Piazza started Announcements

Matlab Grader homework, email Friday,
2 (of 9) homeworks Due 21 April, Binary graded.

Jupyter homework?: translate matlab to Jupiter, TA Harshul hégupta@eng.ucsd.edu or me
| would like this to happen.

“GPU” homework. NOAA climate data in Jupyter on the datahub.ucsd.edu, 15 April.
Projects: Any language

Podcast might work eventually.

Today:
e Stanford CNN
e Bernoulli

* Gaussian1.2

* Gaussian 2.3

* Decision theory 1.5

* Information theory 1.6

Monday
Stanford CNN, Linear models for regression 3



Non-parametric method

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points




Interpreting a Linear Classifier

-
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o

Array of 32x32x3 numbers
(3072 numbers total)




'Hard cases for a linear classifier

Class 1: Class 1: Class 1:
number of pixels > 0 odd 1<=L2 norm <=2 Three modes
Class 2: Class 2: Class 2:

number of pixels > 0 even Everything else Everything else




Coin estimate (Bishop 2.1)

Binary variables x={0,1}

plz = 1p) =
Bernoulli distributed
Bern(x|p) = p* (1 — p)* =~ (2.2)
Elz] = u
varfz] = p(l—p).

N observations, Likelihood:

N
(D) = Hp wnlp) = [ o (1= )=, (2.5)
n=1

IN

Inp(D|p) = Zlnp Tplp) = Z{xnlnu—l—(l—xn)ln(l—u)}. (2.6)

n=1

Max likelihood

1 N
NML—N;$



Coin estimate (Bishop 2.1)

Bayes p(x|y)=p(y|x)p(x)

Conjugate prior

Bayes:

prior

Beta(ula,b) =

2 .
likelihood function
1 1t
0 : 0
0 0.5 1

posterior

0.5




ML MAP BAYES

ML point estimate

MAP point estimate (often in literature ML=MAP)

Bayes => probability =>From which all information can be obtained
— MAP, median, error estimates
— Further analysis as sequential
— Disadvantage... not a point estimate.

prior | likelinood function posterior




Bayes Rule

P(data|hypothesis) P(hypothesis)

P(hypothesis|data) = P(data)

Rev'd Thomas Bayes (1702-1761)

e Bayes rule tells us how to do inference about hypotheses from data.

e Learning and prediction can be seen as forms of inference.



The Gaussian Distribution

1 1
N (x|, 0%) = 2ro )12 P {—ﬁ(x - u)z}

N (z|p, 0?)
’ N (z|p, 02) > 0

A /_O;N(:cm,JQ) dz =1

Gaussian Mean and Variance
E[z] :/ N (z|p,0%) xdx = p

E[z?] = / N (z|p,0%) 2° dz = p* + o°

= E[2°] — E[z]? = 0~



Gaussian Parameter Estimation

p(z)
Likelihood function

N
Nanlp, o)  Pxlpo®) = 1] N (znlp, 0?)

n=1
Py @
Maximtjjvm (Log) Likelihood
Inp (x|p,0%) = —2}7 1(xn —)? — gmgQ — gln(%r)
1 & 1 &
HML = N an OML — N Z(xn — ,LLML)2



Curve Fitting Re-visited, Bishop1.2.5

y(z, w) ,

b2

y(-/I;O)W) e
p(tlmo, W, 8) = N (tly(zo, w), 571

o T



I\/Iaximum Likelihood
p(t[x, w, B) = HN (tnly(zn, w), 671) . (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the
form

NIQ

N
Inp(tx,w,3) = Z Y(xn, W) —ty} + = N lnﬂ — gln(%r). (1.62)

% = — Z {y(z,, wnr) — tn} (1.63)

Giving estimates of W and beta, we can predict

p(t|z, W, Bur) = N (ty(2, W), By, ) -

(1.64)



MAP: A Step towards Bayes 1.2.5

p(wla) = N(w|0,a ') = (%>(M+l)/2 exp {—%WTW}

p(wlx, t, a, B) o p(t]x, w, B)p(w|a)

~ I} N «Q
BE(w) = B nz::l{y(:cn,w) —tp EWTW

Determine W\ AP by minimizing regularized sum-of-squares error, E(W)

Regularized sum of squares



Predictive Distribution

p(tlz, W, Bur) = N (¢y(z, wr), By,

1 O True data
Estimated
ol o\ © | +/-std dev




Parametric Distributions

Basic building blocks: D X| 9)
Need to determine @ given X1 XN}
See s

Representation: 9*orp(9)’

Recall Curve Fitting

p(tlr,x,t) = /p(t\x,w)p(w\x,t) dw

We focus on Gaussians!




The Gaussian Distribution

N(z|p,0?)

N(alu,0?) = — eXp{—Q%(:c—u)Q}

A (2m02)'/? o

,’172‘

M) = (QW;D” \lel/2 oY {_5(" —) BT (x - u>}



Central Limit Theorem

*The distribution of the sum of N i.i.d. random variables becomes increasingly
Gaussian as N grows.

*Example: N uniform [0,1] random variables.




Geometry of the Multivariate Gaussian

1
—1 T
i=1 A uz
A2 ED: Vi \/'“1
— ‘ )\_z

Y2

Y1




5132‘

Moments of the Multivariate Gaussian (2)

Exx'] = pp' + =

cov[x] =E[(x —Ex])(x —Ex))'] ==

A Gaussian requires D*(D-1)/2 +D parameters.
Often we use D +D or
Just D+1 parameters.

372‘ 372‘




Partitioned Conditionals and Marginals, page 89

Ea|b
tu'a|b

Ty

05}

P(Xa|xp) = N(Xa|ta)pr Zajp)
1 _

A(;a — 23aa — 2]ab§3&91§]ba
Yajp 1Aaakty = Nab(Xp — ) }

= Mg — A;alAab(Xb — W)
= Mg T Eabz&pl (Xb — F’Jb)

0.5 - 1

10

2 —

p(xa7 Xb) de

(Xa |l’l'a,7 Zaa)

p(zq|zy = 0.7) (\

NN

0.5 -

1



ML for the Gaussian (1) Bisphop 2.3.4

Giveni.i.d. data X = (Xl, . ,XN)T , the log likelihood function is given by
N
ND N 1 _
Inp(X|p, X) = ———In(2m) — - In[%] - 7 ?;(Xn — ) E T (% — )
8%1n|A| — (A" (C.28)
(%Tr (AB) = B™. (C.24)
0 0A

-1\ _ _ A—1Y4R 41
%(A )=-A oA (C.21)



Maximum Likelihood for the Gaussian

e Set the derivative of the log likelihood function to zero,

0
Inp(X >
 and solve to obtain 8,u np ‘”’ Z =0
e Similarly Lo, = 1 an.
N n=1
N

1
2ML = N Z(Xn — pan) (% — )



Mixtures of Gaussians (Bishop 2.3.9)

Old Faithful geyser:

The time between eruptions has a bimodal distribution, with the mean interval being either 65
or 91 minutes, and is dependent on the length of the prior eruption. Within a margin of error of
+10 minutes, Old Faithful will erupt either 65 minutes after an eruption lasting less

than 2 Y/, minutes, or 91 minutes after an eruption lasting more than 2 Y/, minutes.

100 - - - - 100
R0 | R0t
60 | 60 t
ey T arar

Single Gaussian Mixture of two Gaussians


https://en.wikipedia.org/wiki/Bimodal_distribution

Mixtures of Gaussians (Bishop 2.3.9)

*Combine simple models »(z),
into a complex model:

P = 3 mN (<l S)

k=1
Component

Mixing coefficient

K=3

K
k=1



0.5}

Mixtures of Gaussians (Bishop 2.3.9)




Mixtures of Gaussians (Bishop 2.3.9)

* Determining parameters &, u, and X using maximum log likelihood

N (K )
Inp(X|7m, pu, ) = Z In ¢ Zﬂkj\/'(xnmk,Ek) >
n=1 \ k=1 y

\ J
1

Log of a sum; no closed form maximum.

* Solution: use standard, iterative, numeric optimization methods or the
expectation maximization algorithm (Chapter 9).



Entropy 1.6

H[z] = — > p(x)log, p(x)

Important quantity in
e coding theory
* statistical physics
* machine learning

0.5 0.5

H=177 H = 3.09

025 025}

probabilities
probabilities




Differential Entropy

Put bins of width ¢ along the real line

iiing{zi:p(%)Alﬂp(%)} = —/P(x) In p(z) dz

For fixed O differential entropy maximized when

in which case

p(z) = N(z|u,o?)

Hz] = % {1+ In(2r0?)} .



The Kullback-Leibler Divergence

P true distribution, q is approximating distribution

KLlo) = — [ matdx ([ pix)npeo ix)
_ —/p(x)ln{z%} dx

N
1
L(p|lq) ~ NZ —Ing(x,]0) + Inp(x,)}

KL(pllq) = 0 KL(p||q) # KL(q||p)



Decision Theory

Inference step
Determine either p(t|x) or p(x,?).

Decision step

For given x, determine optimal t.



Minimum Misclassification Rate

p(mistake) — p(X < Rl,CQ) +p(x c RQ,Cl)
= / p(x,Ca) dx + / p(x,Cyp) dx.
Ri1

R2



* UNTIL HERE 4 April 2018



Bayes for linear model
y=Ax+n n~N(0,CD) y~N(Ax,CD) prior:x~N(0,CD)

p(x|y)~p(ylx)p(x)~N(y,C,)



Bayes’ Theorem for Gaussian Variables

Given

p(x) = N (x|p, A7)
we have plylx) = N (y‘AX + va_1)
ply) = N(ylAp+b, L7+ AAT'AT)
p(xly) = NEE{A'L(y —b)+ Au},X)
where

>=(A+A'LA)!



Sequential Estimation

Contribution of the Nt data point, x,

(N) 1
”ML — N Xn

I
g correction given xy

> correction weight

N

> old estimate




Bayesian Inference for the Gaussian Bishop2.3.6

e Assume o?is known. Given i.i.d. data

the likelihood function for p is given by X = {xlg ‘o ,xN}
1 -
2
p(x|p) = Hp D R e e R > (wn—p)

... n=1 . )
+  This has a Gaussian shape as a functlon of u (but it is not a distribution over ).



Bayesian Inference for the Gaussian Bishop?2.3.6

* Combined with a Gaussian prior over L,

p(p) =N (1

HO; 0-8) y

e this gives the posterior

* Completing the square over u, we see that

MN

1
5
ON

p(p|x) oc p(x|m)p(ps).

p(p|x) = N (ulpn, o%)

N=0 N —x

o2 n No? 1%
—_— _——mm— 5 = — T
Na%—l—aﬂio Na%—kaQMML HML anln
1 N
of o2

N
2

220 ML



Bayesian Inference for the Gaussian (3)
 Example: forN=0, 1, 2 and 10.

p(p|x) = N (ulpn, o%)




Bayesian Inference for the Gaussian (4)

Sequential Estimation

p(px) oc p(u)p(x|p)

[pw I p(xnm} p(an )

x N (ulpn—1,085_1) p(an|p)

The posterior obtained after observing N-1 data points becomes the prior when
we observe the Nt" data point.



*NON PARAMETRIC



Nonparametric Methods (1)

Parametric distribution models are restricted to specific forms, which may not
always be suitable; for example, consider modelling a multimodal distribution

with a single, unimodal model.
Nonparametric approaches make few assumptions about the overall shape of
the distribution being modelled.

1000 parameter versus 10 parameter



Nonparametric Methods (2)

Histogram methods partition the data
space into distinct bins with widths ¢;
and count the number of
observations, n;, in each bin.

T

~ NA,

Pi

 Often, the same width is used for
all bins, A; = A.

* A acts as a smoothing parameter.

* In a D-dimensional space, using M
bins in each dimension will require
MP bins!

A = 0.04 ' \

0 0.5 1

A = 0.08 ' \

0 0.5 1

A = 0.25 ' \

0 0.5 1




Nonparametric Methods (3)

*Assume observations drawn from a
density p(x) and consider a small
region R containing x such that

p— /R p(x) dx.

*The probability that K out of N
observations lie inside R is Bin(KjN,P
) and if N is large

K~ NP.

If the volume of R, V, is sufficiently
small, p(x) is approximately
constant over R and

P~ p(x)V
Thus
K
p(x) = NV

V small, yet K>0, therefore N large?




Nonparametric Methods (4)

*Kernel Density Estimation: fix V, estimate K from the
data. Let R be a hypercube centred on x and define the
kernel function (Parzen window)

]., ‘(CEZ—Can)/h‘g]_/Q, i:1,...,D,
0, otherwise.

b= x0) /1) = {

e |t follows that




Nonparametric Methods (5)

*To avoid discontinuities in
p(x), use a smooth kernel,
e. g a Gau55|an

Z 27Th2 D/2

n:1
o { [l
2h2

*Any kernel such that

kw) > 0, e

0 0.5 1
/k(u) du = 1 h acts as a smoother.

*will work.



Nonparametric Methods (6)

*Nearest Neighbour
Density Estimation: fix K,
estimate V from the data.
Consider a hypersphere
centred on x and let it
grow to a volume, V ’, that
includes K of the given N
data points. Then

K 0 0.5 1
p(x) =~ NV K acts as a smoother.




Nonparametric Methods (7)

Nonparametric models (not histograms) requires storing and computing with
the entire data set.
Parametric models, once fitted, are much more efficient in terms of storage

and computation.



K-Nearest-Neighbours for Classification (1)

* Given a data set with N, data points from class C, and
S, N = IV We have

* and correspondingly K

NV

P(x|Ck) =
* Since p(C;) = Ni/N, Bayes’ theorem gives
p(x|Cr)p(Cr) _ Ky

e =200 T &




K-Nearest-Neighbours for Classification (2)




L7

K-Nearest-Neighbours for Classification (3)

K=1 K =3 K =31
2 2 ; 2
.. o? .. °? .. *3
e §oo .,‘O,, g e §oo 'f..‘:‘ g ® e §oo .!‘0,; g o
& Z7
1 Y . 1f 8 . 1 »
(¥} . ¥} e () X
@e g ® : @o° . 2 : 'y .
® 4 * ® . ~] ® . i
0 S 0 o P 0 5 i et
0 1 gg 2 0 1 By 2 0 1 e

* K acts as a smother
* For N — o0, the error rate of the 1-nearest-neighbour classifier is never more than
twice the optimal error (obtained from the true conditional class distributions).



OLD



1 aya—1 a a
Gam()\‘a, b) = F(a)b )\ eXp(—b)\) ]E[)\] — g V&I'[)\] — b_2
2 2 : 2
a=0.1 =z | a=4d
b=0.1 b=1 b==6

Bayesian Inference for the Gaussian (6)

Now assume p is known. The likelihood function for A=1/c?is given by

N N
A
p(x[A) = [ NV (@nlp, A7) oc AV 2 exp { == (a2 u)2}-
This has a Gamma;shape as a function of A. 2

n=1

The Gamma distribution:




Bayesian Inference for the Gaussian (8)

* Now we combine a Gamma prior,
with the likelihood function for A to o@a‘iiﬁn()\fam bO)

A
ao—1yN/2 oy D N2
pP(A|x) o< A A exp{ bo A 5 E (xp — 1) }

n=1

 which we recognize as Gam()\|aN bN) with
Y

N
anN = CL()‘F?
N
1 N
bN = b()—|—§ E (xn—ﬂ>2:bo—|—§0§/{L.

n=1



Bayesian Inference for the Gaussian (9)

* If both uand A are unknown, the joint likelihood function is given by

p(x|u, ) ﬂ (%)1/26@{%( —M>2}

N
12 gy (A AN
xX |[A/7exp 5 exp )\,uan 5 an :
n=1 n=1

* We need a prior with the same functional dependence on pand A.



Bayesian Inference for the Gaussian (10)

The Gaussian-gamma distribution

p(pt, A) = N (ulpo, (BN)~")Gam(A|a, b)

B
2

\ J J
| |

* Quadratic in p. * Gamma distribution over A.
* Linearin A. * Independent of u.

X exp {——(u — uo)z} X" exp {—bA}

2

A LF




Bayesian Inference for the Gaussian (12)

Multivariate conjugate priors
1 unknown, A known: p(u) Gaussian.
A unknown, p known: p(A) Wishart,

1
W(AIW,v) = BJA|V=P=D/2 exp (—Tr(w—lA)> .
A and p unknown: p(u, A) Gaussian-Wishart, 2

p(p, Alpg, B, W,v) = N(p|peg, (BA)"H W(AIW, v)



Partitioned Gaussian Distributions



Maximum Likelihood for the Gaussian (3)

Under the true distribution

Elpy] = w

N —1

Hence define

N
Z — Py )( MML)T-



Moments of the Multivariate Gaussian (1)

=
Ll
|

1 1 1 e
(2m)P/2 \2\1/2/6XP{—§(X—M) > Hx—p)

1

)

1 l -1
(27)D/2 ‘2‘1/2/6XP{—§Z 2 Z}(Z+H)dz

thanks to anti-symmetry of z

Elx| =p

}de



