
AnnouncementsPiazza started

Matlab Grader homework, email Friday,
2 (of 9) homeworks Due 21 April, Binary graded.

Jupyter homework?: translate matlab to Jupiter, TA Harshul h6gupta@eng.ucsd.edu or me 
I would like this to happen. 

“GPU” homework. NOAA climate data in Jupyter on the datahub.ucsd.edu, 15 April.

Projects: Any language

Podcast might work eventually.
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• Gaussian 1.2
• Gaussian 2.3
• Decision theory 1.5
• Information theory 1.6
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damentally ill-posed, because there are infinitely many probability distributions that
could have given rise to the observed finite data set. Indeed, any distribution p(x)
that is nonzero at each of the data points x1, . . . ,xN is a potential candidate. The
issue of choosing an appropriate distribution relates to the problem of model selec-
tion that has already been encountered in the context of polynomial curve fitting in
Chapter 1 and that is a central issue in pattern recognition.

We begin by considering the binomial and multinomial distributions for discrete
random variables and the Gaussian distribution for continuous random variables.
These are specific examples of parametric distributions, so-called because they are
governed by a small number of adaptive parameters, such as the mean and variance in
the case of a Gaussian for example. To apply such models to the problem of density
estimation, we need a procedure for determining suitable values for the parameters,
given an observed data set. In a frequentist treatment, we choose specific values
for the parameters by optimizing some criterion, such as the likelihood function. By
contrast, in a Bayesian treatment we introduce prior distributions over the parameters
and then use Bayes’ theorem to compute the corresponding posterior distribution
given the observed data.

We shall see that an important role is played by conjugate priors, that lead to
posterior distributions having the same functional form as the prior, and that there-
fore lead to a greatly simplified Bayesian analysis. For example, the conjugate prior
for the parameters of the multinomial distribution is called the Dirichlet distribution,
while the conjugate prior for the mean of a Gaussian is another Gaussian. All of these
distributions are examples of the exponential family of distributions, which possess
a number of important properties, and which will be discussed in some detail.

One limitation of the parametric approach is that it assumes a specific functional
form for the distribution, which may turn out to be inappropriate for a particular
application. An alternative approach is given by nonparametric density estimation
methods in which the form of the distribution typically depends on the size of the data
set. Such models still contain parameters, but these control the model complexity
rather than the form of the distribution. We end this chapter by considering three
nonparametric methods based respectively on histograms, nearest-neighbours, and
kernels.

2.1. Binary Variables

We begin by considering a single binary random variable x ∈ {0 , 1}. For example,
x might describe the outcome of flipping a coin, with x = 1 representing ‘heads’,
and x = 0 representing ‘tails’. We can imagine that this is a damaged coin so that
the probability of landing heads is not necessarily the same as that of landing tails.
The probability of x = 1 will be denoted by the parameter µ so that

p(x = 1 |µ) = µ (2.1)
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where 0 ! µ ! 1, from which it follows that p(x = 0|µ) = 1 − µ. The probability
distribution over x can therefore be written in the form

Bern(x|µ) = µx(1 − µ)1−x (2.2)

which is known as the Bernoulli distribution. It is easily verified that this distributionExercise 2.1
is normalized and that it has mean and variance given by

E[x] = µ (2.3)
var[x] = µ(1 − µ). (2.4)

Now suppose we have a data set D = {x1, . . . , xN} of observed values of x.
We can construct the likelihood function, which is a function of µ, on the assumption
that the observations are drawn independently from p(x|µ), so that

p(D|µ) =
N∏

n=1

p(xn|µ) =
N∏

n=1

µxn(1 − µ)1−xn . (2.5)

In a frequentist setting, we can estimate a value for µ by maximizing the likelihood
function, or equivalently by maximizing the logarithm of the likelihood. In the case
of the Bernoulli distribution, the log likelihood function is given by

ln p(D|µ) =
N∑

n=1

ln p(xn|µ) =
N∑

n=1

{xn ln µ + (1 − xn) ln(1 − µ)} . (2.6)

At this point, it is worth noting that the log likelihood function depends on the N
observations xn only through their sum

∑
n xn. This sum provides an example of a

sufficient statistic for the data under this distribution, and we shall study the impor-
tant role of sufficient statistics in some detail. If we set the derivative of ln p(D|µ)Section 2.4
with respect to µ equal to zero, we obtain the maximum likelihood estimator

µML =
1
N

N∑

n=1

xn (2.7)

Jacob Bernoulli
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first of many in the Bernoulli family
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brother Johann turned an initially productive collabora-
tion into a bitter and public dispute. Jacob’s most sig-
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his death, which deals with topics in probability the-
ory including what has become known as the Bernoulli
distribution.
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Figure 2.2 Plots of the beta distribution Beta(µ|a, b) given by (2.13) as a function of µ for various values of the
hyperparameters a and b.

where l = N − m, and therefore corresponds to the number of ‘tails’ in the coin
example. We see that (2.17) has the same functional dependence on µ as the prior
distribution, reflecting the conjugacy properties of the prior with respect to the like-
lihood function. Indeed, it is simply another beta distribution, and its normalization
coefficient can therefore be obtained by comparison with (2.13) to give

p(µ|m, l, a, b) =
Γ(m + a + l + b)
Γ(m + a)Γ(l + b)

µm+a−1(1− µ)l+b−1. (2.18)

We see that the effect of observing a data set of m observations of x = 1and
l observations of x = 0has been to increase the value of a by m, and the value of
b by l, in going from the prior distribution to the posterior distribution. This allows
us to provide a simple interpretation of the hyperparameters a and b in the prior as
an effective number of observations of x = 1and x = 0, respectively. Note that
a and b need not be integers. Furthermore, the posterior distribution can act as the
prior if we subsequently observe additional data. To see this, we can imagine taking
observations one at a time and after each observation updating the current posterior
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given by (2.3) and (2.4), respectively, we have

E[m] ≡
N∑

m=0

mBin(m|N, µ) = Nµ (2.11)

var[m] ≡
N∑

m=0

(m − E[m])2Bin(m|N, µ) = Nµ(1 − µ). (2.12)

These results can also be proved directly using calculus.Exercise 2.4

2.1.1 The beta distribution
We have seen in (2.8) that the maximum likelihood setting for the parameter µ

in the Bernoulli distribution, and hence in the binomial distribution, is given by the
fraction of the observations in the data set having x = 1. As we have already noted,
this can give severely over-fitted results for small data sets. In order to develop a
Bayesian treatment for this problem, we need to introduce a prior distribution p(µ)
over the parameter µ. Here we consider a form of prior distribution that has a simple
interpretation as well as some useful analytical properties. To motivate this prior,
we note that the likelihood function takes the form of the product of factors of the
form µx(1 − µ)1−x. If we choose a prior to be proportional to powers of µ and
(1 − µ), then the posterior distribution, which is proportional to the product of the
prior and the likelihood function, will have the same functional form as the prior.
This property is called conjugacy and we will see several examples of it later in this
chapter. We therefore choose a prior, called the beta distribution, given by

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1 − µ)b−1 (2.13)

where Γ(x) is the gamma function defined by (1.141), and the coefficient in (2.13)
ensures that the beta distribution is normalized, so thatExercise 2.5

∫ 1

0

Beta(µ|a, b) dµ = 1. (2.14)

The mean and variance of the beta distribution are given byExercise 2.6

E[µ] =
a

a + b
(2.15)

var[µ] =
ab

(a + b)2(a + b + 1)
. (2.16)

The parameters a and b are often called hyperparameters because they control the
distribution of the parameter µ. Figure 2.2 shows plots of the beta distribution for
various values of the hyperparameters.

The posterior distribution of µ is now obtained by multiplying the beta prior
(2.13) by the binomial likelihood function (2.9) and normalizing. Keeping only the
factors that depend on µ, we see that this posterior distribution has the form

p(µ|m, l, a, b) ∝ µm+a−1(1 − µ)l+b−1 (2.17)
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Figure 2.3 Illustration of one step of sequential Bayesian inference. The prior is given by a beta distribution
with parameters a = 2, b = 2, and the likelihood function, given by (2.9) with N = m = 1, corresponds to a
single observation of x = 1, so that the posterior is given by a beta distribution with parameters a = 3, b = 2.

distribution by multiplying by the likelihood function for the new observation and
then normalizing to obtain the new, revised posterior distribution. At each stage, the
posterior is a beta distribution with some total number of (prior and actual) observed
values for x = 1and x = 0given by the parameters a and b. Incorporation of an
additional observation of x = 1simply corresponds to incrementing the value of a
by 1, whereas for an observation of x = 0we increment b by 1. Figure 2.3 illustrates
one step in this process.

We see that this sequential approach to learning arises naturally when we adopt
a Bayesian viewpoint. It is independent of the choice of prior and of the likelihood
function and depends only on the assumption of i.i.d. data. Sequential methods make
use of observations one at a time, or in small batches, and then discard them before
the next observations are used. They can be used, for example, in real-time learning
scenarios where a steady stream of data is arriving, and predictions must be made
before all of the data is seen. Because they do not require the whole data set to be
stored or loaded into memory, sequential methods are also useful for large data sets.
Maximum likelihood methods can also be cast into a sequential framework.Section 2.3.5

If our goal is to predict, as best we can, the outcome of the next trial, then we
must evaluate the predictive distribution of x, given the observed data set D. From
the sum and product rules of probability, this takes the form

p(x = 1|D) =
∫ 1

0

p(x = 1|µ)p(µ|D) dµ =
∫ 1

0

µp(µ|D) dµ = E[µ|D]. (2.19)

Using the result (2.18) for the posterior distribution p(µ|D), together with the result
(2.15) for the mean of the beta distribution, we obtain

p(x = 1|D) =
m + a

m + a + l + b
(2.20)

which has a simple interpretation as the total fraction of observations (both real ob-
servations and fictitious prior observations) that correspond to x = 1. Note that in
the limit of an infinitely large data set m, l → ∞ the result (2.20) reduces to the
maximum likelihood result (2.8). As we shall see, it is a very general property that
the Bayesian and maximum likelihood results will agree in the limit of an infinitely

Bayes:
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• ML point estimate

• MAP point estimate (often in literature ML=MAP)

• Bayes => probability =>From which all information can be obtained

– MAP, median, error estimates

– Further analysis as sequential

– Disadvantage… not a point estimate.
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Bayes Rule

P (hypothesis|data) = P (data|hypothesis)P (hypothesis)

P (data)

Rev’d Thomas Bayes (1702–1761)

• Bayes rule tells us how to do inference about hypotheses from data.

• Learning and prediction can be seen as forms of inference.
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Figure 1.16 Schematic illustration of a Gaus-
sian conditional distribution for t given x given by
(1.60), in which the mean is given by the polyno-
mial function y(x,w), and the precision is given
by the parameter β, which is related to the vari-
ance by β−1 = σ2.

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)

We now use the training data {x , t} to determine the values of the unknown
parameters w and β by maximum likelihood. If the data are assumed to be drawn
independently from the distribution (1.60), then the likelihood function is given by

p(t|x ,w, β) =
N∏

n=1

N
(
tn|y(xn,w), β−1

)
. (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the
form

ln p(t|x ,w, β) = −β

2

N∑

n=1

{y(xn,w) − tn}2 +
N

2
ln β − N

2
ln(2π). (1.62)

Consider first the determination of the maximum likelihood solution for the polyno-
mial coefficients, which will be denoted by wML. These are determined by maxi-
mizing (1.62) with respect to w. For this purpose, we can omit the last two terms
on the right-hand side of (1.62) because they do not depend on w. Also, we note
that scaling the log likelihood by a positive constant coefficient does not alter the
location of the maximum with respect to w, and so we can replace the coefficient
β/2with 1/2. Finally, instead of maximizing the log likelihood, we can equivalently
minimize the negative log likelihood. We therefore see that maximizing likelihood is
equivalent, so far as determining w is concerned, to minimizing the sum-of-squares
error function defined by (1.2). Thus the sum-of-squares error function has arisen as
a consequence of maximizing likelihood under the assumption of a Gaussian noise
distribution.

We can also use maximum likelihood to determine the precision parameter β of
the Gaussian conditional distribution. Maximizing (1.62) with respect to β gives

1
βML

=
1
N

N∑

n=1

{y(xn,wML) − tn}2 . (1.63)
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Figure 1.16 Schematic illustration of a Gaus-
sian conditional distribution for t given x given by
(1.60), in which the mean is given by the polyno-
mial function y(x,w), and the precision is given
by the parameter β, which is related to the vari-
ance by β−1 = σ2.

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)

We now use the training data {x , t} to determine the values of the unknown
parameters w and β by maximum likelihood. If the data are assumed to be drawn
independently from the distribution (1.60), then the likelihood function is given by

p(t|x ,w, β) =
N∏

n=1

N
(
tn|y(xn,w), β−1

)
. (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the
form

ln p(t|x ,w, β) = −β

2

N∑

n=1

{y(xn,w) − tn}2 +
N

2
ln β − N

2
ln(2π). (1.62)

Consider first the determination of the maximum likelihood solution for the polyno-
mial coefficients, which will be denoted by wML. These are determined by maxi-
mizing (1.62) with respect to w. For this purpose, we can omit the last two terms
on the right-hand side of (1.62) because they do not depend on w. Also, we note
that scaling the log likelihood by a positive constant coefficient does not alter the
location of the maximum with respect to w, and so we can replace the coefficient
β/2with 1/2. Finally, instead of maximizing the log likelihood, we can equivalently
minimize the negative log likelihood. We therefore see that maximizing likelihood is
equivalent, so far as determining w is concerned, to minimizing the sum-of-squares
error function defined by (1.2). Thus the sum-of-squares error function has arisen as
a consequence of maximizing likelihood under the assumption of a Gaussian noise
distribution.

We can also use maximum likelihood to determine the precision parameter β of
the Gaussian conditional distribution. Maximizing (1.62) with respect to β gives

1
βML

=
1
N

N∑

n=1

{y(xn,wML) − tn}2 . (1.63)
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Again we can first determine the parameter vector w ML governing the mean and sub-
sequently use this to find the precision βML as was the case for the simple Gaussian
distribution.Section 1.2.4

Having determined the parameters w and β, we can now make predictions for
new values of x. Because we now have a probabilistic model, these are expressed
in terms of the predictive distribution that gives the probability distribution over t,
rather than simply a point estimate, and is obtained by substituting the maximum
likelihood parameters into (1.60) to give

p(t|x, w ML, βML) = N
(
t|y(x, w ML), β−1

ML

)
. (1.64)

Now let us take a step towards a more Bayesian approach and introduce a prior
distribution over the polynomial coefficients w . For simplicity, let us consider a
Gaussian distribution of the form

p(w |α) = N (w |0, α−1I) =
( α

2π

)(M+1)/2

exp
{
−α

2
w Tw

}
(1.65)

where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w |x, t, α, β) ∝ p(t|x, w , β)p(w |α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of

β

2

N∑

n=1

{y(xn, w ) − tn}2 +
α

2
w Tw . (1.67)

Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w |α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
of probability, which requires, as we shall see shortly, that we integrate over all val-
ues of w . Such marginalizations lie at the heart of Bayesian methods for pattern
recognition.

Giving estimates of W and beta, we can predict



MAP: A Step towards Bayes 1.2.5

Determine               by minimizing regularized sum-of-squares error,             .

Regularized sum of squares



Predictive Distribution

True data

Estimated 
+/- std dev



Parametric Distributions
Basic building blocks:

Need to determine     given 

Representation:        or           ?

Recall Curve Fitting

We focus on Gaussians!



The Gaussian Distribution



Central Limit Theorem 
•The distribution of the sum of N i.i.d. random variables becomes increasingly 
Gaussian as N grows.
•Example: N uniform [0,1] random variables.



Geometry of the Multivariate Gaussian



Moments of the Multivariate Gaussian (2)

A Gaussian requires D*(D-1)/2 +D parameters.
Often we use D +D or 
Just D+1 parameters.



Partitioned Conditionals and Marginals,  page 89



ML for the Gaussian (1) Bisphop 2.3.4
Given i.i.d. data                                             , the log likelihood function is given by
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The derivative of the inverse of a matrix can be expressed as
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as can be shown by differentiating the equation A−1A = I using (C.20) and then
right multiplying by A−1. Also
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(C.22)

which we shall prove later. If we choose x to be one of the elements of A, we have

∂
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Tr (AB) = Bji (C.23)

as can be seen by writing out the matrices using index notation. We can write this
result more compactly in the form
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Tr (AB) = BT. (C.24)

With this notation, we have the following properties
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which follows from (C.22) and (C.26).

Eigenvector Equation

For a square matrix A of size M × M , the eigenvector equation is defined by

Aui = λiui (C.29)
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Maximum Likelihood for the Gaussian 
• Set the derivative of  the log likelihood function to zero,

• and solve to obtain

• Similarly



Mixtures of Gaussians (Bishop 2.3.9)

Single Gaussian Mixture of two Gaussians

Old Faithful geyser:
The time between eruptions has a bimodal distribution, with the mean interval being either 65 
or 91 minutes, and is dependent on the length of the prior eruption. Within a margin of error of 
±10 minutes, Old Faithful will erupt either 65 minutes after an eruption lasting less 
than  2 1⁄2 minutes, or 91 minutes after an eruption lasting more than  2 1⁄2 minutes.

https://en.wikipedia.org/wiki/Bimodal_distribution


Mixtures of Gaussians (Bishop 2.3.9)

•Combine simple models 
into a complex model:

Component
Mixing coefficient

K=3



Mixtures of Gaussians (Bishop 2.3.9)



Mixtures of Gaussians (Bishop 2.3.9)
• Determining parameters p, µ, and S using maximum log likelihood

• Solution: use standard, iterative, numeric optimization methods or the 
expectation maximization algorithm (Chapter 9). 

Log of a sum; no closed form maximum.



Entropy 1.6

Important quantity in
• coding theory
• statistical physics
•machine learning



Differential Entropy
Put bins of width ¢ along the real line

For fixed        differential entropy maximized when

in which case



The Kullback-Leibler Divergence

P true distribution, q is approximating distribution



Decision Theory
Inference step

Determine either            or           .

Decision step
For given x, determine optimal t.



Minimum Misclassification Rate



•UNTIL HERE 4 April 2018



Bayes for linear model
! = #$ + & &~N(*, ,-) y~N(#$, ,-) prior: x~N(*, ,-)

/ $ ! ~/ ! $ / $ ~0 !, ,/



Bayes’ Theorem for Gaussian Variables
• Given

• we have

• where



Contribution of the Nth data point, xN

Sequential Estimation

correction given xN
correction weight
old estimate



Bayesian Inference for the Gaussian Bishop2.3.6
• Assume s2 is known. Given i.i.d. data

the likelihood function for µ is given by

• This has a Gaussian shape as a function of µ (but it is not a distribution over µ).



Bayesian Inference for the Gaussian Bishop2.3.6
• Combined with a Gaussian prior over µ,

• this gives the posterior

• Completing the square over µ, we see that



Bayesian Inference for the Gaussian (3)
• Example:                                       for N = 0, 1, 2 and 10.

Prior



Bayesian Inference for the Gaussian (4)
Sequential Estimation

The posterior obtained after observing N-1 data points becomes the prior when 
we observe the Nth data point.



•NON PARAMETRIC



Nonparametric Methods (1)
• Parametric distribution models are restricted to specific forms, which may not 

always be suitable; for example, consider modelling a multimodal distribution 
with a single, unimodal model.

• Nonparametric approaches make few assumptions about the overall shape of 
the distribution being modelled.

• 1000 parameter versus 10 parameter



Nonparametric Methods (2)

Histogram methods partition the data 
space into distinct bins with widths ¢i
and count the number of 
observations, ni, in each bin.

• Often, the same width is used for 
all bins, Di = D.

• D acts as a smoothing parameter.
• In a D-dimensional space, using M

bins in each dimension will require 
MD bins!



Nonparametric Methods (3)

•Assume observations drawn from a 
density p(x) and consider a small 
region R containing x such that

•The probability that K out of N
observations lie inside R is  Bin(KjN,P
) and if N is large

If the volume of R, V, is sufficiently 
small, p(x) is approximately 
constant over R and

Thus

V small, yet K>0, therefore N large?



Nonparametric Methods (4)
•Kernel Density Estimation: fix V, estimate K from the 
data. Let R be a hypercube centred on x and define the 
kernel function (Parzen window)

• It follows  that 

• and hence



Nonparametric Methods (5)

•To avoid discontinuities in 
p(x), use a smooth kernel, 
e.g. a Gaussian

•Any kernel such that

•will work.

h acts as a smoother.



Nonparametric Methods (6)

•Nearest Neighbour 
Density Estimation: fix K, 
estimate V from the data. 
Consider a hypersphere 
centred on x and let it 
grow to a volume, V ?, that 
includes K of the given N 
data points. Then

K acts as a smoother.



Nonparametric Methods (7)
• Nonparametric models (not histograms) requires storing and computing with 

the entire data set. 
• Parametric models, once fitted, are much more efficient in terms of storage 

and computation.



K-Nearest-Neighbours for Classification (1)
• Given a data set with Nk data points from class Ck and                          

,  we have

• and correspondingly

• Since                       , Bayes’ theorem gives



K-Nearest-Neighbours for Classification (2)

K = 1K = 3



K-Nearest-Neighbours for Classification (3)

• K acts as a smother
• For                , the error rate of the 1-nearest-neighbour classifier is never more than 
twice the optimal error (obtained from the true conditional class distributions).



OLD



Bayesian Inference for the Gaussian (6)
• Now assume µ is known. The likelihood function for l=1/s2 is given by

• This has a Gamma shape as a function of l.

• The Gamma distribution:



Bayesian Inference for the Gaussian (8)
• Now we combine a Gamma prior,                         ,

with the likelihood function for l to obtain

• which we recognize as                                                     with 



Bayesian Inference for the Gaussian (9)
• If both µ and l are unknown, the joint likelihood function is given by

• We need a prior with the same functional dependence on µ and l.



Bayesian Inference for the Gaussian (10)
• The Gaussian-gamma distribution

• Quadratic in µ.
• Linear in l.

• Gamma distribution over l.
• Independent of µ. 

µ0=0, b=2, a=5, b=6



Bayesian Inference for the Gaussian (12)
• Multivariate conjugate priors
• µ unknown, L known: p(µ) Gaussian.
• L unknown, µ known: p(L) Wishart,

• L and µ unknown: p(µ, L) Gaussian-Wishart,



Partitioned Gaussian Distributions



Maximum Likelihood for the Gaussian (3)

Under the true distribution

Hence define 



Moments of the Multivariate Gaussian (1)

thanks to anti-symmetry of z 


