Project discussion, 22 May: Mandatory but ungraded. We split into 6
sub-classes. The purpose is to make sure your project is on track,

good progress and good goals. The discussion following your
presentation is the most important.

Each group gives a ~10 min presentation by all members (each person
__ talks for ~2 min, ~1 slide)

1) Motivation & background, which data?

2) small Example,

3) final outcome, (focused on method and data)
4) difficulties,

L=

Timing: There are upto 8 Groups in each sub-class, thus we have 15 min
in total/group, with 2 min/person 10min presentation time/group.
The discussion following a presentation might be the most important.

June 5, 5-8pm: Poster and Pizza



Generative Models
Given training data, generate new samples from same distribution

Training data ~ Generated samples ~p_ . (X)

Want o learn p (x) similar to p _,_(x)

model
Addresses density estimation, a core problem in unsupervised learning
Several flavors:

- Explicit density estimation: explicitly define and solve for p_ .. (X)

- Implicit density estimation: learn model that can sample from p (x) w/o explicitly defining it

model



Taxonomy of Generative Models Direct

Today: discuss 3 most GAN
popular types of generative Generative models
models today / \
A .. :
Explicit density Implicit density
Tractable density Approximate density HEMNY EElT

Fully Visible Belief Nets / \ GSN

- NADE—__ —~ :

- MADE Variational Markov Chain

- [PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear ICA)

p—

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.



Bayes summary //i"’"””[

p(y|X)py) 7~ F*°
p(x)

Bayes p(x|y) =
Fosf'e n‘\ov

Optimizing posterior p(x|y)

You can also optimize the evidence (type Il likelihood) p(x)

) %2, 3 - ﬂ:z/ X [%) P
— /ﬂfé 3/X1;X2>F(Xz/)r‘3 pes)



Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n
p(z) = pr(xilxla ooy Ti—1)
i=1

f f

Likelihood of Probability of i'th pixel value
Image X given all previous pixels

-

Then maximize likelihood of training data



Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

n
p(z) = | [ p(@iles, ..., zi1)
T i=1 T Will need to define
o ordering of “previous
Likelihood of Probability of i'th pixel value pixels”
image X given all previous pixels

Complex distribution over pixel
. o . values => Express using a neural
Then maximize likelihood of training data [ ctwork!



F(Xl) (O(k&/}» OD(XY JX,)
PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

© 0 0 O O

Drawback: sequential generation is slow!




PixelCNN [van der Oord et al. 2016]

Softmax loss at each pixel

Still generate image pixels starting from i .i
corner

0 T 255

A7~
Dependency on previous pixels now

modeled using a CNN over context region / / / /
Training: maximize likelihood of training

images

n

p(x) = Hp(a:z-|a:1, ey Ti—1)

1=1




PixelRNN and PixelCNN

Pros: Improving PixelCNN performance
- Can explicitly compute likelihood - Gated convolutional layers
p(x) - Short-cut connections
- Explicit likelihood of training - Discretized logistic loss
data gives good evaluation - Multi-scale
metric - Training tricks
- Good samples - Etc...
Con: See
- Sequentia| generatiOn => slow - Van der Oord et al. NIPS 2016

- Salimans et al. 2017
(PixelCNN++)



Reconstructed data

el =2

BEIL&aES
RLSSAE
-Eﬂ:lﬁ~

Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representati

from unlabeled training data Encoder: 4-layer conv
Decoder: 4-layer upconv

z usually smaller than x Originally: Linear + 4

(dimensionality reduction) nonlinearity (sigmoid) Inout data

Later: Deep, fully-connected

Q: Why dimensionality Later: ReLU CNN

reduction?’

A: Want features to Feat

capture meaningful eatures Z

factors of variation in A .

data Encoder

Input data 5 i




Some background first: Autoencoders _Reconstructed data

e e B M
' that feat 't _ .

c;ilrtlnztcsed:) SIS L2 Loss function: OESTHSE e ’E.HE

[yl [ R WP

reconstruct original data |z — £||2? =— ~
T -H*‘ LT
Re.CO”StrUCted .’f) ‘ Encoder: 4-layer conv
input data A Decoder: 4-layer upconv
Decoder 4
Input data
Features 2 ] mﬁ ‘i Gl
| Encoder Eﬁ@
g LR

Input data T \ -H = .E
After training,

throw away decoder



Some background first: Autoencoders

Predicted Label

Loss function
(Softmax, etc)

1
A

AN

Classifier
Encoder can be
used to initialize a Features e
supervised model A
Encoder
Input data T

bird plane

dog deer truck

Train for final task

Fine-tune ' .
encoder (sometimes with
jointly with small data)
classifier

L ST

\

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Features capture factors of
variation in training data. Can we
generate new images from an
autoencoder?



Variational Bayes summary

X
Bayes p(xly) = B L(zf 2

Optimizing posterior p(x|y)

You can also optimize the evidence (type Il likelihood) p(y)

Bishop Ch 10 Approximate inference
/¢ | Variational inference

Observations X = [xq, ..., xy] <
With latent parameter Z = [z, ..., Zy]

And probability p(X, Z

We like to find an approximation to p(X,Z) and the evidence p(Z)

%

A good guess is a factorized distribution

P(X, 2)= [Tn=fitm )



Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {:z:(i)}f\’:1 is generated from underlying unobserved (latent)

representation z

Sample from
true conditional
po- (x| )

N——"

Sample from
true prior

P~ (2)

We want to estimate the true parameters g*
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g.
Gaussiaﬁ.\_'

Conditional p(x|z) is complex (generates

P

image) => represent with neural network




i 2
How to train the mode* Variational Autoencoders

-
Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Remember strategy for training generative N , ,

Assume training data {I(”}f\il is generated from underlying unobserved (latent)
models from FVBNs. Learn model parameters representation z
to maximize likelihood of training data

By — 2o
Q: What is the problem with this? ﬁggggoj“’m
Intractable! « g . .-
Variational Autoencoders: Intractability
S v Vv
Data likelihood: pe(z fpe zzg(xlzgdz

f

Intractible to compute
p(x|z) for every z!

v v 9
Posterior density also intractable: p9(2|$) = Do ($|Z)p9(2)/p9($)

Solution: In addition to decoder network modeling p,(x|z), define additional
encoder network q,(z|x) that approximates Po(ZlX)

e

Will see that this allows us to derive a lower bound on the data likelihood that is
tractable, which we can optimize




Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z
Mzl zla: ﬂ’a:|z a:lz

r

Encoder network Decoder network

d(2|2) po(z|2)

(parameters (0)) (parameters 0)




Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

log pg (z®) = E. g, (z2) [logpg(x(i))] (pg () Does not depend on z)

I (i)
=E. |log po(z™ | Z)pg(?:)] (Bayes’ Rule)

po(z | z®) Make approximate

- posterior distribution

I (4) (2)
=E, |log Po(e™ | z)pg(z) 9z | @ . >1 (Multiply by const ) close to prior
I po(z |2@)  gy(z | 2®) |
- , (4) (2)
Reconstruct = E, |logps(z® | z)] —-E, llog M} + E, Hog wx(z)) (Logarithms)
the input data ; pe(2) po(z | =)
= E. |logpg(z"” | 2)| — Drrgs(z | &) 1 po(2) + Prr(as(z | 29) || po(z | 2?))
Decoder network gives py(x|z), can This KL term (between pe(;IX) intractable (saw |
compute estimate of this term through | Gaussians for encoder and z  earlier), can’t compute this KL
sampling. (Sampling differentiable prior) has nice closed-form term :( But we know KL

through reparam. trick, see paper.) solution! divergence always >= 0.

()




Variational Autoencoders

- maximizing the
likelihoog'Tower bound

E. |logps(e” | 2)| = Dz (gs(z | 27)|| po(2))

£(zD,0,¢)

—
P

f

Make approximate
posterior distribution
close to prior

T
Sample x|z from :c|z ~ N(ux|z, E:z;|z)

i

Maximize
likelihood of
original input
being

reconstructed

M|z Ea:|z

Decoder network

po(z2)

N

z 4
Sample z from 2|z ~ N (fhy)z5 X 2|z)~

/ /

\" /

/‘l'le Zzlx
Encoder network \/
g¢(2|z)
Input Data i S




Data

Data manifold for 2-d z

ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!
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Vary z,

> iz
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N

yA
Sample z from z ~ N(0, 1)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

M|z

Sample x|z from :B|Z ~ N(,ltx|z, Eg,,-|z)

Decoder network
po(z|2)

\a




Markov models, Bishop 13.1

[.1.D model

f(k,) AL)Y%) ?F(&)F(xz)/ﬂ(x])

Markov model

p(xX1,...,XN) = Hp(xn\xl,...,xn_l). (13.1)

First order Markov chain

X1 . X2 '_ X3 ' X4 .

p(x1,...,xXn) = p(x1) H P(Xn|Xn_1). (13.2)



Markov models, Bishop 13.1

Second order Markov chain m
X1 X2 X3 X4

—_—

N
p(xla tee 7XN) - p(Xl)p(X2|X1) H p(xn|xn—1, Xn—2)~ (134)
n=3

—_— -
With K states, how many parameters?

K'CK’/) N\,

State space model KoK
Z1 @ Zn—1 Zn Zn+1

Hidden Markov chain Stedh
Linear dynamical systems






Product of Gaussians=Gaussian:

70 100 12 130 7.0 10.96 130
One data point problem

Prior PDF
=10

For the general linear inverse problem we would have

Prior: p(m) oc exp {_%(m B mO)Tcn_%l N mO)}

Likelihood: p(dlm) x exp {—%(d _ Gm)TCd—l(d = Gm)}

Posterior PDF
o exp {—%[(d —am)To;H(d — Gm) + (m — mo)TCpt (m — mo)]}

« exp{—%[m ] §'[m- ﬁl]}
S"'=G'C;G+C;
i=(G'C,G+C;) (G'C;'d+C;'m,)

- m,+(G'C,'G+C;') G'C; (d-Gm,)



~ ¢
The Model Stede Cquaticn

Consider the discrete, linear system,
Xk_|_1=Mka—I—Wk, k:O,1,2,..., (1)

where
* X, € R"is the state vector at time

e My € R™" is the state transition matrix (mapping from time
to k. 1) or model

e {w, e R"k=0,1,2,...} is a white, Gaussian sequence, with
w, ~ N(0, Qk), often referred to as model error

* Q4 € R™"js a symmetric positive definite covariance matrix
(known as the model error covariance matrix).

4 of 32

Some of the following slides are from: Sarah Dance, University of Reading



-]
The Observations M&‘SW’ Nent ¢ tetic,,

We also have discrete, linear observations that satisfy

yk:Hkxk+Vk7 k:172737'°°7 (2)

where

* Y, € RP is the vector of actual measurements or observations
at time

e H, € R™P is the observation operator. Note that this is not in
general a square matrix.

e {vp e RP; k=1,2,...} is a white, Gaussian sequence, with
v ~ N(0,Ry), often referred to as observation error.

* R, € RP*P is a symmetric positive definite covariance matrix
(known as the observation error covariance matrix).

We assume that the initial state, xg and the noise vectors at each
s’geBé {w}, {vk}, are assumed mutually independent.



The Prediction and Filtering Problems

We suppose that there is some uncertainty in the initial state, i.e.,
Xo ~ N(0,Po) (3)

with Py € R™" a symmetric positive definite covariance matrix.

The problem is now to compute an improved estimate of the
stochastic variable x, provided y1, ...y; have been measured:

Xk|j = Xk|y;.....y; (4)

* When j = k this is called the filtered estimate.

* When j = k — 1 this is the one-step predicted, or (here) the
predicted estimate.

6 of 32
—— ]



e The Kalman filter (Kalman, 1960) provides estimates for the
linear discrete prediction and filtering problem.

* We will take a minimum variance approach to deriving the filter.

e We assume that all the relevant probability densities are
Gaussian so that we can simply consider the mean and
covariance.

e Rigorous justifcation and other approaches to deriving the filter
are discussed by Jazwinski (1970), Chapter 7.

8 of 32




Prediction e N(&"/ 72’2 )

— ‘\——50
Xier1lk = MicXye + 6i= X jc + O, Xmo >g+//4< et
- A 'T)
Xk N(WXVL) ﬁZ?KM
Xk+1lk ~
Xi+1|k=



Prediction step

We first derive the equation for one-step prediction of the mean
using the state propagation model (1).

Xiptk = EXkstlY1,-. Vil
= E[kak+wk]7

= Mks(\k|k Y)Z/k X‘Z—f(;/(
~O

9 of 32



The one step prediction of the covariance is defined by,

Pirik =E {(Xk+1 — Xpe 1)) Xkt — i/<+1|/<)T|y1,---yk} . (6)

Exercise: Using the state propagation model, (1), and one-step
prediction of the mean, (5), show that

Pii1jk = MPrM] + Q. (7)

10 of 32
—————



-]
Filtering Step

At the time of an observation, we assume that the update to the
mean may be written as a linear combination of the observation

and the previous estimate:
Xk = Xipk—1 + Ki(Yk — HkXgpe—1), (8)

where Ky, € R"*P is known as the Kalman gain and will be derived

shortly.
Yoz XIZ-('//@ Xi@-f /

@,

11 of 32
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But first we consider the covariance associated with this estimate:
Pk =E {(Xk — X)Xk — Xpi) TIY1, - -Vk} : (9)
Using the observation update for the mean (8) we have,

Xk — Xk = Xk — Xpk—1 — Kie(Yix — HeXpe—1)
= Xk — Xik—1 — Ke(HeXp + Ve — HeXppe_ 1)),
replacing the observations with their model equivalent,
= (1= KeHp) (X — Xypp—1) — Kk (10)

Thus, since the error in the prior estimate, x, — ik|k_1 is
uncorrelated with the measurement noise we find

Pk = (1-KcHKE {(Xk — Xpk—1)(Xk — /)Ek|k—1)T} (I - KgHe) ™
TK4E [vkv[] K] (11)

12 of 32



Simplification of the a posteriori error covariance
formula

Using this value of the Kalman gain we are in a position to simplify
the Joseph form as

Pk = (1— KiHi) Pk 1 (1— KiHi) T + KeReKy = (1— KHy )P+
(15)
Exercise: Show this.

Note that the covariance update equation is independent of the
actual measurements: so PXl% could be computed in advance.

15 of 32



Summary of the Kalman filter

Prediction step

Mean update: 3(\;(4_1‘/( = Mk/)zk“(

Covariance update: Pii1jk = MPyM] + Q.
Observation update step

Mean update: Xk = Xik—1 + Ki (¥ — HiXgepe—1)
Kalman gain: Kk = Pxjk_1H] (HkPyp_1H™ + Ry) ™"
Covariance update: Pik = (1 = KeHi)Prik—1-

Field
value

~=
/ M
o)
e
4 )
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Bayes’ Theorem for Gaussian Variables, Lecture 3

Given
p(x) = N(x|p, A7)

we have p(ylx) = N(y|[Ax+b,L7})
ply) = N(ylAp+b, L' +AATTAT)
pxly) = NEEZ{A'L(y —b)+Aup},X)
where
> =(A+ATLA)!



Bayes update

p(xk|yerk|k—1) = p(yklxk)p(xk|xk|k—1)

Pl =
P, = (I—=KHy)Py 4

-1
K = Py_ Hi(Hy Py Hi + Ry)

The Woodbury matrix identity is!4!

(A+UCV) ' = A —A'U(C +VA'U) VAT,



