[(f(x)—mx))(f(x)—mx))"]
p(f1X) = N(f|p, K)
Kz’j — R(Xz’a Xj) and H = (m(xl)v O 7m(XN))'

Trainin
J D = {(x;, fi),2=1: N}, w_}}ere fi = f(?cz) is_the noise-free

(2)~v((%) (& &)

K=kr(X,X)is NxN, K, = x(X,X,) is N xN,, and K., = k(X,, X,) is N, X N,.



Gaussian Process (Murphy ch15)

(£)~v((%)- (& )

The conditional is Gaussian:

p(f*|X*,X,f) = N(f*|p’*’2*)
pe = pX)+KIK (- p(X)
>, = K,..—-KIK K,

Common kernel is the squared exponential, RBF, Gaussian kernel

1
5(@,2') = o exp(— 5 5 (@ — o))

(a) (b)

Figure 15.2 Left: some functions sampled from a GP prior with SE kernel. Right: some samples from a GP
posterior, after conditioning on 5 noise-free observations. The shaded area represents E| f(x)] +2std( f(x).
Based on Figure 2.2 of (Rasmussen and Williams 2006). Figure generated by gprDemoNoiseFree.



Gaussian Process (Bishop 6.4)

* Simple linear model y(x) = WT¢(X)
+ With prior p(w) = N(w|0,a™'T)

* For multiple measurements

y =®ow
Bly] = ®E[w] =0
covly] = E[yy'| =@E [ww'|®" = lapT—k

Q
where K is the Gram matrix with elements

Knm — k(X'me) — é¢(xn)T¢(X’m)

and k(x,x’) is the kernel function.



Gaussian Process (Bishop 6.4)

Measurement model

bn = Yn +€n POl =Nl

Multiple Measurement model

p(tly) = N(tly, 3~ 'Iy)
Integrating out

0
0= [ o) ay = NHO.C) k) = oo |~ e,
C(Xnvxm) — k’(Xn,Xm) + 6_1571771-

Predicting observation ty.1

p(tnt1) = N(An41|0,Cny1) Cypu= ( Ty ok )

C

The conditional p(ty.| tn+q) is Gaussian  ,,x,..)

= k'Cy't
= c¢—-k'Cy'k



Nonparametric Methods (1) Bishop 2.5

Parametric distribution models (... Gaussian) are restricted to specific
forms, which may not always be suitable; for example, consider
modelling a multimodal distribution with a single, unimodal model.

Nonparametric approaches make few assumptions about the overall
shape of the distribution being modelled.

1000 parameters versus 10 parameters

Nonparametric models (not histograms) requires storing and
computing with the entire data set.

Parametric models, once fitted, are much more efficient in terms of
storage and computation.



Linear regression: Linear Basis Function Models (1)

Generally

M-—1
T
y(x, W) = Y w;i;(x) = w'(x) |
j=0 ol
* where ¢;(x) are known as basis functions. O_° o\ © ]
* Typically, do(x) = 1, so that wq acts as a bias. o 4
* Simplest case is linear basis functions: ¢4(x) = Xq. ' °

0 1
M
y(z, W) = wo + wix + wox? + ... +wya™ = ija:]
Jj=0

http://playground.tensorflow.org/



http://playground.tensorflow.org/

Some types of basis function in 1-D

0.75 0.75 0.5
o5l 0.5 0
0.25 0.25} -0.5]
-1 0 1 4 0 1 |
Sigmoids Gaussians Polynomials
T — b
qu(x)za( s J) (@ — py)?
. _ v My :
SR T R B
1+ exp(—a)

Sigmoid and Gaussian basis functions can also be used in multilayer
neural networks, but neural networks learn the parameters of the basis
functions. This is more powerful but also harder and messier.



Two types of linear model that are equivalent with respect to

b‘izs learning .
Y(X,W) =Wy +WiX; +WrXy +... =W X

Y W) = Wy + Wiy (X) + Wy (X) +... = W' D(x)

* The first and second model has the same number of adaptive
coefficients as the number of basis functions +1.

* Once we have replaced the data by basis functions outputs, fitting
the second model is exactly the same the first model.

— No need to clutter math with basis functions



Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function with added
Gaussian noise:

t=y(x,w)+e \where PeIB)=N(c[0,57)
or,

p(tx, w, B) = N (tly(x, w), B71).

Given observed inputs, X = {xi,...,xx}, and targets t = [t;,...,tn]"
we obtain the likelihood function

p(t| X, w, () = HN(tn|WT¢(Xn)vﬁ_l)-

n=1



Maximum Likelihood and Least Squares (2)
Taking the logarithm, we get N
Inp(tjw,8) = > InN(tpw ¢(xn), ")
n=1

_ g In 3 — g In(27) — BED(W)

Where the sum-of-squares error is

Ep(w) = % > {tn —who(x0)}?



Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

Vw 1np(t|W, /6) =0 Z {tn — WT¢(Xn)} ¢(Xn)T = 0.

Solving for w,

! The Moore-Penrose
|

where

' —1 pseudo-inverse, H
WL — (<I>T<I>) &t

¢0(X1) ¢1(X1) ¢M—1(X1)
(Cbo(Xz) ¢1(x2) - ¢M—1(X2)\

\ do(xn) di(xn) - dri(xy) /



Maximum Likelihood and Least Squares (4)

Maximizing with respect to the bias, wy, alone,

wids

|
|§

wo —

)
I

|
\ [ |

M-—-1

1 N

1 7=1 n=1

[

(=

1
N

n

We can also maximize with respect to 3, giving

1 N
BML — N Z WI\T/[qu(Xn)}2



Geometry of Least Squares

Consider
y = PwumrL = [P1,-- - @] WL
yeSCT te 7T

t /t Iilll-dimensional

-dimensional

Sis spanned b
P Y P1see o Ps

Wy, minimizes the distance between
t and its orthogonal projection on S,
l.e.y.



Least mean squares: An alternative approach for big datasets

1
W:+ w' — n\VE,
bt

weights after
J learning squared error derivatives

seeing training _
case tau+1 rate w.r.t. the weights on the
training case at time tau.

This is “on-line” learning. It is efficient if the dataset is redundant and simple to
implement.

* |tis called stochastic gradient descent if the training cases are picked
randomly.

* Care must be taken with the learning rate to prevent divergent
oscillations. Rate must decrease with tau to get a good fit.



Regularized least squares
~ 1 X 2 A
E(w) =3 Xy, W) =1,37 + JIwlf

The squared weights penalty is mathematically compatible with
the squared error function, giving a closed form for the optimal
weights:

w = A1+ X X! xXT ¢

identin matrix



A picture of the effect of the regularizer

1N

The overall cost function is the sum of
two parabolic bowls.

The sum is also a parabolic bowl.

The combined minimum lies on the line
between the minimum of the squared
error and the origin.

The L2 regularizer just shrinks the
weights.



A problem with the regularizer

The solution should be independent of the units we of the input vector.
If components have different units (e.g. age and height), we have a problem.

— If we measure age in months and height in meters, the relative values of the
two weights are very different than if we use years and millimeters. The
squared penalty has very different effects.

A way to avoid the units problem: Whiten the data so that the input components
all have unit variance and no covariance. This stops the regularizer from being
applied to the whitening matrix.

|
x?! - (x'x) 2 xt

whitened

— ... this can cause other problems when input components are almost perfectly
correlated.

— We really need a prior on the weight on each input component.



Other regularizers

* We do not need to use the squared error, provided we are willing to do more
computation.

 Other powers of the weights can be used.




The lasso: penalizing the absolute values of the weights

EwW)= 1S, w1, + 23w,

Finding the minimum requires quadratic programming but its still
unique because the cost function is convex (a bowl plus an inverted
pyramid)

As lambda is increased, many of the weights go to exactly zero.

— This is great for interpretation, and it is also pretty good for
preventing overfitting.



Geometrical view of the lasso compared with a penalty on
the squared weights

W2 a w2 a

© (©

1N

——

Notice w1=0 at the
optimum



Minimizing the absolute error
min Z\ t—wlx |
over w n n
n

* This minimization involves solving a linear programming problem.

* [t corresponds to maximum likelihood estimation if the output noise
is modeled by a Laplacian instead of a Gaussian.

—d |tn _yn|

pt,|y,) = ae
—lng(tn ‘yn) — _a‘tn_yn ‘-I—COI’lSl‘



The bias-variance trade-off
(a figment of the frequentists lack of imagination?)

* Imagine a training set drawn at random from a whole set of training

sets.
* The squared loss can be decomposed into a
— Bias = systematic error in the model’s estimates

— Variance = noise in the estimates cause by sampling noise in the

training set.
 Thereis also additional loss due to that the target values are noisy.

— We eliminate this extra, irreducible loss from the math by using
the average target values (i.e. the unknown, noise-free values)

9 Order Polynomial

M=9




The bias-variance decomposition

model estimate average

for testcase n target
trained on dataset value for “Bias” term is the squared error of the average,
D testcasen  gyer training$datasets D, of the estimates.

1 / las. rediction and desired.

(i D)=i ) = {3 D))y =1 f
N - + <{y(xn;D)—<y(Xn;D) >D}2>D

<. > means
expectation over D 1

“Variance” term: variance over training datasets D,
of the model estimate.



Regularization parameter affects the bias and variance terms

high variance low variance

20 realizations | s/

~
-~

True model
average dJ 1 oo

high bias
low bias



An example of the bias-variance trade-off

0.15
(bias)’
0.12 variance
(bias)2 + variance
0.09 | test error
0.06
0.03
0
-3 -2 —1 0 1



Beating the bias-variance trade-off

We can reduce the variance term by averaging lots of models trained
on different datasets.

— This seems silly. If we had lots of different datasets it would be
better to combine them into one big training set.

* With more training data there will be much less variance.

Weird idea: We can create different datasets by bootstrap sampling
of our single training dataset.

— This is called “bagging” and it works surprisingly well.
If we have enough computation its better doing it Bayesian:

— Combine the predictions of many models using the posterior
probability of each parameter vector as the combination weight.



The Bayesian approach
Consider a simple linear model that only has two parameters:

(X, W) =wy +wx

It is possible to display the full posterior distribution over the two-
dimensional parameter space.

The likelihood term is a Gaussian, so if we use a Gaussian prior the
posterior will be Gaussian:

— This is a conjugate prior. It means that the prior is just like having
already observed some data.



Bayesian Linear Regression (1)

* Define a conjugate prior over w
p(w) = N(w|mg, Sp).
*Combining this with the likelihood function and using results

for marginal and conditional Gaussian distributions, gives the
posterior

p(wlt) = N(w|my, Sy)
* where

my = Sy (Salmo -+ B@Tt>
Sy, = S;'+pe'®.



Bayesian Linear Regression (2)

A common choice for the prior is

p(w) = N(w|0,0'T)
*for which

my = OSy®'t
Sy ol + o' ®.



| variance of
Gaussian output noise

N !

p(t|X,w, /)= [N, [w'x,, 7)< likelihood
n=1

_ conjugate
p(wla)=Nw|0,a”'T) ~— ior

iInverse
variance

/ of prior

_ B r. 2 Q. T
—In p(w|t) = EZ(tn—W X, ) +EW W+ const

n=I

The Bayesian interpretation of /’L —

94
the regularization parameter: /B



Bishop Fig 3.7

y =wy,+wyx + N(0,0.2)
likelihood prior/posterior data space WO=-O'3’ W1 =O5

1 1
wy I y
0 0 With no data we sample lines
from the prior.
: 5l
4 0 o ! -1 0 gz
1
Y
0
s 0 g 1 1 0 g 1 " 0 gz |1
1
Y
/) -
i 0 o ! 1 0 o ! L 0 gz I
1
! g With 20 data points, the prior
| g Mo| has little effect
o ©

_

=
S

S
—_
o
=

8

—



Using the posterior distribution

If we can afford the computation, we ought to average the predictions
of all parameters weighted with the posterior distribution:

p(ttest |xtest9a9169D) :I p(ttest |xtestuBaW) p(W | aaIBaD) dW

T T

training precision precision
data of output of prior
noise



Predictive Distribution (1)

Predict t for new values of x by integrating over w:

e where

p(tt, a0, B) — / p(tlw, B)p(wlt, o, ) dw

= N(tmye(x), oy (x))



Predictive distribution for noisy sinusoidal data modeled by
linear combining 9 radial basis functions.

/\

0751 |
05| |
025/ /| ,
‘ g \‘
i 0 1




A way to see the covariance of predictions for different values of x

We sample models at random from the posterior and show the

mean of the each model’s predictions

T
L p—
\f( \
y, N
N N
/ N
/ \
/ \
4 \
\
\
\
\
\




Bayesian model comparison

We usually need to decide between many different models:
— Different numbers of basis functions
— Different types of basis functions
— Different strengths of regularizers

The frequentist way to decide between models is to hold back a validation set and
pick the model that does best on the validation data.

— This gives less training data. We can use a small validation set and evaluate
models by training many different times using different small validation sets.
But this is tedious.

The Bayesian alternative is to use all of the data for training each model and to
use the “evidence” to pick the best model (or to average over models).

The evidence is the marginal likelihood with the parameters integrated out.



Definition of the evidence

The evidence is the normalizing term in the expression for the
posterior probability of a weight vector given a dataset and a model
class

pw|M;) p(D|w,M;)

pWID.M;) = (D[ M)

p(D|M)=|p(D|w,M;) p(w|M,;)dw



Using the evidence

Now we use the evidence for a model class in exactly the same way
as we use the likelihood term for a particular setting of the
parameters

— The evidence gives a posterior distribution over model classes,
provided we have a prior.

p(M;|D) < p(M;) p(D|M;)

— For simplicity in making predictions we often pick the model class
with the highest posterior probability. This is called model
selection.

* But we should still average over the parameter vectors for that model class
using the posterior distribution.



How the model complexity affects the evidence

Increasingly complicated data -



Determining the hyperparameters that specify the prior
variance and the variance of the output noise.

* |deally, when making a prediction, we integrate out
hyperparameters, just like we integrate out the weights

— But this is infeasible even when everything is Gaussian.

* Empirical Bayes (also called the evidence approximation) means
integrating out the parameters but maximizing over the
hyperparameters.

— Its more feasible and often works well.
— It creates ideological disputes.



Empirical Bayes

target and input precision of precision training
on test case output noise of prior data

Vb | } }
p|x,Dy=[ [ [ p(tIx..w) p(W|a.B.D) p(a, 8| D) dw da dfs

 The equation above is the right predictive distribution (assuming we do not have
hyperpriors for alpha and beta).

 The equation below is a more tractable approximation that works well if the
posterior distributions for alpha and beta are highly peaked (so the distributions
are well approximated by their most likely values)

point estimates of alpha and beta
that maximize the evidence

Vi

p(t|%, D)~ p(t|x,D,é, )= | p(t|x,B.w) p(W|a,B,D) p(d,p|D)dw da d



*OLD



When is minimizing the squared error equivalent to Maximum Likelihood
Learning?

Minimizing the squared residuals is equivalen

to maximizing the log probability of the
correct answer under a Gaussian centered at

the model’s guess.

t = correct Yy = model’s estimate
VYV, = y(Xn, W) answer of most probable
value )
1 _(tn_yn)
: 2
p(t, | y,)=p(y, +noise=t,|x,,W) = e 20
N2mo
2
(tn B yn)

—logp(t,|y,) = logv27r + logo + 5
| % 20
can be ignored ™ can be ignored if

if sigma is fixed sigma is same for

every case



Nonparametric Methods (2)

Histogram methods partition the data
space into distinct bins with widths ¢; and
count the number of observations, n;, in
each bin.

T

~ NA,

Pi

 Often, the same width is used for all
bins, A; = A.

* A acts as a smoothing parameter.

* In a D-dimensional space, using M bins 0 0.5 1
in each dimension will require MP bins!
=> it only work for marginals.



Nonparametric Methods (3)

If the volume of R, V, is sufficiently

small, p(x) is approximately
constant over R and

*Assume observations drawn from a
density p(x) and consider a small region R
containing x such that

P = / p(x) dx. P~ p(x)V
R Thus
*The probability that K out of N K
observations lie inside R is Bin(KjN,P ) and p(X) — N—V
if N is large
K ~NP. V small, yet K>0, therefore N

large?




Nonparametric Methods (4)

Kernel Density Estimation: fix V, estimate K from the data.
Let R be a hypercube centred on x and define the kernel
function (Parzen window)

1, Kﬂ% —-xni)/hﬂfg 1/2, 1 ::1,...,19,
0, otherwise.

k(= x0) /1) = {
* |t follows that

an>d hence

N X — X ]_N 1 X — X
n=1 n=1



Nonparametric Methods (5)

To avoid discontinuities in p(x),
use a smooth kernel, e.g. a
Gaussian

|
:NZ 27‘(‘h2 D/2

| — xn|?
XpP |~ 573

Any kernel such that

0 0.5 1
/k(u> du =1 h acts as a smoother.

will work.



Nonparametric Methods (6)

Nearest Neighbour Density
Estimation: fix K, estimate V
from the data. Consider a
hypersphere centred on x and
let it grow to a volume, V7,
that includes K of the given N
data points. Then

b NV* % 0.5 ]

K acts as a smoother.




K-Nearest-Neighbours for Classification (1)
* G@Given a data set with Ny data points from class C, and

S . Ny = N, we have

e and correspondingly

K
p(x) = 7

* Since p(Cr) = N /N, Bayes’ theorem gives

x|Cx)p(C) Ky

k
p(x) K
e K=1

p(Ck|x) = ad




K-Nearest-Neighbours for Classification (3)

K=1 K=3 K =31
2 2 . 2
o. .3 .. .3 o. .3
e Jee 'f.. g ® e Jeo 'f.. g ® e Qoo .,‘0 g o
¥ g : W g ¥ g
1 ' 1 * 1 z
L 4 b L 4 A L 4 e
¢ s ¢ ® ¢ ®
® & ® $. ® S
0 RSl 0 it il 0 e S
0 1 By 2 0 1 ze 2 0 1 e

e K acts as a smother

« For N — 00, the error rate of the nearest-neighbour (K=1) classifier is never more
than twice the optimal error (from the true conditional class distributions).



Minimizing squared error

T
y = wXx
error Z(f ~w'x )
. 17l vector of

W (X X) | X |t ]| target values

1 r
opt_|mal | the transposed design
weights  inverse of the matrix has one input

covariance vector per column

matrix of input
vectors



The loss function

Fitting a model to data is typically done by finding the
parameter values that minimize some loss function.

There are many possible loss functions. What criterion should
we use for choosing one?

— Choose one that makes the math easy (squared error)

— Choose one that makes the fitting correspond to maximizing
the likelihood of the training data given some noise model
for the observed outputs.

— Choose one that makes it easy to interpret the learned
coefficients (easy if mostly zeros)

— Choose one that corresponds to the real loss on a practical
application (losses are often asymmetric)

SKIP



Linear models

* Itis mathematically easy to fit linear models to data.
— We can learn a lot about model-fitting in this relatively simple case.

 There are many ways to make linear models more powerful while retaining their
nice mathematical properties:

— Using non-linear, non-adaptive basis functions, we get generalised linear
models that learn non-linear mappings from input to output but are linear in
their parameters — only the linear part of the model learns.

— Using kernel methods we can handle expansions of the raw data that use a
huge number of non-linear, non-adaptive basis functions.

— Using large margin kernel methods we can avoid overfitting even when with
huge numbers of basis functions.

* But linear methods will not solve most Al problems.
— They have fundamental limitations.

SKIP



An example where minimizing the squared error gives terrible
estimates

e Suppose we have a network of 500
computers and they all have slightly
imperfect clocks.

* After doing statistics 101 we decide to
improve the clocks by averaging all the times
to get a least squares estimate

— Then we broadcast the average to all of
the clocks.

* Problem: The probability of being wrong by
ten hours is more than one hundredth of the
probability of being wrong by one hour. In
fact, its about the same!

SKIP ;

error =2

negative log prob of error -




Why shrinkage helps

only the red
points get worse

—> —> —> S
O A
residual 2
Yeorn — tcorn

one example of

Vieafs — Leorn

If we move all th@lﬁéli%ls towards the green arrow by an

amount proportional to their difference, we are bound to reduce the
average squared magnitudes of the residuals. So if we pick a blue
point at random, we reduce the expected residual.




