
Heart Disease Detection Project Report
Group72 Member: Yangguang He, Xinlong Li, Ruixian Song

Abstract—Our project object is to detect whether patients have
heart disease or not by given a number of features from patients. The
motivation of our project is to save human resources in medical
centers and improve accuracy of diagnosis. In our project we use
different methods to detect heart disease such as Logistic Regression,
SVM, Naïve Bayes, Random Forest and Artificial neural network.
And among all these algorithms Random Forest gives us the best
accuracy of 91.8%.

I. INTRODUCTION
Our problem is that we want to predict whether patients have

heart disease by given some features of users. This is important
to medical fields. If such a prediction is accurate enough, we can
not only avoid wrong diagnosis but also save human resources.
When a patient without a heart disease is diagnosed with heart
disease, he will fall into unnecessary panic and when a patient
with heart disease is not diagnosed with heart disease, he will
miss the best chance to cure his disease. Such wrong diagnosis
is painful to both patients and hospitals. With accurate
predictions, we can solve the unnecessary trouble. Besides, if we
can apply our machine learning tool into medical prediction, we
will save human resource because we do not need complicated
diagnosis process in hospitals. (though it is a very long way to
go.) The input to our algorithm is 13 features with number values.
We use several algorithms such as Logistic Regression, SVM,
Naïve Bayes, Random Forest, Artificial Neural Network to
output a binary number 1 or 0. 1 indicates the patient has heart
disease and vice versa.

II. RELATED WORK
Before we did the experiments, we did research on how

people explored heart disease prediction so that we can broaden
our horizons and learn from them.

In 2011, Ujma Ansari [1] made use of Decision Tree model
to predict heart disease and get a high accuracy of 99%, which
inspires us to use a better version of Decision Tree and it is
Random Forest. Unfortunately, the paper uses a dataset with
3000 instances but dose not provide a reference of how they get
the data. The UCI website only provides 303 instances of dataset
so we doubt where the author gets 3000 instances of dataset.

In 2012, Chaitrali S. Dangare [2] made the prediction by
using three models and such models are Naïve Bayes, Decision
Trees and Neural Network. We are using the same dataset as he
did. The difference between his work and ours is that he added
2 more features into the dataset, which means there are 15
features of his work while there are 13 features in our dataset.
Though there is no big difference between 13 features and 15
features in his work, what he did on dataset inspires us to make
useful change to our dataset (Try normalization on dataset) to

make our results comprehensive. However, during this paper
there are only 3 models. More models need to be considered so
that the results are comprehensive.

In 2017, Kaan Uyar and Ahmet İlhan[3] did the same
experiment and used the same dataset as we did for projects.
During their analysis, “Class distributions are interpreted as 54%
absence and 46% presence of a heart disease”. The dataset we
download from Kaggle has 54% 1s and 46% 0s in the target
column. From their analysis, we realize 1 indicates absence of
heart disease and vice versa. To make it easily understood, we
switched 1s and 0s in the target column so that 1 indicates
presence of heart disease to show our confusion matrix[10] in
our results.

After reviewing paper [4] and [5], we have learned that
neural network has advantage of fault tolerance and it has the
ability to work with inadequate knowledge as human beings.
Therefore, in our project we decide to spend some time working
on neural network to detect heart diseases.

III. DATASET AND FEATURES
Our dataset is based on UCI heart Disease Data Set [6] and

we have 303 instances. According to UCI, “This database
contains 76 attributes, but all published experiments refer to
using a subset of 14 of them.”We guess too many features will
bring too much noise so people has done feature extraction and
reduce 76 features to 14 features. To better understand the
meaning of the features, we have the responsibility to explain
some of the attributes of original dataset from UCI as follows:

• age: age in years

• sex: sex (1 = male; 0 = female)

• cp: chest pain type
-- Value 0: typical angina
-- Value 1: atypical angina
-- Value 2: non-anginal pain
-- Value 3: asymptomatic

• trestbps: resting blood pressure (in mm Hg on admission
to the hospital)

• chol: serum cholestoral in mg/dl

• fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)

• target: Heart disease (0 = no, 1 = yes)

Since the original dataset has missing values, we just
downloaded a clean dataset from Kaggle[7]. We have split the
dataset into 80% (242 instances) for training and 20%(61
instances) for test. We did normalization on our dataset to avoid

overfitting. What we did to our dataset is to change 1s to 0s in
target column and vice versa in order to make value 1 indicate
the presence of heart disease and make value 0 indicate the
absence of heart disease. Given such dataset we can do many
interesting predicative tasks. For example, we can use these
features to predict chest pain type. But the most important thing
is that given the 13 attributes from a patient, we want to predict
whether he has the heart disease or not because keeping healthy
is very import to people.

IV. METHODS
During this project, we have tried 5 algorithms for experiments
and they are Logistic Regression SVM, Naïve Bayes, Random
Forest and Neural Network.

A. Logistic Regression

Logistic Regression is a supervised learning that computes
the probabilities for classification problems with two outcomes.
It can also be extended to predict several classes. In Logistic
Regression model, we apply the sigmoid function, which is

𝜎(z) = &
&'()*

.	

This function successfully maps any number into the value
between 0 and 1 and we can regard this value as the probability
of predicting classes. For example, we have two classes and they
are presence of heart disease and absence of disease. If we set
the threshold as 0.5, applying the sigmoid function gives us a
value of 0.7, which means the man has the 70% probability of
having heart disease so we will predict that he has heart disease.

B. SVM (Support vector machine)
SVM aims to find a hyperplane in multiple dimensions

(multiple features) that classifies the dataset. Here is a picture[8]
of classification by SVM.

Fig. 1. Classification by SVM

The equation of the hyperplane form is

𝑤.𝑥 + 𝑏 = 0

where w is a weight vector, x is input vector and b is a bias.
The margin is the distance of closest points from the hyperplane
and is calculated as

3
||3||

∗ (𝑥' − 𝑥7) =
38(9:79))

||3||
= ;

||3||
 (8)	

where 𝑤.𝑥' + b = +1 and 𝑤.𝑥' + b = −1. Our object is
to maximize the margin ;

||3||
 or equivalently to minimize ||𝑤||;.

After adding loss function, the learning problem is to find a
weight vector w that minimizes the cost function of (8)

||𝑤||; + 𝐶?𝑚𝑎𝑥	(0,1 − 𝑦D𝑓(𝑥D))
F

D

		

And Gradient descent algorithm is able to minimize the cost
function by iteratively updating the equation (8) of

 𝑤G'& ← 𝑤G − 𝜂G𝛻3𝐶(𝑤G)			

where 𝜂 is the learning rate.

C. Naïve Bayes
Naïve Bayes assumes the independence between the features

of the dataset and the Bayes Rule is

P(y	|	x) =
𝑃(𝑥|𝑦)𝑃(𝑦)

𝑃(𝑥) 	

where P(y|x) is the probability of classification y given the
data x. Applying Bayes theory, we can build a Naïve Bayes
model to compute the probabilities from training data and then
make predictions based on the features of the test data.

D. Random Forest
Random Forest is an ensemble learning method for

classification and regression by constructing multiple decision
trees in training and outputting the classification or
prediction(regression). The goal of Random Forest is to combine
weak leaning models into a strong and robust leaning model.
From a tutorial[9] online, we learn that the algorithm of Random
Forest can be summarized in 4 steps:

Step 1:Randomly draw M bootstrap samples from the training
set with replacement.

Step 2: Grow a decision tree from the bootstrap samples. At each
node: Randomly select K features without replacement and split
the node by finding the best cut among the selected features that
maximizes the information gain.

Step 3:Repeat the steps 1 and 2 T times to get T trees;

Step 4:Aggregate the predictions made by different trees via the
majority vote.

E. Neural Network
From the picture we can see neural network has a collection

of neurons and each neural node is connected with other neuron
nodes through links. Each link has a weight as influence from
one neuron node to another node. During the neural network, the
input layer accepts the features of data as the weights and each
neuron node in the first layer multiplies with its weight and
results are summed up and transferred to the corresponding
neuron node in the hidden layer and so on. Finally, each neuron

node in the output layer will get the probability of its
corresponding classification. During the training process, the
backpropagation algorithm calculates the gradient of the error
function and update the weights of each neurons.

Fig. 2. Neural Network

V. EXPERIMENTS/RESULTS/DISCUSSION
Since our project is a classification problem, we use

accuracy, precision, recall and F1 score to evaluate the models.
We would like to introduce the meaning of TP,FP,TN and FN.
A true positive (TP) is a positive outcome predicted by the
model correctly while a false positive (FP) is a positive outcome
predicted by the model incorrectly. A true negative (TN) is a
negative outcome predicted by the model correctly while a false
negative (FN) is a negative outcome predicted by the model
incorrectly.

We did not use cross-validation because our dataset is not
very sufficient. We split the dataset into 80% for training and 20%
for test. Here is the table of results of different methods and we
will talk about each evaluation of methods in details.

TABLE I. RESULT OF DIFFERENT METHODS

Methods Train
accuracy

Test
accuracy precision recall F1

score
Logistic
Regression 83.88% 85.25% 0.88 0.78 0.82

SVM 89.26% 86.89% 0.91 0.78 0.84
Naïve
Bayes 83.47% 85.25% 0.88 0.78 0.82

Random
Forest 100% 91.80% 0.92 0.89 0.91

Neural
Network 83.88% 88.52% 0.92 0.81 0.86

A. Logistic Regression
Here is the confusion matrix of the Logistic Regression:

Fig. 3. Confusion Matrix for Logistic Regression

I used the L2 penalty, the square of the magnitude of
coefficients, supported by Logistic Regression to avoid
overfitting. The train accuracy is 83.88% and test accuracy is
85.25%. It performs well but not the best for us. The advantage
of the Logistic Regression is that it does not need too much
computational resources and it is highly interpretable. So it is
easy and sufficient to apply Logistic Regression. However, the
limitation of Logistic Regression is that it assumes linearity
between the features of the dataset. In the real world, the data is
rarely separable, neither as our dataset. That is why we cannot
reach a very high accuracy of 90%.

B. SVM
Here is the confusion matrix for SVM:

Fig. 4. Confusion Matrix for SVM

According to the tutorial of sklearn, for a small dataset it is
better to use sklearn.svm.SVC(). The training accuracy is 89.26%
and the test accuracy is 86.89%. The advantage of SVM is that
it is very efficient with high dimensional spaces. The main
disadvantage is that the SVM has many parameters that needs to
be correctly chosen to achieve the best performance. For safety
we just use the default parameters of SVM. And the test
accuracy of 86.89%, which is better than Logistic Regression.

C. Naive Bayes
The confusion matrix for Naïve Bayes is

Fig. 5. Confusion Matrix for Naïve Bayes

The train accuracy is 83.47% and the test accuracy is 85.25%.
The advantage of Naïve Bayes is that Naïve Bayes is able to
make predications given a small amount of training data. The

disadvantage of Naïve Bayes is that it assumes all features are
mutually independent but in real life we can rarely get a dataset
whose attributes are mutually independent and that might be
why we cannot reach a very high accuracy of 90%.

D. Random Forest
The confusion matrix of Random Forest is:

Fig. 6. Confusion Matrix for Random Forest

The train accuracy is 100% and the test accuracy is 91.80%.
At the first beginning we use the default parameters
(n_estimators=100, which means the number of trees in the
forest is 100 and max_depth = None, which means the nodes are
expanded until all leaves are pure or all leaves contain less than
the minimum number of samples required to split an internal
node). Though we get 100% test accuracy, we only get 85.25%
test accuracy. We guess it might be overfitting. One reason
might be the training data is not generalized during the training
process so we decide to shuffle the dataset again and we tried
the parameter random_state from 1 to 2000. When random_state
is 1826, the test accuracy is 91.80%. Then we tried experiments
on parameters of n_estimatros(from 10 to 300) and
max_depth(from 10 to 300) and the best test accuracy is still
91.80%. This means with random_state=1825, the other default
parameters are good enough to get the best test accuracy. For
example, the number of trees in the forest is 100, which is
appropriate. If the number of trees is small, it will cause
underfitting because the model has not been optimized for the
training data, let alone the test data. If the number of trees is too
big, it will cause overfitting because the model become so
complexed and sensitive to new data. The advantage of Random
Forest is that it can deal with dataset with high features and
balance the variance and it is not sensitive to the noise of the
data. Among these 5 models, Random Forest outperforms any
other models.

E. Neural Network
At the first beginning we tried to add 3-4 hidden layers in

our neural network but it performs bad. The test accuracy is only
60%. Then we analyzed that the dataset is not big so we decide
to make our network simple. At last we have only 1 hidden layer
with 31 neuron nodes. For the optimization we use Adam instead
of SGD (Stochastic Gradient Descent) because Adam is a
combination of RMSprop and SGD with momentum and it takes
advantage of momentum by moving average of the gradient. Our

learning rate is 0.001, which is appropriate because the loss goes
down in a normal speed. Since our dataset is not big, we just
choose the batch size to be 200, which is enough for training.
And we run 80 epochs to avoid overfitting. The train accuracy
is 93.02% and the test accuracy is 88.52%, which is the second
best. Here is the plot of Accuracy vs Epoch and Loss vs Epoch:

Fig. 7. Accuracy and Loss

As the epochs increase, the loss for test data is reaching 0.35
and test accuracy is reaching 89%. The advantage of the neural
network is that neural network can deal with complicated
datasets with high dimensional features (e.g. images) and make
accurate predictions by building several hidden layers. However,
when it comes to small dataset, the neural network does not
perform well because it tends to become complicated.

VI. CONCLUSION/FUTURE WORK
We use some libraries[11] provided by Python to implement

this project. After the experiments, the algorithm of Random
Forest gives us the best test accuracy, which is 91.8%. The
reason why it outperforms others is that it is not limited to the
property of the dataset. Naïve Bayes requires the features to be
mutually independent. Logistic Regress requires the features to
be linearly separable. SVM requires the parameters to be
appropriately set and the neural network requires a complicated
and big dataset. Though we get a good result of 91.8% accuracy,
that is not enough because it cannot guarantee that no wrong
diagnosis happens. To improve accuracy, we hope to require
more dataset because 300 instances of dataset are not sufficient
to do an excellent job. In the future, to predict disease we want
to try different diseases such as lung cancer by using image
detection. In this way, the dataset becomes complicated and we
can apply convolutional neural network to make accuracy
predictions.

REFERENCES
[1] Soni, Jyoti, et al. "Predictive data mining for medical diagnosis: An

overview of heart disease prediction." International Journal of Computer
Applications 17.8 (2011): 43-48.

[2] Dangare, Chaitrali S., and Sulabha S. Apte. "Improved study of heart
disease prediction system using data mining classification

techniques." International Journal of Computer Applications 47.10
(2012): 44-48.

[3] Uyar, Kaan, and Ahmet İlhan. "Diagnosis of heart disease using genetic
algorithm based trained recurrent fuzzy neural networks." Procedia
computer science 120 (2017): 588-593.

[4] Kim, Jae Kwon, and Sanggil Kang. "Neural network-based coronary heart
disease risk prediction using feature correlation analysis." Journal of
healthcare engineering 2017 (2017).

[5] Baccouche, Asma, et al. "Ensemble Deep Learning Models for Heart
Disease Classification: A Case Study from Mexico." Information 11.4
(2020): 207.

[6] https://archive.ics.uci.edu/ml/datasets/Heart+Disease
[7] https://www.kaggle.com/ronitf/heart-disease-uci
[8] https://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf
[9] https://nthu-datalab.github.io/ml/labs/03_Decision-Trees_Random-

Forest/03_Decision-Tree_Random-Forest.html
[10] https://www.kaggle.com/jprakashds/confusion-matrix-in-python-binary-

class
[11] scikit-learn, keras, pandas and matplotlib

 Individual contributions

Ruixian Song
He worked on looking for the topic and references before we start the project. He also worked
on functions to plot the table of results.

Xinlong Li
He worked on first three models and they are Logistic Regression, SVM and Naïve Bayes.

Yangguang He
He worked on the last two models and they are Random Forest and neural network.

All of the members spent effort writing the final report.

 Replies to critical reviews

Critical review from team 15:

What is the intuition behind the structure of the neural network?
Our response: At last we decide to make the architecture simple. The number of hidden layers is
1 and the hidden layer has 31 neurons. We make it simple because the dataset is not very big.
Therefore, we do not have to make neural network complicated, otherwise it will be overfitting.

Results of neural network show possible over-fitting?
Is this monitored during the training process?
Without the accuracy and loss plot it is hard to the audience to see.
Our response: As the figure 7 shows in page 4, no overfitting appears. We have monitored the
training process and use the results to plot the figure 7. Figure 7 is the plot of accuracy and loss
and it is in our final report.

Critical review from team 68

Could you explain more about what kind of kernel in SVM do you use?: Please explain how do
you decide which kind of kernel you used?
Our Response: We use RBF kernel in SVM because it works well in practice and it is relatively
easy to calibrate compared to other kernels.

How do you decide the number of neurons in each hidden layer of your neural
network model?
Our Response: At first we have tried using several hidden layers but it did not perform well. Since
the data set is not big, we tried to use just 1 hidden layer. And we tried the number of neurons
from 10 to 40. When the number of neurons is 31, the neural network performs best.

Critical review from team 78
For logistical regression, why was the test accuracy higher than the training accuracy?
Our Response: Since the test data is not big, it might because the test data is easier to classify
than the training data. If we have a larger dataset, such situation will not happen.

Why was relu used specifically and why wasn’t batch normalization used or pooling?
Our Response: Relu is defines as Y = max(0, x). It is the most commonly used activation function
in neural networks. Batch normalization can stabilize the learning process and reduce the number
of training epochs to train deep networks. Pooling aims to reduce the computation in the network.

Since our architecture of neural network is not deep, we do not need these two techniques.

What specific heart disease was predicted or was it just any kind of heart disease?
Our Response: The dataset does not give a specific heart disease so we guess it might be any
kind of heart disease.

Was there any specific feature that had a larger impact determining the condition of heart
disease?
Our Response: Random forest has a function to compute the importance score of each feature.
The features of “cp”(chest pain type), “ca”(number of major vessels colored by
flourosopy)and “thal”(0= normal; 1 = fixed defect; 2 = reversable defect) have a larger impact
determine the condition of heart disease than the others.

