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We are focused on basic ML methods and their application.

ECE285 Machine Learning for Image Processing is focused on NN



Research accomplishments. noiselab.ucsd.edu
Genetic Algorithms and Bayesian inversion, sequential filtering (1992-)=>
• Co-founded geoacoustic inversion (Ross Chapman)
• Saga. Combines Bayesian sampling and 7 OA/EM propagation codes
• Parallel effort in EM atmospheric refractivity Gerstoft (2003). 

Ambient noise processing (2004-)=>
• Noise Cross correlation (Sabra, Gerstoft)
• Fathometer (Gerstoft, Siderius)
• Deep impact on seismology

Microseisms (2006-) =>
• Array proc. (Gerstoft 06), body waves (Gerstoft 08),Theory (Traer 14)
• Gerstoft, "Weather bomb" induced seismic signals. Science 2016, 
• Antarctic (Bromirski) and Arctic (Worcester) noise

Compressive sensing (2011-)=>
• Yao, Compressive sensing of earthquakes, GRL 2011, PNAS 2013

• Xenaki, Compressive beamforming, 2014; Yardim (2013), Gerstoft 2015

Machine learning for physical applications

Summary: 
• 170 Papers, H-factor 49 (Scholar).
• 105 Ocean Acoustics, 19 EM, 44 seismics, 45 SP
• Mentoring a diversified (culture, levels, science interest, science fields, ECE/GEO/AOS)  10-

person acoustics group.
• Funding ONR, NSF GEO & Polar, DOE, visitors.

Deterministic, 
non-random, 
first principles, 
stochastic search GA

Random, “Chaos is our friend”,
first principles

first principles
random

Cross-disciplinary, random
Sparse, 
random,
deterministic search.

Always Bayes

http://noiselab.ucsd.edu/


2019: 224Students with the following specialization 
166 EC, 3 BE, 1 BI, 1 CE, 3 CH, 19 CS, 1 CU,  IIR, 9 MC, 1 MA, 1 Na, 2 RS, 5 SE 6 SI 1 PY, 1 UN
2018: 116 Students with the following specialization 
56 EC, 7BE, 1 CE, 4 CS, 6 CU, 1 MA, 15 MC, 5 MC, 1 PY, 3UN

Sit-in students are welcome, but please email me to be signed up for cody

BOOK:
We use Bishop 2006, relative to last year Kullback-Leibner, (RNN, LSTM,CNN), RF, sequential estimation.
Murphy 2012 has more detail, but is larger.
Online resources: Sign up for Cosera ML or Stanford Statistical Learning 
Grade 2017: (A+ 19, A 20, A- 13, B+ 7, S  1, W 1) 

2018: (A+ 21, A 20, A- 20, B+ 4,  B 5) 
• 50% Homework, automatic graded
• 50% Project
• 5 class participation

TA (Siva Prasad Varma Chiluvuri, Harshuk Gupta, Ruixian Liu)
• Siva coordinate/lead home work (presentation and Cody)
• Harshuk coordinate/lead Piazza, Jupyter, GPU effort
• Ruixian coordinate projects, present ML to discover PDE
• Office hours on Piazza ECE/SIO, just TA? 



Ideal Class 80 min
10 min homework
40 min pre or post homework science.
30 min applications, projects D2 students please give a presentation instead of projects.
Light theory initially 
Partly reverse class. Stanford 
https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

Homework
Automatic graded by Cody in matlab due ABOUT 1 hour before EVERY class. First 
homework April 9
Please talk about homework, but don’t copy
Maybe some SciKit Learn on Jupyter Notebook (TA problem)
Piazza help

https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv


GPU  datahub.ucsd.edu
https://datahub.ucsd.edu/hub/login
Documentation

TA Harshul
1-2 Homeworks on this
Plus Final project
Tensorflow gave a factor 10 speedup

https://datahub.ucsd.edu/hub/login
https://docs.google.com/document/u/1/d/e/2PACX-1vR-tC1oL6J9RJxSP42iWr8BukgRO9ohcybFXPn95yjQQLvv4iNP5Tlbzx06rQtPA-fLex2N_MVjzgAR/pub?embedded=true


Projects

• 3-4 person groups
• Deliverables: Poster & Report & main code (plus proposal, midterm slide)
• Topics your own or chose form suggested topics
• Week 4 groups due to TA Ruixian (if you don’t have a group, ask in week 3 

and we can help). 
• May 5 proposal due. TAs and Peter can approve. 
• Proposal: One page: Title, A large paragraph, data, weblinks, references. 
• Something physical
• May 20 Midterm slide presentation. Presented to a subgroup of class.
• June 5 final poster. Uploaded June 3
• Report and code due Saturday 15 June.



2018



2017 projects:
• Source localization in an ocean waveguide using supervised machine 

learning, Group3, Group6, Group8, Group10, Group11, Group15 (from my www)
• Indoor positioning framework for most Wi-Fi-enabled devices, Group1
• MyShake Seismic Data Classification, Group2 (from my www)
• Multi Label Image Classification, Group4. (Kaggle Use satellite data to track the human footprint 

in the Amazon rainforest)
• Face Recognition using Machine Learning, Group7
• Deep Learning for Star-Galaxy Classification, Group9
• Modeling Neural Dynamics using Hidden Markov Models, Group12
• Star Prediction Based on Yelp Business Data And Application in Physics, Group13 (non physics… )
• Si K edge X-ray spectrum absorption interpretation using Neural Network, Group14
• Plankton Classification Using VGG16 Network, Group16 (from my www)
• A Survey of Convolutional Neural Networks: Motivation, Modern Architectures, and Current 

Applications in the Earth and Ocean Sciences, Group17 (NO data, BAD)
• Use satellite data to track the human footprint in the amazon rainforest, Group18 (Kaggle Use 

satellite data to track the human footprint in the Amazon rainforest)
• Automatic speaker diarization using machine learning techniques, Group19
• Predicting Coral Colony Fate with Random Forest, Group20

http://noiselab.ucsd.edu/ECE228/FinalProjects/Group3.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group6.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group8.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group10.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group11.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group15.pdf
finalprojects:Group1.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group2.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group4.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group7.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group9.pdf
finalprojects:Group13.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group14.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group16.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group17.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group18.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group19.pdf
http://noiselab.ucsd.edu/ECE228/FinalProjects/Group20.pdf


Qingkai Kong is from Berkeley, I have 3GB  of 
data and examples of analysis by students there



First principles vs

Small data

High reliance on domain expertise 

Universal link can handle non-
linear complex relations

Complex and time consuming 
derivation to use new relations

Parameters are physical! 

Data driven

Big data to train

Results with little domain 
knowledge

Limited by the range of values 
spanned by training data

Rapidly adapt to new problems 

Physically agnostic, limited by the 
rigidity of the functional form

Data

Domain expertise

Fidelity/
Robustness

Adaptability

Interpretability

Perceived 
Importance.                      SIO              Signal-Proc       Peter                 Google



Machine learning versus knowledge based

3D spectral elements



We can’t model everything…

Back scattering from fish school

Reflection from complex 
geology

Detection of mines. Navy uses dolphins to 
assist in this.
Dolphins = real ML!

Predict acoustic field in turbulence

Weather prediction



Machine Learning for physical Applications 
noiselab.ucsd.edu

13

Murphy: “…the best way to make machines that can learn from data is 
to use the tools of probability theory, which has been the mainstay of 
statistics and engineering for centuries.“



Learning:
The view from di↵erent fields

• Engineering: signal processing, system identification, adaptive and optimal
control, information theory, robotics, ...

• Computer Science: Artificial Intelligence, computer vision, information retrieval,
...

• Statistics: learning theory, data mining, learning and inference from data, ...

• Cognitive Science and Psychology: perception, movement control, reinforcement
learning, mathematical psychology, computational linguistics, ...

• Computational Neuroscience: neuronal networks, neural information processing,
...

• Economics: decision theory, game theory, operational research, ...

Physical science is missing!
ML cannot replace physical understanding.
It might improve or find additional trends

Machine learning is interdisciplinary focusing on both mathematical foundations and 
practical applications of systems that learn, reason and act. 



What is Machine Learning?

Many related terms:

• Pattern Recognition

• Neural Networks

• Data Mining

• Adaptive Control

• Statistical Modelling

• Data analytics / data science

• Artificial Intelligence

• Machine Learning Big data



Peter Gerstoft, Mike Bianco, Emma Ozanich, Haiqiang Niu
http://noiselab.ucsd.edu/. SIO, UCSD  

Intro 1:Long beach array

Machine learning in Physical Sciences

Summary
• Machine learning, big data, data science, artificial intelligence are about the same.
• Data science has lots of opportunities in physics.
• Neural networks is one method. Similar are methods are Support Vector Machines (SVM) and 

Random Forest (RF). Use the latter for a first implementation.
• Unsupervised learning is more challenging than supervised learning
• Coding: Matlab OK, Jupyter notebook is nice.
• I like graph signal processing methods, dictionary learning, sequential estimation
• Following the trend, here we use RF, SVM, FNN, CNN, LSTM, ResNet

Relevant papers ML in ocean acoustics: (FNN)
Niu, Reeves, Gerstoft (2017) JASA 142. (Noise09)
Niu, Ozanich, Gerstoft (2017) JASA-EL 142. (SBC)
Ozanich, Niu Gerstoft (2019?) JASA 
Niu, Ozanich, Gerstoft (2019?) JASA.
Michalopoulou, Gerstoft (2019), JOE in press.
Bianco 2019? Review paper

ML in seismics
Riahi 2017 (Graph processing)
Bianco 2017, 2018,2019? (Tomography/ Dictionary Learning)
Kong 2019 Review paper

http://noiselab.ucsd.edu/


Matched-Field Processing on test data 1 

120

synthetic replicas.                        measured replicas

Frequencies [300:10:950]Hz 

Mean Absolute Percentage Error error of MFPs:   55% and 19%

D = 152 m

Zs = 5 m

R = 0:1! 2:86 km

Zr = 128! 143 m

"z = 1 m

Layer
Cp = 1572! 1593 m=s

; = 1:76 g=cm3 ,p = 2:0 dB=6
24 m

Halfspace Cp = 5200 m=s

; = 1:8 g=cm3 ,p = 2:0 dB=6

(a)

! = p$Cp



Classification versus regression 

D = 152 m

Zs = 5 m

R = 0:1! 2:86 km

Zr = 128! 143 m

"z = 1 m

Layer
Cp = 1572! 1593 m=s

; = 1:76 g=cm3 ,p = 2:0 dB=6
24 m

Halfspace Cp = 5200 m=s

; = 1:8 g=cm3 ,p = 2:0 dB=6

(a)

© AudioLabs, 2017 

Soumitro Chakrabarty 
Multi-speaker Localization with CNN 

7 

§  Multi-speaker DOA estimation is formulated as an I class multi-label 
classification problem 

§  Discretize the whole DOA range into I discrete values to obtain a set 
of possible DOA values: 

§  Each class corresponds to a possible DOA value in the set  

Problem Formulation 
DOA estimation as classification 
 

⇥ = {✓1, . . . , ✓I}

...
...

I classes

i ≈ θi ∈ Θ = {θ1, . . . , θI}

Θ = {θ1, . . . , θI} N potential source ranges
R = {$%, … , $(}

Regression:

D = 152 m

Zs = 5 m

R = 0:1! 2:86 km

Zr = 128! 143 m

"z = 1 m

Layer
Cp = 1572! 1593 m=s

; = 1:76 g=cm3 ,p = 2:0 dB=6
24 m

Halfspace Cp = 5200 m=s

; = 1:8 g=cm3 ,p = 2:0 dB=6

(a)

© AudioLabs, 2017 

Soumitro Chakrabarty 
Multi-speaker Localization with CNN 

7 

§  Multi-speaker DOA estimation is formulated as an I class multi-label 
classification problem 

§  Discretize the whole DOA range into I discrete values to obtain a set 
of possible DOA values: 

§  Each class corresponds to a possible DOA value in the set  

Problem Formulation 
DOA estimation as classification 
 

⇥ = {✓1, . . . , ✓I}

...
...

I classes

i ≈ θi ∈ Θ = {θ1, . . . , θI}

Θ = {θ1, . . . , θI}
one source continuous range

3. Classification vs regression
Example: feed-forward neural network

Classification: E(!!!) = � 1
N
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Regression: E(!!!) = 1
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Regression (b)

(b) Regression in an FNN
24 / 46
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Classification:

Regression is harder

Number of parameters 
MFP: O(10)
ML: 400*1000+ 1000*1000+1000*100

= O(1000000)



So far…

Ship range localization using (a,c) MFP and 
(b,d) Support Vector Machine (rbf kernel).

(c) (d)

• Can machine learning learn a  nonlinear noise-range relationship? 
– Yes: Niu et al. 2017, “Source localization in an ocean waveguide using machine 

learning.”

• We  can use different ships for training and testing ?
– Yes: Niu et a. 2017, “Ship localization in Santa Barbara Channel using machine 

learning classifiers.” (see figure)

NN, SVM, and random forest
Perform about similar

60s Science
Scientic Am



Other parameters: FNN

1 snapshot

5 snapshot

20 snapshot

13 Output

690 Output

138 Output
Conclusion
- Works better than MFP
- Classification better than 

regression
- FNN, SVM, RF works.
- Works for:

- multiple ships,
- Deep/shallow water
- Azimuth from VLA



7 km

10 km

Why we got interested in traffic

March 5—12, 2011



Noise Tracking of Cars/Trains/Airplanes
5200 element Long Beach array (Dan Hollis)

Nima Riahi 2014 22



Noise Tracking of Cars/Trains/Airplanes

Total seismic power on 
receivers close to the 
runway. 1 sec segments 
used. Plot probably shows 
an airplane taking off from 
the Southern end of the 
runway in Long Beach 
airport (bottom in left 
satellite picture). Take off 
velocity ~50m/s.

Riahi, Gerstoft, GRL 2015 23
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March 7th, 6-7am, rush hour, Blue Line

Accelerating airplane on Long Beach Airport 
runway, moving northwest and taking off at 
about 120 mi/h.



• The Earth contains both smooth and discontinuous variations in slowness (e.g. Moho, faults) at 
multiple spatial scales

• Most existing travel time inversion methods are ad hoc: regularize inversion assuming 
exclusively smooth or discontinuous slownesses

• Propose locally-sparse 2D travel time tomography (LST) method with three main ingredients:
• Sparsity constraint on slowness patches
• Dictionary learning (unsupervised machine learning)
• Damped least squares regularization on overall slowness map

"Travel time tomography with adaptive dictionaries"
Bianco and Gerstoft 2018, IEEE Transactions on Computational Imaging

LST in Long Beach, CA, USASynthetic checkerboard



Comparison of LST with Eikonal Tomography (Lin et al. 2009)

LST Eikonal tomography



• BISHOP 1.2



Polynomial Curve Fitting

Sum-of-Squares Error Function



M Order Polynomial Fit
1st Order Polynomial0 Order Polynomial 3 Order Polynomial

9 Order Polynomial

Root-Mean-Square (RMS) Error:



Bias-variance tradeoff
3. Bias-variance tradeo↵

Concept: Complex models can learn data-label relationships well, but
may not extrapolate to new cases.

	

Test	Sample	

Training	Sample	

High	Bias	
Low	Variance	

Low	Bias	
High	Variance	

Model	Complexity	
Low	 High	

Pr
ed
ict
ion

	Er
ro
r	
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Polynomial Coefficients   



Data Set Size: 

9th Order Polynomial



Regularization

• Penalize large coefficient values



Regularization:           vs. 

Polynomial Coefficients   



Curve Fitting Re-visited, Bishop1.2.5



Maximum Likelihood Bishop 1.2.5

• Model

• Likelihood

• differentiation



Maximum Likelihood

1.2. Probability Theory 29

Figure 1.16 Schematic illustration of a Gaus-
sian conditional distribution for t given x given by
(1.60), in which the mean is given by the polyno-
mial function y(x,w), and the precision is given
by the parameter β, which is related to the vari-
ance by β−1 = σ2.

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)

We now use the training data {x , t} to determine the values of the unknown
parameters w and β by maximum likelihood. If the data are assumed to be drawn
independently from the distribution (1.60), then the likelihood function is given by

p(t|x ,w, β) =
N∏

n=1

N
(
tn|y(xn,w), β−1

)
. (1.61)

As we did in the case of the simple Gaussian distribution earlier, it is convenient to
maximize the logarithm of the likelihood function. Substituting for the form of the
Gaussian distribution, given by (1.46), we obtain the log likelihood function in the
form

ln p(t|x ,w, β) = −β

2

N∑

n=1

{y(xn,w) − tn}2 +
N

2
ln β − N

2
ln(2π). (1.62)

Consider first the determination of the maximum likelihood solution for the polyno-
mial coefficients, which will be denoted by wML. These are determined by maxi-
mizing (1.62) with respect to w. For this purpose, we can omit the last two terms
on the right-hand side of (1.62) because they do not depend on w. Also, we note
that scaling the log likelihood by a positive constant coefficient does not alter the
location of the maximum with respect to w, and so we can replace the coefficient
β/2with 1/2. Finally, instead of maximizing the log likelihood, we can equivalently
minimize the negative log likelihood. We therefore see that maximizing likelihood is
equivalent, so far as determining w is concerned, to minimizing the sum-of-squares
error function defined by (1.2). Thus the sum-of-squares error function has arisen as
a consequence of maximizing likelihood under the assumption of a Gaussian noise
distribution.

We can also use maximum likelihood to determine the precision parameter β of
the Gaussian conditional distribution. Maximizing (1.62) with respect to β gives

1
βML

=
1
N

N∑

n=1

{y(xn,wML) − tn}2 . (1.63)
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30 1. INTRODUCTION

Again we can first determine the parameter vector w ML governing the mean and sub-
sequently use this to find the precision βML as was the case for the simple Gaussian
distribution.Section 1.2.4

Having determined the parameters w and β, we can now make predictions for
new values of x. Because we now have a probabilistic model, these are expressed
in terms of the predictive distribution that gives the probability distribution over t,
rather than simply a point estimate, and is obtained by substituting the maximum
likelihood parameters into (1.60) to give

p(t|x, w ML, βML) = N
(
t|y(x, w ML), β−1

ML

)
. (1.64)

Now let us take a step towards a more Bayesian approach and introduce a prior
distribution over the polynomial coefficients w . For simplicity, let us consider a
Gaussian distribution of the form

p(w |α) = N (w |0, α−1I) =
( α

2π

)(M+1)/2

exp
{
−α

2
w Tw

}
(1.65)

where α is the precision of the distribution, and M+1 is the total number of elements
in the vector w for an M th order polynomial. Variables such as α, which control
the distribution of model parameters, are called hyperparameters. Using Bayes’
theorem, the posterior distribution for w is proportional to the product of the prior
distribution and the likelihood function

p(w |x, t, α, β) ∝ p(t|x, w , β)p(w |α). (1.66)

We can now determine w by finding the most probable value of w given the data,
in other words by maximizing the posterior distribution. This technique is called
maximum posterior, or simply MAP. Taking the negative logarithm of (1.66) and
combining with (1.62) and (1.65), we find that the maximum of the posterior is
given by the minimum of

β

2

N∑

n=1

{y(xn, w ) − tn}2 +
α

2
w Tw . (1.67)

Thus we see that maximizing the posterior distribution is equivalent to minimizing
the regularized sum-of-squares error function encountered earlier in the form (1.4),
with a regularization parameter given by λ = α/β.

1.2.6 Bayesian curve fitting
Although we have included a prior distribution p(w |α), we are so far still mak-

ing a point estimate of w and so this does not yet amount to a Bayesian treatment. In
a fully Bayesian approach, we should consistently apply the sum and product rules
of probability, which requires, as we shall see shortly, that we integrate over all val-
ues of w . Such marginalizations lie at the heart of Bayesian methods for pattern
recognition.

Giving estimates of W and beta, we can predict



Predictive Distribution



MAP: A Step towards Bayes 1.2.5

Determine               by minimizing regularized sum-of-squares error,             .

Regularized sum of squares



Probability Theory

Joint Probability

Marginal Probability

Conditional Probability



Probability Theory

•Sum Rule

Product Rule



Probability Theory

Joint Probability

Marginal Probability

Conditional Probability



The Rules of Probability

• Sum Rule

• Product Rule



Bayes’ Theorem

posterior µ likelihood × prior



Bayes Rule

P (hypothesis|data) = P (data|hypothesis)P (hypothesis)

P (data)

Rev’d Thomas Bayes (1702–1761)

• Bayes rule tells us how to do inference about hypotheses from data.

• Learning and prediction can be seen as forms of inference.



The Gaussian Distribution

Gaussian Mean and Variance



Gaussian Parameter Estimation

Likelihood function

Maximum (Log) Likelihood



ML std is biased.


