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Abstract—Modulation Classification of the received wireless signals
serves as a useful tool in both military and civilian applications. The
recent advancements in the field of Deep Learning (DL) has surged
the interest of researchers in the wireless community to apply DL to
the task of modulation classification. Recently in [1J, a GNU Radio
based generation of the dataset (RadioML2016.10a) was introduced
which imitates the channel imperfections of a real wireless channel.
In this work, we have investigated the performance of three DL models:
Convolutional Neural Network (CNN), Residual Network (ResNet) and
Convolutional Long Short-term Deep Neural Network (CLDNN). The
maximum accuracy achieved for CNN, CLDNN and ResNet is 88.4%,
85.9% and 84.1% respectively. We have used RadioML2016.10a and
RadioML2016.10b for training and testing our DL models. We conclude
by comparing the performance of the implemented three models and
propose future work for further research.

I. INTRODUCTION

Signal modulation is a technique used in wireless communica-
tions that changes the signal characteristic before transmission.
There are three properties of a carrier signal that can be modu-
lated: amplitude, frequency and phase. The amplitude represents
the intensity or the power of the signal, the frequency tells how
often the signal is repeated while the phase tells the location of
the signal waveform (in one cycle) with respect to time. There
are two categories of modulation: analog and digital. In analog
modulation, frequency (FM) and amplitude (AM) of the carrier
signal is varied to transmit an analog signal. Digital modulation
allows to transmit a digital signal (1s and 0s) by either varying
the phase (PSK) or both the phase and amplitude of the analog
carrier signal (QAM). The signal wave-forms in digital modulation
can also be represented by the constellation diagrams which
represent the complex data (IQ) samples of the signal. Fig
shows the different digital modulation constellation diagrams. It
also represents the number of bits that can be transmitted in
one symbol. For example, QPSK (Quadrature Phase Shift Keying)
modulation transmits 2 bits and hence the signal waveform can
be represented in 4 distinct ways.

In a typical communication scenario, both the transmitter (TX)
and the receiver (RX) agree to a particular modulation scheme
ahead of time. This implies that the RX knows the modulation
scheme present in the received signal. Interestingly, there could
be some use cases where the receiver doesn’'t know the modulation
scheme of the received signal. Hence, the detection of modulation
scheme without any apriori knowledge of received IQ samples is
known as Automatic Modulation Classification (AMC). In military
applications, if one hopes to recover the message from a piece
of intercepted and possibly adversary communication signal, a
modulation classifier is needed to determine the modulation type
used by the transmitter. In civilian applications, it can be used in
spectrum monitoring and surveillance. This can ensure efficient
usage of the expensive spectrum.
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Fig. 1: Constellation Diagrams [2]

II. RELATED WORK

The earliest works in AMC can be traced back to 1980s where
hand-crafted features were created from raw temporal signals
like zero crossing locations, square law classifiers, statistical mo-
ment classifiers. Hence these traditional methods mainly relied
on likelihood based [3], feature based [4] and artificial neural
network [5] based methods. These methods used to work only
on specific modulation schemes and SNR levels. The recent
advancements in the DL model architectures, ease of access
to open source software libraries like PyTorch, TensorFlow, etc.,
advent of Graphics Processing Unit (GPUs) and Tensor Processing
Units (TPUs) have made DL a lucrative tool to solve complex
problems in a much faster time. This has caused the researchers
in the wireless community to apply DL in the field of wireless
communications. Machine Learning (ML) models are data driven
models that use the information of the real-world conditions
more efficiently that statistical models can't do. Hence, the recent
works [6]-[11] have been applying DL to the task of modulation
classification. Convolutional Neural Networks (CNNs) have been
used in image classification and voice signal processing tasks.
Due to its superior performance in feature extraction, CNNS
were applied in 9] for modulation classification. However, CNNs
have also been challenged with problems like vanishing gradients,
accuracy degradation after certain network depth and over fitting.
Residual networks (ResNet) and Convolutional Long Short-term
Memory Networks (CLDNNs) have also been recently introduced
to strengthen the feature propagation in neural networks. In this
work, we have analysed and compared the performance of three
models: Robust CNN [11], ResNet [7] and CLDNN |[7]. Section
gives an overview of the data preprocessing, simulation setup
and the implemented model architectures. Section [[V] presents the



results and discussion followed by conclusions and future work in
Section [Vl

III. METHOD
A. Data Preprocessing

In this work, we implemented several experiments over two
datasets. One of the dataset contains IQ samples from 11 modu-
lation classes (8 digital and 3 analog) over 20 SNR values ranging
from -20 dB to 18 dB (RADIOML 2016.10A). Another larger dataset
(RADIOML 2016.10B) contains IQ samples for 10 modulation
classes in the same range of SNR values. Each stream of IQ
sample has the shape of [2,128]. The total 11 modulation classes
are as follows: ["8PSK", "AM-DSB", "AM-SSB", "BPSK", "CPFSK",
"GFSK", "PAM4", "QAM16", "QAM64", "QPSK", "WBFM"]. The
bigger dataset excludes the "AM-SSB" class. The smaller dataset
contains 11,000 stream of IQ samples for each class whereas the
bigger dataset contains 60,000 stream of IQ samples for each class.
Both dataset are stored in a dictionary with keys representing
tuples of (modulation class, SNR value) and values providing the
corresponding IQ samples.

In the first step of data preprocessing, we rearranged the dataset
into a dictionary composed of a single key representing the entire
dataset. Initially, all labels (modulation classes) were digitized (a
number was assigned to every individual class). Then, the labels
were transformed into a one-hot encoding vector, v; € R", where n
is the total number of classes present in the dataset. In this vector,
the element whose index value is equal to the class number is set
to 1 while the rest of the elements are set to 0. The reason behind
performing this transformation is to have a compatible input for
the objective function which will be later discussed in detail. The
new dictionary contains all data points from every class and SNR
value where they are stored in a list of [one-hot encoded labels,
IQ samples].

B. Models

CLDNN: CLDNN has been widely used in recognition tasks
involving time domain signals like speech, images and video
due to its inherent memory property that leads to recognizing
temporal correlations in the input signal. This inherent property is
because of the Long Short-term Memory (LSTM) layer in between
the convolutional layers and the dense layers. Table [I| shows the
architecture of the implemented model. The original architecture
has been taken from [7] which uses a dropout rate of 0.6. Softmax
is used at the output of the last dense layer to get the probability
scores of the modulation classes. This is also applicable to the
other two models that we have implemented. We modified the
model by adding maxpooling layers after the convolutional layers
and changed the dropout rate to 0.3.

ResNet: We implemented the residual network architecture [7)
that has convolutional layers, dense layers and a skip connection.
This skip connection, between input layer and third convolutional
layer, helps in reducing gradient vanishing problem in this task. In
order to improve model performance, we modify the model with
upsample and maxpool layers. The purpose behind adding these
additional layers was to reduce the training time for this model
and also effectively increasing the accuracy achieved. A dropout
of 0.6 was also added between the layers to avoid overfitting. The
model design for the updated architecture is shown in Table.

Robust CNN: We implemented the architecture of a robust and
fast CNN mentioned in [11]. The model design is shown in Table
The model was initially trained over two different dropout

TABLE I: CLDNN ARCHITECTURE

Layer Output Dimension
Input 2 x128
Convl 2 x128 x 256
MaxPooll 2 x64 x 256
Dropoutl 2 x64 x 256
Conv2 2 x64 x 256
MaxPool2 2 x32x256
Dropout2 2 x32x256
Conv3 2 x32x80
MaxPool3 2 x16x 80
Dropout3 2 x16x 80
Conv4 2 x16x 80
MaxPool4 2 x8x80
Dropout4 2 x8x80
Reshape 2 x640
LSTM 50
DropOut5 50
Densel 128
DropOut6 128
Dense2 10
Trainable Par. 6,214,43

TABLE II: RESNET ARCHITECTURE

Layer Output Dimension
Input 2 x128
Convl 2 x128 x 256
Upsamplel 2 x256 x 256
Dropoutl 2 x256 x 256
Conv2 2 x256 x 256
MaxPool2 2 x128 x 256
Dropout2 2 x128 x 256
Add1 2 x128 x 256
Conv3 2 x128 x 80
MaxPool3 2 x64 x 80
Dropout3 2 x64 x 80
Conv4 2 x32x80
MaxPool4 2 x32x80
Dropout4 2 x32x80
Flatten 5120
Densel 128
Dropout4 128
Dense2 11
Trainable Par. 1,132,203

rates. Then the model with the better performance was further
modified and trained by adding Batch Normalization layer after
each convolution layer.

C. Training

Before starting the training procedure, the data was divided into
three separate sets. 90% of the data was assigned to the training set
and the other 10% percent assigned to test set. 10% of training
set was extracted as validation set to track the performance of
model at every epoch to check for overfitting during the training.
Once the model was completely trained, test data were used to
evaluate the model performance regarding accuracy. Two of the
most crucial components of the training procedure are the loss
function and the optimizer. Since the problem addressed in this
work is a classification task, we decided to use the cross-entropy
loss function. Moreover, the ADAM optimizer was used to estimate
the parameters of the model with a learning rate of 0.0001. All



TABLE III: ROBUST CNN ARCHITECTURE

Layer Output Dimension
Input 2 x128
Convl 2 x128 x 256
MaxPooll 2 x64 x 256
Dropoutl 2 x64 x 256
Conv2 2 x64x128
MaxPool2 2 x32x128
Dropout2 2 x32x128
Conv3 2 x32x64
MaxPool3 2 x16x 64
Dropout3 2 x16 x 64
Conv4 2 x16 x 64
MaxPool4 2 x8x64
Dropout4 2 x8x 64
Flatten 1024
Densel 128
Dense2 11
Trainable Par. 6,595,94
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Fig. 2: CLDNN Performance

models were trained for 100 epochs with a batch size of 128. We
used Keras Tensorflow for training our models.

IV. RESULTS

For the CLDNN model, we tried out four experiments to under-
stand the effect of the dataset and the modifications (maxpooling
layers) that we made on the classifier’s performance and training
time. Fig. [2| shows the performance results of the classifier. We
trained the original model specified in [7] using both the datasets.
We modified the existing model by adding maxpooling layers after
convolutional layers and changed the dropout rate from 0.6 to 0.3.
This modified model was trained on both the datasets. The peak
accuracy of 86.9% was achieved at SNR of 16 dB on modified
model with bigger dataset. We did notice a better performance
using a bigger dataset as the model tends to generalize better
with a bigger dataset. Apart from that, adding maxpooling layer
and changing the dropout rate not only improved the accuracy
slightly but also resulted in a faster training time. For instance, for
50 epochs, the modified model’s training time on bigger dataset
was ~3 hours while it was ~3.6 hours for the modified model
without maxpooling layers on the same dataset. Additionally, the
modified model is performing better than the original model at
low SNR values.

For ResNet, we trained the model for three different scenar-
ios. Initially, we implemented the original architecture |7] and
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Fig. 3: ResNet Performance

trained it with the smaller dataset. After making modifications
to the paper model as discussed in Section we trained it
on both small and large datasets. In essence, these two models
differ by maxpooling and upsampling layers; therefore, comparing
these models provided us insight on the effect of Maxpooling
on the neural network performance. The results for these three
experiments are shown in the Fig. [3| Modified model trained on
the large dataset works finest, followed by the modified model
trained on small dataset. The original paper model gives us the
least accuracy. These results reaffirm our intuition that training
on larger dataset increases the accuracy. Since the larger dataset
has 10 modulation classes compared to smaller dataset which
has 11 modulation classes, classification on the larger dataset
should be more effective and reliable as shown in [3} Moreover,
our modifications to the original model increased accuracy since
upsampling and maxpooling layers increase the network depth.
Apart from this, the training times were effectively reduced due to
the modifications. The original model took 3.5 hours to train on
small dataset, whereas the modified model took almost 2 hours
to train on the same dataset.

For Robust CNN model, the first experiment was to train the
original model with two different dropout rates and the perfor-
mance was evaluated. Fig. [5|shows that increasing the dropout rate
from 0.3 to 0.5 would negatively impact the accuracy. However,
higher dropout reduces the model complexity by removing more
parameter’s connections. Thus, the training process took less time
(~2.5 hrs) with the rate of 0.5 compared with the rate of 0.3
which took ~3.7 hrs. In the second experiment we added a batch
normalization layer after each convolution layer and kept the
dropout rate at 0.3. This modification elevated the accuracy for
all SNR values by approximately 3%. Batch Normalization layers
kept the distribution for the output of each layer constant which
led to faster convergence. The accuracy boost led by the Batch
normalization layers shows that the original model could also have
the tendency to reach this accuracy but with the cost of more
computation time. In Figure [7} the robust CNN model shows lot
of fluctuations in the loss. This means that the function has local
minima. Thus, every time that gradient descent converges toward
local minimum, the loss decreases. With a good learning rate,
the model learned to jump between these points till reaching the
global minimum. This is the reason for observing a lot of noise
in the plot.

Fig. [f] shows the final performance plot for the three models
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Fig. 4: Confusion Matrices for (a) CLDNN (b) ResNet (c) Robust CNN
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Fig. 5: Robust CNN Performance

that we experimented with. To make the comparison fair, all the
model results are of smaller dataset. Robust CNN performs the
best amongst the three models with a peak accuracy of 88.4%
while CLDNN and ResNet achieve a peak accuracy of 85.9%
and 84.1% respectively. Fig. [7| depicts the validation loss of the
three models. CLDNN achieves the least validation loss after
50 epochs. Fig. [i] shows the confusion matrices for the three
models. Confusion matrices depict how accurately a predicted
class aligns with its true class in the form of a probability score.
For CLDNN, there are 10 modulation classes because the best
performing model was the one trained on bigger dataset while
there are 11 modulation classes for the best performing Robust
CNN and ResNet. QAM16 and QAM64 are misclassified due to
their similar constellation diagrams. Hence, even a small amount
of noise makes the differentiation vulnerable to misclassification.
WBFM and AM-DSB have a very high misclassification rate which
needs to be further worked upon.

V. CONCLUSIONS AND FUTURE WORK

We applied three state-of-the-art deep neural networks for the
radio modulation recognition task. Using various convolutional
layers, residual layers and recurrent layers, we tried to extract
different features from signals to classify modulations. The Robust
CNN gives the best peak accuracy of classification. The ResNet
and CLDNN models are also able to perform the classification
task quite well, since there is only a slight difference in achieved
classification accuracy. The reason behind this slight difference

Performance of all Trained Models over RadioML2016.10a Dataset
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is the innate nature of the layers used in each architecture. The
classification accuracy might also vary between these models due
to their different depths. Nonetheless, all these models achieve
satisfactory accuracies for classification task. In future, we plan
to explore more models that are known to be successful in
modulation recognition task and also try to further understand
the effect of different layers and skip connections. Additionally,
both the datasets use synthetic data generated from GNU Radio.
We would like to explore our model’s performance with an over-
the-air (OTA) captured data [12], RadioML 2018.10A.
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Response to critiques

Critical Review from Group 38:

Why didn’t the group develop a single neural network model for all SNR data?

We did consider this part, we have rectified this mistake because we realize that measuring
SNR before passing the signal to the classifier would be an overhead that we want to avoid. In
fact, we have got really good results after making this change. Thanks for the suggestion.

There was a clear sign of overfitting in the Robust CNN model as the training loss and
validation loss diverged after around 20 epochs.

We have improved upon that part and there is some noise in the plot and we have explained our
intuition behind that in the report.

We however, didn’t notice a modification to the Resnet model. Maybe they could try to make
improvements to the ResNet they developed.

We have made some modifications to the model for some improvements. We have mentioned
that in the report.

Critical Review from Group 4:

You mention why using DL in the slides which is good. It's better to also explain more on why
using DL in the wireless communication fields.
Because of time constraints, we couldn’t. We have explained it in the report.

For ResNet, you can do some improvements on the hyper-parameters or adding some layers to
make your own model.
We have tried doing that by adding some additional layers. It has been mentioned in the report.

The current three models are a bit old-fashioned. Maybe next time, you can try some
update-to-date neural networks.

We may agree that they are a bit old fashioned but they have been well known to have a robust
performance. In fact, CLDNN in modulation classification is relatively new. We may try GaNs in
future work.

In the project you implement three models. However, it's better to explain the relationship
among these three models.

We have done comparisons between the three models in the report by explaining the peculiar
property of each model.

Critical Review from Group 63:



Seem like why DL became popular nowadays doesn’t have to be explained.

o It could be better if why DL should be or is effective to be applied to Wireless
Communications.

Given the time constraints of the presentation, we had to avoid that. We did mention why DL is
becoming an important tool. We have mentioned that in the report.

The reason why these DL models are chosen is not explained.
In fact, we explained the benefit of the model briefly in the presentation. We couldn’t delve
deeper into it because of time constraints.

The comparison among the results would make work seem structured.
We have made a comparison plot of the three best models in the report.

The analysis could make the work better.
We have done a thorough analysis in the report.
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GitHubLink:
https://github.com/pkhorram/Optimizing-Modulation-Classification-with-Deep-Learning

Ankush Jolly - A53304870
e Modelling and Optimization of CLDNN on (RadioML 2016.10a)
e Modelling and Optimization of CLDNN on (RadioML 2016.10b)
e Presentation and Report

Payam Khorramshahi - A12719367
Data Pre-Processing

Training Procedure
Modelling and Optimization of Robust CNN model on (RadioML 2016.10a)
Presentation and Report

Tabish Saeed - A53312389
e Modelling and Optimization of ResNet on (RadioML 2016.10a)
e Modelling and Optimization of ResNet on (RadioML 2016.10b)
e Presentation and Report
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