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Abstract—Our project object is to detect whether patients have 
heart disease or not by given a number of features from patients. The 
motivation of our project is to save human resources in medical 
centers and improve accuracy of diagnosis. In our project we use 
different methods to detect heart disease such as Logistic Regression, 
SVM, Naïve Bayes, Random Forest and Artificial neural network. 
And among all these algorithms Random Forest gives us the best 
accuracy of 91.8%. 

I. INTRODUCTION  
Our problem is that we want to predict whether patients have 

heart disease by given some features of users. This is important 
to medical fields. If such a prediction is accurate enough, we can 
not only avoid wrong diagnosis but also save human resources. 
When a patient without a heart disease is diagnosed with heart 
disease, he will fall into unnecessary panic and when a patient 
with heart disease is not diagnosed with heart disease, he will 
miss the best chance to cure his disease. Such wrong diagnosis 
is painful to both patients and hospitals. With accurate 
predictions, we can solve the unnecessary trouble. Besides, if we 
can apply our machine learning tool into medical prediction, we 
will save human resource because we do not need complicated 
diagnosis process in hospitals. (though it is a very long way to 
go.) The input to our algorithm is 13 features with number values. 
We use several algorithms such as Logistic Regression, SVM, 
Naïve Bayes, Random Forest, Artificial Neural Network to 
output a binary number 1 or 0. 1 indicates the patient has heart 
disease and vice versa.   

II. RELATED WORK 
Before we did the experiments, we did research on how 

people explored heart disease prediction so that we can broaden 
our horizons and learn from them.  

In 2011, Ujma Ansari [1] made use of Decision Tree model 
to predict heart disease and get a high accuracy of 99%, which 
inspires us to use a better version of Decision Tree and it is 
Random Forest. Unfortunately, the paper uses a dataset with 
3000 instances but dose not provide a reference of how they get 
the data. The UCI website only provides 303 instances of dataset 
so we doubt where the author gets 3000 instances of dataset. 

In 2012, Chaitrali S. Dangare [2] made the prediction by 
using three models and such models are Naïve Bayes, Decision 
Trees and Neural Network. We are using the same dataset as he 
did. The difference between his work and ours is that he added 
2 more features into the dataset, which means there are 15 
features of his work while there are 13 features in our dataset. 
Though there is no big difference between 13 features and 15 
features in his work, what he did on dataset inspires us to make 
useful change to our dataset (Try normalization on dataset) to 

make our results comprehensive. However, during this paper 
there are only 3 models. More models need to be considered so 
that the results are comprehensive.  

In 2017, Kaan Uyar and Ahmet İlhan[3] did the same 
experiment and used the same dataset as we did for projects. 
During their analysis, “Class distributions are interpreted as 54% 
absence and 46% presence of a heart disease”. The dataset we 
download from Kaggle has 54% 1s and 46% 0s in the target 
column. From their analysis, we realize 1 indicates absence of 
heart disease and vice versa. To make it easily understood, we 
switched 1s and 0s in the target column so that 1 indicates 
presence of heart disease to show our confusion matrix[10] in 
our results. 

After reviewing paper [4] and [5], we have learned that 
neural network has advantage of fault tolerance and it has the 
ability to work with inadequate knowledge as human beings. 
Therefore, in our project we decide to spend some time working 
on neural network to detect heart diseases.  

III. DATASET AND FEATURES 
Our dataset is based on UCI heart Disease Data Set [6] and 

we have 303 instances. According to UCI, “This database 
contains 76 attributes, but all published experiments refer to 
using a subset of 14 of them.”We guess too many features will 
bring too much noise so people has done feature extraction and 
reduce 76 features to 14 features. To better understand the 
meaning of the features, we have the responsibility to explain 
some of the attributes of original dataset from UCI as follows: 

• age: age in years 

• sex: sex (1 = male; 0 = female) 

• cp: chest pain type 
-- Value 0: typical angina 
-- Value 1: atypical angina 
-- Value 2: non-anginal pain 
-- Value 3: asymptomatic 

• trestbps: resting blood pressure (in mm Hg on admission 
to the hospital) 

• chol: serum cholestoral in mg/dl 

• fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false) 

• target: Heart disease (0 = no, 1 = yes) 

Since the original dataset has missing values, we just 
downloaded a clean dataset from Kaggle[7]. We have split the 
dataset into 80% (242 instances) for training and 20%(61 
instances) for test. We did normalization on our dataset to avoid 



overfitting. What we did to our dataset is to change 1s to 0s in 
target column and vice versa in order to make value 1 indicate 
the presence of heart disease and make value 0 indicate the 
absence of heart disease. Given such dataset we can do many 
interesting predicative tasks. For example, we can use these 
features to predict chest pain type. But the most important thing 
is that given the 13 attributes from a patient, we want to predict 
whether he has the heart disease or not because keeping healthy 
is very import to people. 

IV. METHODS 
During this project, we have tried 5 algorithms for experiments 
and they are Logistic Regression SVM, Naïve Bayes, Random 
Forest and Neural Network. 

A. Logistic Regression 

Logistic Regression is a supervised learning that computes 
the probabilities for classification problems with two outcomes. 
It can also be extended to predict several classes. In Logistic 
Regression model, we apply the sigmoid function, which is  

𝜎(z) = &
&'()*

.	

This function successfully maps any number into the value 
between 0 and 1 and we can regard this value as the probability 
of predicting classes. For example, we have two classes and they 
are presence of heart disease and absence of disease. If we set 
the threshold as 0.5, applying the sigmoid function gives us a 
value of 0.7, which means the man has the 70% probability of 
having heart disease so we will predict that he has heart disease.  

B. SVM (Support vector machine) 
SVM aims to find a hyperplane in multiple dimensions 

(multiple features) that classifies the dataset. Here is a picture[8] 
of classification by SVM. 

  
Fig. 1. Classification by SVM 

The equation of the hyperplane form is 

𝑤.𝑥 + 𝑏 = 0 

where w is a weight vector, x is input vector and b is a bias. 
The margin is the distance of closest points from the hyperplane 
and is calculated as 
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where 𝑤.𝑥' + b = +1 and 𝑤.𝑥' + b = −1. Our object is 
to maximize the margin ;

||3||
 or equivalently to minimize ||𝑤||;. 

After adding loss function, the learning problem is to find a 
weight vector w that minimizes the cost function of (8)  
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And Gradient descent algorithm is able to minimize the cost 
function by iteratively updating the equation (8) of 

 𝑤G'& ← 𝑤G − 𝜂G𝛻3𝐶(𝑤G)			

where 𝜂 is the learning rate. 

C. Naïve Bayes 
Naïve Bayes assumes the independence between the features 

of the dataset and the Bayes Rule is 

P(y	|	x) =
𝑃(𝑥|𝑦)𝑃(𝑦)

𝑃(𝑥) 	 

where P(y|x) is the probability of classification y given the 
data x. Applying Bayes theory, we can build a Naïve Bayes 
model to compute the probabilities from training data and then 
make predictions based on the features of the test data. 

D. Random Forest 
Random Forest is an ensemble learning method for 

classification and regression by constructing multiple decision 
trees in training and outputting the classification or 
prediction(regression). The goal of Random Forest is to combine 
weak leaning models into a strong and robust leaning model. 
From a tutorial[9] online, we learn that the algorithm of Random 
Forest can be summarized in 4 steps: 

Step 1:Randomly draw M bootstrap samples from the training 
set with replacement. 

Step 2: Grow a decision tree from the bootstrap samples. At each 
node: Randomly select K features without replacement and split 
the node by finding the best cut among the selected features that 
maximizes the information gain. 

Step 3:Repeat the steps 1 and 2 T times to get T trees; 

Step 4:Aggregate the predictions made by different trees via the 
majority vote. 

E. Neural Network 
From the picture we can see neural network has a collection 

of neurons and each neural node is connected with other neuron 
nodes through links. Each link has a weight as influence from 
one neuron node to another node. During the neural network, the 
input layer accepts the features of data as the weights and each 
neuron node in the first layer multiplies with its weight and 
results are summed up and transferred to the corresponding 
neuron node in the hidden layer and so on. Finally, each neuron 



node in the output layer will get the probability of its 
corresponding classification. During the training process, the 
backpropagation algorithm calculates the gradient of the error 
function and update the weights of each neurons. 

 
Fig. 2. Neural Network 

V. EXPERIMENTS/RESULTS/DISCUSSION 
Since our project is a classification problem, we use 

accuracy, precision, recall and F1 score to evaluate the models. 
We would like to introduce the meaning of TP,FP,TN and FN. 
A true positive (TP) is a positive outcome predicted by the 
model correctly while a false positive (FP) is a positive outcome 
predicted by the model incorrectly. A true negative (TN) is a 
negative outcome predicted by the model correctly while a false 
negative (FN) is a negative outcome predicted by the model 
incorrectly.   

We did not use cross-validation because our dataset is not 
very sufficient. We split the dataset into 80% for training and 20% 
for test. Here is the table of results of different methods and we 
will talk about each evaluation of methods in details. 

TABLE I.  RESULT OF DIFFERENT METHODS 

Methods Train 
accuracy 

Test 
accuracy precision recall F1 

score 
Logistic 
Regression 83.88% 85.25% 0.88 0.78 0.82 

SVM 89.26% 86.89% 0.91 0.78 0.84 
Naïve 
Bayes 83.47% 85.25% 0.88 0.78 0.82 

Random 
Forest 100% 91.80% 0.92 0.89 0.91 

Neural 
Network 83.88% 88.52% 0.92 0.81 0.86 

 

A. Logistic Regression 
Here is the confusion matrix of the Logistic Regression: 

 

Fig. 3. Confusion Matrix for Logistic Regression 

I used the L2 penalty, the square of the magnitude of 
coefficients, supported by Logistic Regression to avoid 
overfitting. The train accuracy is 83.88% and test accuracy is 
85.25%. It performs well but not the best for us. The advantage 
of the Logistic Regression is that it does not need too much 
computational resources and it is highly interpretable. So it is 
easy and sufficient to apply Logistic Regression. However, the 
limitation of Logistic Regression is that it assumes linearity 
between the features of the dataset. In the real world, the data is 
rarely separable, neither as our dataset. That is why we cannot 
reach a very high accuracy of 90%. 

B. SVM 
Here is the confusion matrix for SVM: 

 
Fig. 4. Confusion Matrix for SVM 

According to the tutorial of sklearn, for a small dataset it is 
better to use sklearn.svm.SVC(). The training accuracy is 89.26% 
and the test accuracy is 86.89%. The advantage of SVM is that 
it is very efficient with high dimensional spaces. The main 
disadvantage is that the SVM has many parameters that needs to 
be correctly chosen to achieve the best performance. For safety 
we just use the default parameters of SVM. And the test 
accuracy of 86.89%, which is better than Logistic Regression. 

C. Naive Bayes 
The confusion matrix for Naïve Bayes is  

 
Fig. 5. Confusion Matrix for Naïve Bayes 

The train accuracy is 83.47% and the test accuracy is 85.25%. 
The advantage of Naïve Bayes is that Naïve Bayes is able to 
make predications given a small amount of training data. The 



disadvantage of Naïve Bayes is that it assumes all features are 
mutually independent but in real life we can rarely get a dataset 
whose attributes are mutually independent and that might be 
why we cannot reach a very high accuracy of 90%. 

D. Random Forest 
The confusion matrix of Random Forest is:  

 

Fig. 6. Confusion Matrix for Random Forest 

The train accuracy is 100% and the test accuracy is 91.80%. 
At the first beginning we use the default parameters 
(n_estimators=100, which means the number of trees in the 
forest is 100 and max_depth = None, which means the nodes are 
expanded until all leaves are pure or all leaves contain less than 
the minimum number of samples required to split an internal 
node).  Though we get 100% test accuracy, we only get 85.25% 
test accuracy. We guess it might be overfitting. One reason 
might be the training data is not generalized during the training 
process so we decide to shuffle the dataset again and we tried 
the parameter random_state from 1 to 2000. When random_state 
is 1826, the test accuracy is 91.80%. Then we tried  experiments 
on parameters of n_estimatros(from 10 to 300) and 
max_depth(from 10 to 300) and the best test accuracy is still 
91.80%. This means with random_state=1825, the other default 
parameters are good enough to get the best test accuracy. For 
example, the number of trees in the forest is 100, which is 
appropriate. If the number of trees is small, it will cause 
underfitting because the model has not been optimized for the 
training data, let alone the test data. If the number of trees is too 
big, it will cause overfitting because the model become so 
complexed and sensitive to new data. The advantage of Random 
Forest is that it can deal with dataset with high features and 
balance the variance and it is not sensitive to the noise of the 
data. Among these 5 models, Random Forest outperforms any 
other models. 

E. Neural Network 
At the first beginning we tried to add 3-4 hidden layers in 

our neural network but it performs bad. The test accuracy is only 
60%. Then we analyzed that the dataset is not big so we decide 
to make our network simple. At last we have only 1 hidden layer 
with 31 neuron nodes. For the optimization we use Adam instead 
of SGD (Stochastic Gradient Descent) because Adam is a 
combination of RMSprop and SGD with momentum and it takes 
advantage of momentum by moving average of the gradient. Our 

learning rate is 0.001, which is appropriate because the loss goes 
down in a normal speed. Since our dataset is not big, we just 
choose the batch size to be 200, which is enough for training. 
And we run 80 epochs to avoid overfitting. The train accuracy 
is 93.02% and the test accuracy is 88.52%, which is the second 
best. Here is the plot of Accuracy vs Epoch and Loss vs Epoch: 

 
Fig. 7. Accuracy and Loss 

As the epochs increase, the loss for test data is reaching 0.35 
and test accuracy is reaching 89%. The advantage of the neural 
network is that neural network can deal with complicated 
datasets with high dimensional features (e.g. images) and make 
accurate predictions by building several hidden layers. However, 
when it comes to small dataset, the neural network does not 
perform well because it tends to become complicated. 

VI. CONCLUSION/FUTURE WORK 
We use some libraries[11] provided by Python to implement 

this project. After the experiments, the algorithm of Random 
Forest gives us the best test accuracy, which is 91.8%. The 
reason why it outperforms others is that it is not limited to the 
property of the dataset. Naïve Bayes requires the features to be 
mutually independent. Logistic Regress requires the features to 
be linearly separable. SVM requires the parameters to be 
appropriately set and the neural network requires a complicated 
and big dataset. Though we get a good result of 91.8% accuracy, 
that is not enough because it cannot guarantee that no wrong 
diagnosis happens. To improve accuracy, we hope to require 
more dataset because 300 instances of dataset are not sufficient 
to do an excellent job. In the future, to predict disease we want 
to try different diseases such as lung cancer by using image 
detection. In this way, the dataset becomes complicated and we 
can apply convolutional neural network to make accuracy 
predictions.   
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on functions to plot the table of results. 
 
 
Xinlong Li 
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                          Replies to critical reviews 

 
Critical review from team 15: 
 
What is the intuition behind the structure of the neural network? 
Our response: At last we decide to make the architecture simple. The number of hidden layers is 
1 and the hidden layer has 31 neurons. We make it simple because the dataset is not very big. 
Therefore, we do not have to make neural network complicated, otherwise it will be overfitting. 
 
Results of neural network show possible over-fitting? 
Is this monitored during the training process? 
Without the accuracy and loss plot it is hard to the audience to see. 
Our response: As the figure 7 shows in page 4, no overfitting appears. We have monitored the 
training process and use the results to plot the figure 7. Figure 7 is the plot of accuracy and loss 
and it is in our final report. 
 
 
Critical review from team 68 
 
Could you explain more about what kind of kernel in SVM do you use?: Please explain how do 
you decide which kind of kernel you used? 
Our Response: We use RBF kernel in SVM because it works well in practice and it is relatively 
easy to calibrate compared to other kernels. 
 
How do you decide the number of neurons in each hidden layer of your neural 
network model? 
Our Response: At first we have tried using several hidden layers but it did not perform well. Since 
the data set is not big, we tried to use just 1 hidden layer. And we tried the number of neurons 
from 10 to 40. When the number of neurons is 31, the neural network performs best.  
 
 
Critical review from team 78 
For logistical regression, why was the test accuracy higher than the training accuracy? 
Our Response: Since the test data is not big, it might because the test data is easier to classify 
than the training data. If we have a larger dataset, such situation will not happen. 
 
Why was relu used specifically and why wasn’t batch normalization used or pooling? 
Our Response: Relu is defines as Y = max(0, x). It is the most commonly used activation function 
in neural networks. Batch normalization can stabilize the learning process and reduce the number 
of training epochs to train deep networks. Pooling aims to reduce the computation in the network. 



Since our architecture of neural network is not deep, we do not need these two techniques. 
 
What specific heart disease was predicted or was it just any kind of heart disease? 
Our Response: The dataset does not give a specific heart disease so we guess it might be any 
kind of heart disease. 
 
Was there any specific feature that had a larger impact determining the condition of heart 
disease? 
Our Response: Random forest has a function to compute the importance score of each feature. 
The features of “cp”(chest pain type), “ca”(number of major vessels colored by 
flourosopy)and “thal”(0= normal; 1 = fixed defect; 2 = reversable defect) have a larger impact 
determine the condition of heart disease than the others. 
 
 
 
 
 
 
 


