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Abstract—We made a complete analyze over 1.8 million US
wildfire cases from 1992 to 2015, extracting climate data of
the fires’ occurrence. Then we implemented multiple machine
learning methods (focus on Gradient Boosting Decision Tree and
Deep Neural Networks) to predict wildfire size based on climate
features. Our accuracy is limited around 32%. We suspect the
reasons to include unpredictable human activities, low correlation
from monthly-average climate data, and lack of geographical
features including elevation, slope, and soil type.

Index Terms—Wildfire, Prediction, Climate Hazards, Green-
house Gas

I. INTRODUCTION

Wildfires, are a popular and imperative topic in weather re-
search and hazard detection, not only because of its uncertainty
and difficulty to predict, but also because of its sever damage
to our environment and huge contribution to Greenhouse gas
and global warming, specially in high forest carbon stock areas
like California. Our test shows the same results 1, number
of wildfires is increasing over recent years, and the annual
total burned area is kind of correlated to some Greenhouse
gas emissions.

Fig. 1. Increasing trend of wildfire (left) and its correlation heat-map between
Greenhouse gas

Though wildfire prediction is not an on-heat topic in ML
area, there are still a lot of researchers who kept working on
this topic in recent decades.

Predict wildfire cases based on climate data is a basic topic
among all prediction methods. We are interested in this special
topic because its relation with physics and the good feature
structure of wildfire case data and climate data. In this project,
we will work on a US wildfire dataset from kaggle, and
find various climate datasets from different official climate
administration, and extract features from all of them. Then we
will apply different ML algorithms on these data try to make
predictions on wildfire class, and compare their performance.

Fig. 2. Number of ML applications on wildfire science by category and by
year

II. RELATED WORK

ML methods for fire occurrence and severity prediction have
been used extensively in early studies. The most commonly
used ML method in studies predicting fire occurrence were
ANNs before 2010s. In 1996, Vega-Garcia, C., Lee el al. [1]
has started to apply neural network technology to wildfire
occurrence prediction in Canada, and achieves prediction
accuracy of 85% for no-fire observations and 78% for fire
observations. In the early 2000s, Alonso-Betanzos et al. [2]
also used ANN to predict daily fire occurrence risk using
humidity, rainfall, temperature and fire history in the Galicia
region of Spain.

In recent years, random forest and ensemble algorithms have
become the more popular methods [3] (Figure 2). Stojanova,
Kobler, Ogrinc, Zenko, and Dzeroski [4] evaluated multiple
machine learning methods for predicting wildfire occurrences
using meteorological data in Slovenia, including ensemble
methods (RF, Decision Trees with bagging and AdaBoost)
and single classier methods (i.e., KNN, Naive Bayes, SVM
and Decision Trees). The experiment shows that RF and
decision trees with bagging displayed the best performance
on prediction precision. For the ensemble methods, Dutta et
al. [5] applied a two-stage ML approach, with the first stage
DBNet generating features from climate data and then fed the
extracted features to ten ML classifiers in the second stage.
The author found that conventional KNN and bagging trees
were the two classifiers with the best performance of 91.8%
and 94.5% accuracy.

Other methods such as the maximum entropy (MaxEnt) has
also been applied for wildfire risk forecasting. For instance,
De Angelis et al. [6] used MaxEnt to evaluate predictive



power of different climate variables and fire indices and found
that the combinations of different meteorological variables
and fire indices are able to improve predictive robustness for
identifying fire weather conditions.

III. DATASETS AND FEATURES

The base data is the wildfire of US dataset from kaggle [12],
it contains 1.8 million wildfire cases from 1992 to 2015. Each
fire case contain the Latitude and Longitude of its location,
the date and time when it happened, and variable fire-size
indicating the total area it burned down.

An interesting part is that compared to do regression on
fire-size, it is more convenient and accurate to make prediction
on fire-class. According to an official glossary from National
Wildfire Coordinating Group, we can divide different fire cases
into 1 to 7 (or ’A’ to ’G’) fire-class based on their size [17].
They contain a total of 12 climate features, such as different
component of wind-speed at different height, precipitation, dif-
ferent measurement of temperature, and vegetation coverage.
Besides these, we also added Longitude and Latitude as 2
geometry features.

For our prediction task, we need to find climate data for
each single fire case, so datasets which cover same or larger
area and time period than the wildfire data is preferred. We
finally managed to collect 14 climate features from different
climate datasets [14]–[16].

The next step is extracting climate data on the special
time and location of the fire case to indicate the weather
condition when the wildfire occurs. Due to the restriction
of our datasets, only monthly-average climate features are
available. So, several query functions were used to extract
climate data based on Latitude, Longitude, and month of
occurrence. With this, we can extract climate condition from
multiple datasets corresponding to only 1 wildfire event, we
overlapped the fire case of May to July in 2004, Alaska, to
give a visual understanding of the relationship between fire
size and features 3. A correlation heat-map between fire size
and features are also shown as an numeric example.

Our device is not capable for working on all 1.8 million
fire cases, and the time cost may also be redundant. So we
did random sampling from all fire case, to generate a smaller
data frame for model training. In the sampling process, we
keep identical case number of each fire class.

IV. METHODOLOGY

Let F (x) denoting the machine learning model which gener-
ates classification prediction with climate data as its input.Out
method is to use decision trees output f as an approximation
for F (x) by the weighted sum of all classification results from
decision trees. [11]

F ≈
T∑
i

rifi =

T∑
i

Li∑
k

ribikωik

where T is the number of decision trees, Li is the number of
leaves in ith tree, ωik is the parameters deviding each region,
and bik is the value predicted in the leaf.

Fig. 3. The overlapping of wildfire case and precipitation in AK (top) and
the correlation heat-map between fire size/class and climate features (bottom)

Our aim is to find a model F , such that minimizes loss
function L(F, y). The method to update F is by finding a
steepest descent gradient.

rt = −∂L(yt, F (xt)
∂F (xt)

Update the decision tree

ωit = argminωit
L(fi,t(xt)), i = 1, . . . , T

Finally, we update F with a regulation factor ν called
learning rate.

Ft+1 = Ft + νrt

T∑
i

bi,tωi,t

A. Deep neural networks

Neural network is composed of connecting nodes divided
into input layers, hidden layers and output layers. The data
are input through input layer, combined at hidden layer, and
finally we use the output of output layers as our prediction.

Only by linear combination the model cannot deal with non-
linear and complex problems, so there are activation functions
between each layer.

a(x) = b+wTx

h(x) = g(a(x))

As for out model, we use 4 hidden layers, and ReLu as
activation functions acting on hidden layers. The activation
function for output layers is Sigmoid, a commonly used
function for classification. The approximated number of node
of hidden layers is around 20 to 300 hundred, referring
to empirical formulas

√
NxNy ,

√
2 ∗ (Ny + 1) ∗Ns, where



Fig. 4. Neural Network Structure

Nx = 14, Ny = 7 is the number of input and output
respectively, Ns = 5600 is the number of samples [10].

In practice, we find node number and layer number is by
Tuner, a hyper parameter adjusting tool on Keras. Giving
several possible values to choose from, Tuner will select values
randomly. Finally, after trying a sufficient number of times, it
will output a combination of hyper parameters that produces
the best accuracy. Figure 4 shows the structure of our model.

V. EXPERIMENTS AND RESULTS

We implemented a variety of machine learning methods to
find the optimal choice of model on wildfire occurrence predic-
tion based on climate data. In this section, we will describe our
experiments in detail and analyze their performance results.
Our emphasis will be on Gradient Boosting Decision Tree and
Deep Neural Network methods. For all of our experiments,
we use UCSD Datahub as our computing platform to enable
maximum model training efficiency.

A. GBDT

Our implementation of Gradient Boosting Decision Tree
is mainly based on sklearn library GradientBoostingClassifer
[7]. The overall hyper-parameter of the GBDT framework
can be divided into two categories: Tree-specific parameters
and boosting parameters. Tree-specific parameters affect each
individual tree in the GBDT model while boosting parameters
only affect the boosting operation in the model. By varying
the parameters under these two categories, our experiment is
designed to find the GBDT model with optimal performance
for wildfire prediction.

In our experiment, the hyperparameters we focused on
include boosting parameters n estimators, learning rate,
and subsample, as well as tree parameters max depth,
min samples split, min samples leaf and max features.
“n estimators” directly controls the number of sequential
trees to be modeled in the framework. “learning rate”
controls the magnitude of estimated changes using the output
of each tree, and it determines the impact of each tree on
the final outcome. Although gradient boosting is fairly robust
to overfitting, considering the trade-off between n estimators
and learning rate, these two parameters are tuned together.
“subsample” decides the fraction of observations to be
selected for each decision tree through random sampling.
A slightly smaller value tends to make the model more
robust by reducing the variance. “max depth” determines the

Fig. 5. GBDT feature importance

maximum depth of the individual estimators and thus limits
the number of nodes in the tree. It is often used to control
overfitting as higher depth will let the model to learn specific
relations to a particular sample. “min samples split” defines
the minimum number of samples required to split an internal
node, and “min samples leaf” controls the minimum number
of samples required to be at a leaf node. By optimizing both
of these two parameters in a relatively large dataset can
effectively help reduce overfitting. “max features” refers to
the number of features to consider when searching for the
best split. Reducing max features to be less than the number
of total features would lead to a reduction of variance but an
increase in bias.

We started with default parameter settings of GradientBoost-
ingClassifer to create a baseline model for evaluating model
performance. The evaluation metric is ROC-AUC with “onv
vs. rest” method which computes the AUC of each class
against the rest. By applying exhaustive search in combination
with cross validation, we tuned the GBDT parameters stage
by stage considering the correlations between some of the
parameters as described above. At last, the optimized model
achieves a training score of 0.6577 and test accuracy of 0.3293,
and shows improvement from the initial model (0.5696 and
0.3228 respectively).

The low accuracy can be partially explained by the feature
importance generated from the final GBDT model (Figure
5). The chart shows that although geographic coordinate
and air pressure contribute the most for the model, other
features lack distinctive correlations with the predicted labels.
Therefore, existing features in the dataset limits the maximum
prediction accuracy that can solely be achieved by optimizing
the prediction models.

B. DNN

Our implementation of the Deep Neural Network is based
on Tensorflow [8]. The model features consecutive dense and
dropout layers. The exact number of dense layers and neurons
within each hidden layer are optimized using Keras Tuner.



Fig. 6. DNN training process

Fig. 7. DNN confusion matrix

We limit the max number of dense layers to five and use
ReLU (Rectified Linear Units) as activation function for each
dense layer except the output. The dropout layers are added
after each dense layer with a dropout rate of 0.2 for optimal
regularization on the DNN model. The default loss function
categorical crossentropy is used here considering the multi-
class identity of fire class prediction. The improved stochastic
gradient descent method, Adam is utilized as a training opti-
mizer for the model to maximize model performance.

The training process of the final model is shown in Figure
8. The training process stops at around 180 epochs when
validation loss stops improving. The trained model shows a
final training loss of 1.5804 with 35.76% accuracy. On test
data, the prediction observers a loss of 1.6749 with 31.71%
accuracy. The confusion matrix on the test data is shown in
Figure 7.

Notice that, from the confusion matrix, prediction precisions
are higher on extreme cases (Fire Class 1 and 7) than others.
We think the reason is that extreme fire weather such as lack
of rain and high temperature tends to increase the probability
of wildfire occurrence. And thus makes extreme fire class
cases relatively easy to be distinguished from other fire classes,
resulting in higher prediction precision.

C. Other models

Figure 8 shows other ML methods we attempted on wild-
fire prediction. The reasons for low accuracy results might

Fig. 8. Results from other models

include highly randomized wildfires occurrences. Researches
have shown that human behaviors are the major factor for
wildfires [9]. Without valid predictions on human behaviors,
it is difficult to only rely on climate data. Another reason might
be some climate features themselves are not well correlated to
wildfire occurrences.

VI. CONCLUSION

In this project, we implemented multiple machine learning
methods to predict wildfire occurrence and perimeter based
on climate data. The models we attempted to apply include
Gradient Boosting Decision Tree, Deep Neural Networks, and
other conventional machine learning methods. Although fine
tuning of hyperparameters was also conducted, we observed
limited accuracy among all models on the current dataset.
GBDT and DNN achieve the highest prediction accuracy at
around 32%. The reasons behind prediction inaccuracy might
include unpredictable human-caused wildfires, low correla-
tions between climate data and wildfire, and highly biased
fire severity data. For the future development of wildfire
prediction, we think it is crucial to include human factors, such
as regional population and industrial activities to establish a
more robust model. Also, more reliable geographical features
including elevation, slope, and soil type may also help improve
the performance of prediction models.
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Replies to Critical Review 
 

Critiques by group 22. 
1. The greenhouse gas correlation map is a bit confusing to me. For example, CO2 has a 

0.52 correlation with wildfire size. What does a 0.52 correlation mean?  
 
Response: This is the correlation between annual gas emissions of a certain kind of gas (such 
as CO2) and annual total burned down area (which is calculated by summing up all fire case’s 
fire size). 
 

2. The explanation for “Why ML” seems to mainly be that “whether conditions are 
featuralizable and human activities are related to whether conditions”. This explains why 
you can use ML, but not why you should use machine learning. 

Recommendation: It may help to emphasise more on the difficulty and 
unpredictable nature of wildfires and then explain why ML is better than other 
solutions (are there any other types of approaches to predicting wildfires?). You 
could say that the problem of predicting wildfires ultimately boils down to a 
complicated pattern recognition problem and that machine learning is exceptional 
for complicated pattern recognition. Another solution to the predicting 
wildfires/weather problem is physics simulations, but maybe those are expensive 
and implementing ML techniques may be less expensive, quicker and just as 
accurate?  

 
Response: Good suggestion! Actually we think this part is just recommended but not 
compelling, it might be boring if every group spends a lot of time on why ML is better than others 
in their topic. However, it is a good suggestion to compare ML predicting and non-ML predicting, 
as we discussed in group 89’s question 5. 
 

3. Why did you choose these models? Were there any other models you considered trying? 
What hyperparameters did you have the tuner select? Was it just the layer and node 
number? If so, how did you go about selecting other hyperparameters? 

 
Response: See "Experiment and Results" part in our report.  
 
 
 
 
 
 
 
 
 
 



Critiques by group 44. 
1. For the dataset part, group 75 selects 14 weather features and 20k random samples. 

Here I think the number of features seem not sufficient. It might be the limitation of 
dataset that causes the low accuracy in the later training. If we can have time-series 
weather features (e.g. different temperatures within 30 days before the fire) and combine 
them into temporal features, it might perform better during the training. 

 
Response: That is a quite insightful suggestion! Although some of our data does not have 
continuous records of weather conditions, adding time-series features and some model 
structures like RNN or LSTM are likely to provide more reliable features for the model.  
 

2. At first, it is mentioned there’re 2 labels of the dataset: fire class and fire size. It seems 
training was only performed on classifying the fire class. Since you don’t have a very 
good result on fire class classification due to human factor or dataset limitation, it might 
be also helpful to do regression on fire size given a certain class fire. (might be a 
interesting topic as well) 

 
Response: It turns out that fire size is also largely biased and our initial attempt on regression 
did not return better results than fire class prediction. This is exactly the inspiration for us to 
divide fire cases into different class, and do classification instead of regression. 
 

3. For some of the complex models, there might be overfitting problem according to the 
training/validation loss plot. Since you only have 14 features, a boosting tree with too 
many leafs is very easy to overfit on your dataset. 

 
Response: We limited the number of leaves by using optimized min_samples_split, 
min_samples_leaf parameter in GBDT. To completely eliminate overfitting in decision tree or 
similar models is not very realistic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Critiques by group 89: 
1. Features in the dataset should be explained in further detail. What is the data exactly? Is 

it mean monthly data, mean of data over a certain period around the fire, or something 
else? 

 
Response: The climate data (from precipitation to vegetation) are all monthly-averaged data, as 
we mentioned in our presentation. 
 

2. Based on the details of features, you can modify the features like instead of taking 
absolute values, can you use something like the difference between successive values 
of features around the time of the fire? 

 
Response: That’s a very good point! Actually we have though and even made some plots on 
analyze based on relative increase/decrease instead of absolute value, but the difference 
between them and our current method is very small. 
 

3. Your dataset is highly unbalanced. You showed that the distribution of fires in different 
classes is highly uneven. Based on my understanding, you should have a balanced 
dataset to train your model. 

 
Response: As we mentioned in our presentation, we randomly sampled from the whole fire 
dataset, but it is not totally random, we kept the same value of sample number of each fire 
class. If randomly selected our samples, most fire cases will be of very small fire size, which is 
not good for model training. 

 
4. You did not mention the accuracy of the models found in the literature review. So, it is 

difficult to say how well your models performed. 
 
Response: We found that the prediction accuracy in literature varies significantly (43%-97%)  in 
considering different features and models they applied.  
 

5. Also, apart from ML, are there any other standard methods used for this purpose? If so, 
how well do they perform? 

 
Response: Conventional fire predictions have been mostly based on fire indexes such as 
Canadian Fire Weather Index (FWI) system, which uses output from weather prediction models. 
The errors in weather prediction can accumulate in the fire predictions and the FWI seems to 
lack the ability of self-correction. 
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