Project discussion, 22 May: Mandatory but ungraded. We split into 6

sub-classes. The purpose is to make sure your project is on track,
good progress and good goals. The discussion following your
presentation is the most important.

Each group gives a ~10 min presentation by all members (each person
talks for ~2 min, ~1 slide)

1) Motivation & background, which data?

2) small Example,

3) final outcome, (focused on method and data)
4) difficulties,

Timing: There are upto 8 Groups in each sub-class, thus we have 15 min
in total/group, with 2 min/person 10min presentation time/group.
The discussion following a presentation might be the most important.

June 5, 5-8pm: Poster and Pizza



Generative Models

Given training data, generate new samples from same distribution

A o

Training data ~ p,,_..(X) Generated samples ~p_ . (X)

Want to learn p . (x) similar to p__._(x)

Addresses density estimation, a core problem in unsupervised learning
Several flavors:
- Explicit density estimation: explicitly define and solve for p__ . (x)

- Implicit density estimation: learn model that can sample from p x) w/o explicitly defining it

model(



Taxonomy of Generative Models Direct

Today: discuss 3 most ‘ GAN
popular types of generative Generative models
models today /\
Explicit density Implicit density
Tractable density Approximate density HEIEY T

Fully Visible Belief Nets / \ GSN

- NADE —~ :

- MADE Variational Markov Chain

- [PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.



Bayes summary

p(Y|X)p(»)
p(x)

Bayes p(x|y) =

Optimizing posterior p(x|y)

You can also optimize the evidence (type Il likelihood) p(x)



Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n

p(z) = Hp(wz'|$1, oy Ti—1)
oo

Likelihood of Probability of i'th pixel value
image X given all previous pixels

Then maximize likelihood of training data



Fully visible belief network

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

n
p(z) = || p(@ilz1, s wia)
T i=1 T Will need to define
o ordering of “previous
Likelihood of Probability of i'th pixel value pixels”
Image X given all previous pixels

Complex distribution over pixel

. o . values => Express using a neural
Then maximize likelihood of training data  ctwork!



PixXelRNN pan der oord et ai. 2016;

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow!
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PIX6|C N N [van der Oord et al. 2016]

Still generate image pixels starting from
corner

Dependency on previous pixels now
modeled using a CNN over context region

Training: maximize likelihood of training

images
n

p(:c) — Hp(:vikvl, eny :Cz-_l)

=1

Softmax loss at each pixel
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PixelRNN and PixelCNN

Pros: Improving PixelCNN performance

- Can explicitly compute likelihood
pP(X) "
- Explicit likelihood of training
data gives good evaluation -
metric -
- Good samples -

Con: See

- Sequential generation => slow -

Gated convolutional layers
Short-cut connections
Discretized logistic loss
Multi-scale

Training tricks

Etc...

Van der Oord et al. NIPS 2016

Salimans et al. 2017
(Pixel CNN++)



Bayes rule




Reconstructed data

e = T

BENL&ES
i1 A8 S
-H; LD

Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representati

from unlabeled training data Encoder: 4-layer conv
Decoder: 4-layer upconv

z usually smaller than x Originally: Linear + 4

(dimensionality reduction) nonlinearity (sigmoid) Innuit data

Later: Deep, fully-connected

Q: Why dimensionality Later: ReLU CNN

reduction?

A: Want features to

capture meaningful Features Z

factors of variation in

data Encoder

Input data T




Some background first: Autoencoders _Reconstructed data
oo S
rain such that features oesn’t use labels! A '
b dt L2 Loss function: 4
f:gonztlrjusci or(i)ginal data |z — 2| = n,sﬂn
1 e < S

Encoder: 4-layer conv
Decoder: 4-layer upconv

Reconstructed
input data

Decoder

Input .‘J—'éta

Encoder ’4‘ﬁ

el MRS
a7l <« ES

%
Features 2z
X

Input data

After training,
throw away decoder



Some background first: Autoencoders

Encoder can be
used to initialize a
supervised model

Predicted Label

Features

Loss function
(Softmax, etc)

y/\

Classifier

Encoder

l
x

Input data

bird
dog

plane

deer truck

Train for final task

Fine-tune _ _
encoder (sometimes with
jointly with small data)
classifier

ol MR

Autoencoders can reconstruct
data, and can learn features to
Initialize a supervised model

Features capture factors of
variation in training data. Can we
generate new images from an

autoencoder?



Variational Bayes summary

p(Y|X)p(»)
p(x)

Bayes p(x|y) =

Optimizing posterior p(x|y)

You can also optimize the evidence (type Il likelihood) p(y)

Bishop Ch 10 Approximate inference
Variational inference

Observations X = [xq, ..., Xy]

With latent parameter Z = |z4, ..., Zy]

And probability p(X,Z)

We like to find an approximation to p(X,Z) and the evidence p(Z)
A good guess is a factorized distribution

p(XJ Z)= 1 ._g=1 ZTL




Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {x(i)}f\il is generated from underlying unobserved (latent)

representation z

Sample from
true conditional

pe-(z | 2V)

Sample from
true prior

po+(2)

We want to estimate the true parameters g*
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g.
Gaussian.

Conditional p(x|z) is complex (generates
image) => represent with neural network



- 2
How to train the model Variational Autoencoders

-
Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Remember strategy for training generative N o _

Assume training data {x(l)}f\;l is generated from underlying unobserved (latent)
models from FVBNs. Learn model parameters representation z
to maximize likelihood of training data

Sample from

true conditional | T
= [ po(2)po(z|2)dz SR “
Q: What is the problem with this? ﬁ;g%?om [z ]
Intractable! N “ye
R Variational Autoencoders: Intractability
S I/ v/
Data likelihood: pe(x) = [ pe(2)pe(z|z)dz

f

Intractible to compute
p(x|z) for every z!

v v 9
Posterior density also intractable: po(z|z) = po(x|2)pe(2)/po(T)

Solution: In addition to decoder network modeling p,(x|z), define additional
encoder network q ¢(z|x) that approximates p4(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that is
tractable, which we can optimize



Variational Autoencoders

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z
Hz|x z|:c M|z a:|z
Encoder network Decoder network
q6(2|2) po(z|2)

(parameters @) (parameters 0)




Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

log pg(zV) = E. q,(zlz) [logpg(x(i))] (pe (D) Does not depend on 2)

e [ a2 ] 2)pe(2) :
=E, _108; oz | 2®) (Bayes’ Rule) Make approximate

i i - posterior distribution
po(z | 2)po(2) qg(z | #9) P

=E, |log : . ] (Multiply by const ) close to prior
_ po(z [2))  qy(z | =)
- . (4) (4)
Reconstruct = E, |logpg(z® | z)] —E, [log 42| )] + E 4z | ) (Logarithms)
! po(2) po(z | 1)

the input data = | _ _ |
= E. [logpo(e® | 2)| — Dir(gs(z | 2?)|1po(2)) + Drcr(as(z | 2) || po(z | =)

t + +

Decoder network gives py(x|z), can This KL term (between P(z[x) intractable (saw
compute estimate of this term through Gaussians for encoder and z  €arlier), can’t compute this KL
sampling. (Sampling differentiable prior) has nice closed-form term :( But we know KL

through reparam. trick. see paper.) solution! divergence always >= 0.




Variational Autoencoders

A

b

Maximize

Putting it all t rmmaximizing e jyqjinood of  Sample xiz from |2 ~ N (g, Xg2)
likelihoodTower bound original input
| | being / \
E. [10gp9(x(2) | Z)] — Dir(qs(2 | x(’)) || pe(2)) reconstructed llra;|z Emlz
L(x(z"): 0,0) Decoder network \/
po(x|2)

yA
Sample z from z|:c ~ N(uz|x, 2z|:z:)

/ \
I‘I’ZI:IJ Zzlm

Encoder network
Wil N

Input Data b

Make approximate
posterior distribution
close to prior




Data

Data manifold for 2-d z

ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Markov models, Bishop 13.1

[.I.D model

Markov model

p(X1,...,XN) = Hp(xn\xl, ey Xp_1)-

First order Markov chain

0—0—0—@

p(x1,. ., xn) = p(x1) | | p(xnlxn-1).

(13.1)

(13.2)



Markov models, Bishop 13.1

Second order Markov chain mi\
X1 X9 X3 X4 "

N
p(x1, . xn) = p(xy)p(alxy) [ [ pOnlxn—1,%n—2). (13.4)

n=3

With K states, how many parameters?

State space model

Zq Zo Zn—1 Zy, Zn+1

X1 X2

(X1, .., XN, Z1,...,2ZN) = D(Z1) [H p(zn|zn1)] Hp(xn|zn). (13.6)

Hidden Markov chain
Linear dynamical systems
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Product of Gaussians=Gaussian:

7.0 100 12 130 70 10.96 130
One data point problem

For the general linear inverse problem we would have

Prior: M) s o {—%(m _ mo) i =L mo)}

Likelihood: p(d|m) o exp {—%(d _ Gm)TC'Jl(d - Gm)}

Posterior PDF
x exp {—%[(d —~cm)To H(d - Gm) + (m —mo)TCpt(m — mo)]}

; exp{—%[m ] " [m- m]}
S"'=G'C;G+C,
i=(G'C;'G+C,') (G'C;'d+C;'m,)

- m, +(G’C;'G+C;') G'C;'(d-Gm,)



-
The Model

Consider the discrete, linear system,
xk-|-1:kak+wk7 k:O71727'°'7 (1)

where
* X, € R"is the state vector at time

e M, € R"™"is the state transition matrix (mapping from time
to fx.1) or model

e {w, e R";k=0,1,2,...} is a white, Gaussian sequence, with
w, ~ N(0,Q), often referred to as model error

e Q, € R™"is a symmetric positive definite covariance matrix
(known as the model error covariance matrix).

4 of 32
_— |

Some of the following slides are from: Sarah Dance, University of Reading



The Observations

We also have discrete, linear observations that satisfy

Vi = HixX + Vi, k=1,2,3,..., (2)
where
* Yy, € RP is the vector of actual measurements or observations
at time

 H, € R"™P is the observation operator. Note that this is not in
general a square matrix.

e {vip e RP;k=1,2,...} is a white, Gaussian sequence, with
v, ~ N(0, Ry), often referred to as observation error.

* R, € RP*P is a symmetric positive definite covariance matrix
(known as the observation error covariance matrix).

We assume that the initial state, Xo and the noise vectors at each
s’fge{eé {wy}, {vi}, are assumed mutually independent.



The Prediction and Filtering Problems

We suppose that there is some uncertainty in the initial state, i.e.,
Xo ~ N(07 PO) (3)

with Pg € R a symmetric positive definite covariance matrix.

The problem is now to compute an improved estimate of the
stochastic variable x,, provided y4, ...y, have been measured:

Xklj = Xklys.....y; (4)

e When j = k this is called the filtered estimate.

e When j = k — 1 this is the one-step predicted, or (here) the
predicted estimate.

6 of 32
B ————————————————————————————————



e The Kalman filter (Kalman, 1960) provides estimates for the
linear discrete prediction and filtering problem.

* We will take a minimum variance approach to deriving the filter.

e We assume that all the relevant probability densities are
Gaussian so that we can simply consider the mean and
covariance.

* Rigorous justifcation and other approaches to deriving the filter
are discussed by Jazwinski (1970), Chapter 7.

8 of 32




Prediction

X1k = Myxy + 6= x'y + 68y,



Prediction step

We first derive the equation for one-step prediction of the mean
using the state propagation model (1).

Xiptk = EXkgqlY1,-- Vi,
K [Mka -+ Wk] ,
= MiXy (5)

9 of 32



The one step prediction of the covariance is defined by,

Priik =E [(Xk+1 — Xk 116) Xk — X k)| Y15 - -YK} . (6)

Exercise: Using the state propagation model, (1), and one-step
prediction of the mean, (5), show that

Pii1jk = MPyM; + Q. (7)

10 of 32
— |



]
Filtering Step

At the time of an observation, we assume that the update to the
mean may be written as a linear combination of the observation
and the previous estimate:

Xk = Xjk—1 + Ki(Yix — HiXg k1), (8)

where K, € R™P is known as the Kalman gain and will be derived
shortly.

11 of 32



But first we consider the covariance associated with this estimate:
Pk =E [(Xk — X)Xk — Xik) "IV, - -Vk} : (9)
Using the observation update for the mean (8) we have,

Xk — Xk = Xk — Xph—1 — K(Yk — HiXpjk—1)
= Xk — Xi—1 — Ke(HeXg 4+ vk — HiXpi_1),
replacing the observations with their model equivalent,
= (1= KgHg) (X — Xgpe1) — Ky (10)

Thus, since the error in the prior estimate, Xx — X1 is
uncorrelated with the measurement noise we find

Pk = (I1—KkHk)E [(Xk — Xpjk—1)(Xk — ik|k—1)T] (1— KgHy)'
+K(E [vkvﬂ KZ(-. (11)

12 of 32



Simplification of the a posteriori error covariance
formula

Using this value of the Kalman gain we are in a position to simplify
the Joseph form as

Pk|k = (l — Kka)Pk|k—1 (I — Kka)T + KkRkKZ(- — (I — Kka)Pk|k—1 .
(15)
Exercise: Show this.

Note that the covariance update equation is independent of the
actual measurements: so PXX could be computed in advance.

15 of 32



Summary of the Kalman filter
Prediction step

Mean update: 3(\k+1|k = Mkik“{

Covariance update: Pii 1k = MePycM] + Q.
Observation update step

Mean update: /)Zk|k = /)Zk|k—1 + Kk(yk — Hkik|k_1)
Kalman gain: Kk = Pyjk_1H] (HkPyk_1HT + Ry) ™
Covariance update: Prk = (I — KeHg)Pri—1.

Field
value

Bpee”

16 of 32




Bayes’ Theorem for Gaussian Variables, Lecture 3

Given
p(x) = N (x|p,A™")

we have p(ylx) = N (y|JAx+b,L7})
ply) = N(ylAp+b, L7+ AATTAT)
pxly) = NEHZ{A'L(y —b)+Au},X)
where

> =(A+A'LA)!



Bayes update

P(xkb’k;xk|k—1) = p(yklxk)p(xk‘xmk—l)

Pt =
P, = (I—KHy)Py ;4

-1
K= Pklk—lH?;(Hk Pk|k—1H£ + Rk)

The Woodbury matrix identity is!*)

(A+UCV) ' =AT - AT'U(CT +VATU) VAT,



e Graphical model underlying SLAM. L'is the

\\\ fixed location of landmark i, x; is the robot
oV o location, and vy, is the observation. In this

/ / trace, the robot sees landmarks 1 and 2 at
Xé) \% \% . 3(6 time 1, then just landmark 2, then just

\ landmark 1, etc.

lllustration of the SLAM problem. (a) A robot starts -
at the top left and moves clockwise in a circle back
to where it started. WWe see how the posterior <=
uncertainty about the robot’s location increases ‘
and then decreases as it returns to a familar

location, closing the loop. If we performed - e V4 @
smoothing, this new information would propagate

backwards in time to disambiguate the entire

trajectory.




Constant velocity model

Using a constant velocity CV track model for the source, the the state
equation is given by

d d 1 A2
xk+1 — k+1] kak+Bk8k = [O [Uk]-l_ [2 ]Ek
Vk+1 k 1

Note that the noise term on velocity is now an acceleration in the
location-term.



Predict N steps ahead

SLAM (Simultaneous Location and Mapping)
Kalman smoother

RLS (Recursive least squares)

Advanced KF:
 Ensample KF (EnKF) non Gaussian
Extended KF (EKF) non-linear

Unscented KF (UKF) well chosen ¢
.. Particle Filter Nonlinear, non Gz

Actual (sampling)

covariance

frue
mean

covariance

Sigma-Point

o« Sigma
points

o

Y.fl()

‘(”a”(’”“ transfor: m(d
sigma points

Linearized (EKF)

")
L
y =f(X) IP

A P .4 f(x)

AP A



Kalman smoother

(a) (b) (c)

Figure 18.1 Kalman filtering and smoothing. (a) Observations (green cirles) are
generated by an object moving to the right (true location denoted by black squares).
(b) Filtered estimated is shown by dotted red line. Red cross is the posterior mean,
blue circles are 95% confidence ellipses derived from the posterior covariance. For
clarity, we only plot the ellipses every other time step. (c) Same as (b), but using
offline Kalman smoothing. Figure generated by kalmanTrackingDemo.



Carrying On...
The book by Murphy has more details on ML.

Many interesting courses online and at UCSD.
Lots of opportunities also outside CS.

For next course, more class interaction (phone questions), more cody
home work, physics better integrated.

Graphical models better integrated, Gaussian processes, sequential
state models.

RS s e
& PATTERN RECOGNITION g

Trevor Hastle
Robert Tibshirani
Jerome Friedman

+«— Murphy: “This books adopts the view that th¢
best way to make machines that can learn

Machins from data is to use the tools of probability
A ProbeliistipPerspecte. theory, which has been the mainstay of

- statistics and engineering for centuries.



NOT USED



4:15-4:30: Bruce Cornuelle, Scripps Institution of Oceanography
“A less grand challenge: How can we merge machine learning with data assimilation? ”

Peter: | propose that if data assimilation is posed “correctly” it is already machine
leaning. Anyway looking forward to your talk.

Bruce: | agree, but most machine learning | know about doesn't build in prior known
dynamics or let you understand what the machine has learned. If you have examples
to the contrary, please give me references. | know about the attempts to "invert" the
networks, though.

| also want to know the pdfs that the machine learning technique is optimal for, both
in the data and the unknowns, in the way that L2 is optimal for gaussians and L1 is
optimal for exponentials.



