
PREDICTING ELECTRON ENERGY SPECTRA IN LASER-PLASMA SIMULATIONS

Michael Pokornik, Erda Wen, and Tofig Mamedov

Group 6

ABSTRACT

This paper aims to utilize machine learning methods to pre-
dict electron energy spectra found in Laser-Plasma simula-
tions. The particular focus is to predict the emergence of high
energy electrons by predicting Lorentz factor γ. A data set is
generated through a PIC simulation and used as a training set
for a CNN model. Results show that predictions are highly
accurate for timestamps close to the end time. This is an in-
dication of a chaotic system for electron trajectories. Never-
theless, the model can be utilized in tandem with a traditional
PIC simulator to save many hours of computing time, as the
model can predict the final timestamps much faster.

Index Terms— Laser Plasma, Convolutional Neural Net-
work

1. INTRODUCTION

The production of very energetic charged particles has several
applications in areas like imaging, fusion, accelerator physics,
and others. In laser-plasma experiments, ion beams and x-
rays are often indirectly driven from the production of high
energy electrons. It is of interest to the laser-plasma com-
munity to accurately resolve the electron energy distribution,
which is scaled as Ee = γmc2 where γ is the Lorentz fac-
tor. Depending on the physical experiment, high energy elec-
trons could be detrimental (for example, pre-heating a target
capsule in inertial confinement fusion applications raises the
capsule entropy and makes the target difficult to compress)
or crucial (generation of gamma radiation for active interro-
gation) to its success. Electron heating mechanisms can be-
come very complicated and are usually either omitted in cer-
tain laser-plasma codes or are explored through Particle-In-
Cell (PIC) simulations. These simulations can be computa-
tionally expensive and coupling them to other codes becomes
challenging. [1, 2, 3] The goal of this project is to develop a
model to replicate physical electron heating and be included
in other models that lack this effect. [4] The input to our algo-
rithm is a time series of electron position x and Lorentz factor
(hereafter referred to as gamma or γ). We then use a Convo-
lutional Neural Network (CNN) to predict the final gamma
value for an electron.

2. RELATED WORK

Machine learning has only recently been introduced into the
field of laser-plasma interactions. To our knowledge there has
not been any results or attempts to use machine learning for
our problem. However, machine learning has had success in
the field. In particular, neural networks were trained on PIC
simulation data of a plasma harmonic spectra to predict un-
known experimental parameters. [5] One of our group mem-
bers will be working this summer on using machine learning
to predict shock wave timing and implosion symmetry for in-
ertial confinement fusion (ICF) applications.

3. DATASET AND FEATURE ANALYSIS

The data set was generated by one of our group members us-
ing the EPOCH 1 dimensional PIC code. The physical setup
consists of a laser irradiating a target and creating a plasma.
The electric fields from the laser and from the created plasma
will impart forces on the electrons and cause them to accel-
erate/decelerate governed by the Lorentz force. Electrons can
be pulled out from the target before re accelerating back in.
In some cases electrons can stream back and forth through the
target several times. The data contains a total of 11,145 elec-
tron samples. There were several types of data available at
each time step correlating to both electron characteristics and
system characteristics throughout its trajectory, but ultimately
only electron position and gamma value were used as fea-
tures. The time series ranged from zero to 3 picoseconds with
intervals of .01 picoseconds. Below is a figure that displays
example trajectories of randomly selected electrons and their
position and gamma values in time. Some of the predictions
that the group could have pursued included predicting elec-
tron position, the amount of work done on an electron, and
the phase of the laser the electron will sample. The gamma
value for prediction was chosen because it is an indicator of
how relativistic the electron motion is and scales the electron
energy. A higher gamma value can correspond to a more en-
ergetic electron and can help build an energy distribution.

The distribution of the final gamma value is plotted as Fig-
ure 2 as a reference.
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Fig. 1. Gamma and Position over Time for Given Electron
Trajectories

Fig. 2. Final State γ Distribution of the 11,145 Electrons

3.1. Dataset Preprocessing

Comparing to experimental results where noise and abnormal
data are common and not ignorable, our the dataset generated
by the PIC simulation is very well-organized, thus the prepro-
cessing is relatively simple, which includes 1) zero padding
the NaN data before each electron emerges, and 2) normaliz-
ing each physical quantity series to [0,1] respectively.

3.2. Feature Importance Analysis

The simulation generate excessive amount of variables for
each electron trajectories, and a preliminary study on the each
of them is decisive on the feature selection for the prediction
model.

To do so, we here adopt a random forest regressor. The
regressor takes the whole time series (291 time steps) of phys-
ical quantities generated by simulation (position, momentum,
work, phase, gammma value) as the input, and take final
gamma as the label. The model does not necessarily need
to be optimized here, since we only care about the feature
importance instead of making any prediction.

Figure 3 shows the feature importance of the two domi-

nant features: position and gamma value at different times-
tamp, where timestamp 0 refers to the final state at the com-
pletion of the simulation. The result agrees well with our
physical intuition that most of the information comes from
close to the end of the trajectory. This also reveal the trade-off
nature of the problem: to save more computational resources
by using earlier time steps will lead to less accurate predic-
tion.

Fig. 3. Feature Importance of Position x and Gamma value γ
at Different Timestamps

4. CNN PREDICTION MODEL

Since the data is structured in time series, intuitively one
may claim that information lay in the correlation between the
neighbouring quantities along time dimension, and thus we
choose to use the convolutional neural network (CNN).

In an analytical perspective it is also easy to show that
convolutional layers are capable of resembling various oper-
ators: considering a size-2 filter with value −1/∆t and 1/∆t
acting on a position vector, it can extracting the velocity in-
formation since it emulates the discrete form of the derivative
v = dx/dt ≈ (x(t + ∆t) − x(t))/∆t. More examples can
be found in Figure 5. This gives an evidence that convolu-
tional layers are potentially a great candidate to emulate the
complex underlying physics in the system.

Another advantage of CNN comparing to fully connected
neural network is that its training process is much less time-
consuming because of a small parameter space the parameter
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Fig. 4. Convolutional Neural Network Structure
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Fig. 5. Examples of Convolutional Filters Resembling Differ-
ent Operators

sharing. small parameter space also make it easier to handle
with the overfitting issue.

The proposed CNN structure is shown as Figure 4. De-
pending on the computational resources intended to be saved,
the network take the simulated results of position and gamma
value before time step T as the input, and the final gamma as
the output label. Two sets of convolutional layers are used and
a fully connected layer is adopted before the output. The ac-
tivation function are ReLU for all layers and the loss function
is set to be the mean square errors, MSE = 1

n

∑
(γi − γ̂i)

2.
For training, the data was split the whole dataset into 8916
training samples and 2229 validation samples.

4.1. Hyperparameter Tuning and Regularization

Convolutional filter size and filter number are two dominant
factor that impact the accuracy of this model. In practice, we
found that the accuracy begin to converge for filter size larger
than 6 and channel number larger than 16. However, large pa-
rameter space also aggravate the overfitting issue. Therefore,
we choose the filter size to be 8 and channel number to be 32.
To deal with the overfitting, two strategies are introduced:

1) A dropout with a probability of 0.3 is added before the
fully-connected dense layer fc 1, and

2) an L2 regularization term 0.4
∑
w2
i is applied to fc 1.

Figure 6 shows a comparison between the network with
regularization aforementioned and with no regularization at
all.

Fig. 6. Loss vs Epochs for Training and Validation Set. Up-
per: No Regularization; Lower: with Dropout and L2 Regu-
larization

5. RESULTS DISCUSSION

We examine both MSE and the coefficient of determination
R2 = 1 −

∑
(γi−γ̂i)2∑
(γi−γ̄i)2 of the validation set to evaluate the per-

formance of the prediction using position and gamma series
before timestamp T . To some extent R2 score is the same
with MSE, but it takes into account the variance of the origi-
nal data and is thus more informative.

As is visible in Figure 7, the model struggles to make pre-
dictions for timestamps that aren’t a few steps away from the
end time, however the model rapidly converges close to the
end. A MSE of near 200 was the maximum error that the
model produced, quite consistently for all timestamps until
around -25, when significant decreases were observed.

Good model performance near the end time also agree
with Figure 4, where the feature importance of position and



Fig. 7. R2 and MSE Scores for Timestamps Counted from
End Time.

gamma increases significantly near the end time. For times-
tamps in the middle or closer to the beginning, those features
are quite irrelevant. Keep in mind that the final gamma values
are observed at timestamp 291 in the simulation. As a better
visualization of how earlier end time impact the prediction,
Figure 8 shows how predicted final γ distribution changes
with different end timestamps T .

R2=0.97

T=-2

rorem ipsumrorem ipsum

T=-5

R2=0.81

T=-10

R2=0.52

Fig. 8. Comparison between Predicted γ Distributions with
Different End Timestamp T .

6. CONCLUSION AND FUTURE WORK

6.1. Chaotic Properties

That fact that the model only makes accurate predictions near
the end time indicates that the system is of a chaotic nature.
When the electrons travel on their trajectories they are never
alone. Other electrons nearby and could influence the trajec-
tory in different ways. Interactions between electrons are ran-
dom. The influence is therefore also random, electrons might

either gain or lose energy in those interactions during their
trajectory. Since interactions could happen at any given time,
energy gained in the beginning could just as easily be lost
later. Therefore, there is some logic behind why the model is
at peak accuracy near the end, simply that those interactions
near the end time will be the latest ones giving an impact.

To illustrate this reasoning, Figure 1 plots the gamma
value throughout the trajectory of one arbitrarily chosen elec-
tron. The gamma value varies throughout the trajectory, both
gaining and losing. This indicates a chaotic system.

6.2. Run Time

Even though saving a few time steps might seem insignificant,
it actually isn’t. Keep in mind that it took several hours to
generate this dataset of around 11,000 electrons. Other sim-
ulations might require more electrons for larger time frames.
Consequently, this model will save both time and computing
power if applied to large problems.

Depending on what scope the problem has, a compromise
between model accuracy and time consumption is crucial.
Not all applications will require the highest accuracy, some
might settle for less. In that case 10-15 timestamps could be
done by the model, thus saving even more computational re-
sources.

6.3. Future Work

One of the problems with our data set is that it is too specific,
with certain set initial conditions that could vary depending
on the simulation purpose. To make this model useful, gen-
eralizing it for different initial conditions would be a priority.
One way to do that would be to obtain a larger training set
with data generated from different initial conditions and then
training a similar machine learning model.

Something else of importance would be to further look
into how much time that could be saved with this model. By
running the simulations just short of a few timestamps and
letting the model finishing the simulation would put a number
to it.

Contributions
Michael Pokornik worked on generating the data set and bu-
liding a RFR for prediction. Michael also created a neural net-
work using features in addition to γ and position, but Erda’s
CNN model ultimately yielded the best performance.

Erda Wen worked on building and optimizing the RFR
featrue analysis model and CNN model for prediction as a
comparison to the baseline model.

Tofig Mamedov worked with trying out the convolutional
neural network that Erda built on different feature sets. A
bit of hyperparameter tuning and testing prediction results for
different time windows.
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Replies to Critical Reviews 
Critique from group 22 

The group clearly introduces the topic of laser-plasma interactions in a way that is very helpful for someone not 
familiar with the field.  The features of the data, model architecture, and results are explained very well.  Overall 
this seems like a very interesting project. 

Thanks! 

Some improvements/unclear things: 

• How many simulated electron trajectories are included in the dataset?  How much variety is included 
amongst these trajectories?  Is this simulated training data representative of all possible conditions 
someone might want to simulate? 

The dataset contains 11,145 electron samples and it is pretty safe to say that it includes enough number 
and variety under this particular setup so as to be representative. The distribution plot of final gamma 
value also verifies this since there are plenty amount of electron samples all the way through the trail with 
higher gamma value. 

• How did you choose the model architecture?  Did you guys try other architectures? 

We also try to build and optimize a random forest regressor. A comparison between them shows that CNN 
wins over RFR slightly (e.g. for t=-5, r^2 score for CNN:0.83, for RFR:0.78; for t=-10, r^2 score for 
CNN: 0.45, for RFR: 0.41). Thus, we choose CNN model as the predictor. 

• Losses are shown but it might be helpful to see accuracy plots also to get a better idea of how well the 
model predicts 

R^2 scores are also shown as an evaluation of the accuracy. 

• Does this model generalize?  i.e. If someone wanted to change up the initial conditions or environment 
and use this model to predict electron energies, would this model work?  Or can it only be used with the 
conditions you simulated for your training? 

Unfortunately, this model works only for this particular setup. We were planning to come us with a more 
generalized model for other environments (plasma thickness, laser pulse type, etc), but we don’t have 
enough time to generate enough dataset since these simulations are extremely time-consuming. We put it 
as future works in our report. 

 

Critique from group 75   

Group 6 made a fluent and lucid introduction of electron states and laser-plasma applications. They also compared 
the tradition energy prediction method with their ML method, explained the reason of using ML in electron energy 
prediction: not more accurate but able to save time and computational resources, use model to replace physics.  

They applied their convolutional neural network on a simulated 1D particle-in-cell sequence data, to mimic 
physics operators. They also used dropout and L2 regularization to decrease overfitting. Their result performance 
are better when sequence approaches end-time.  

Thank you! 

However, there are still some improvements we could come up according to their work.  

1 In presentation, the video windows of presenters are overlapping with their slides, sometimes blocked 
important text.  

Sorry for the carelessness. Hopefully nothing is blocked in the report :) 

2 We thought they could make more pictures to visualize the evolution of electrons and the 1D particle-in-cell 
simulator, to show a more vivid explanation of their topic and data.  



Yes, that is actually a very good point. We put some exemplary electron trajectory plot in the report to show 
what is going on in the system. 

3 We thought they could make some figures or even examples of the logic and results of traditional energy 
computing methods, then compare them with ML methods. This will give audience a clearer understanding 
about pros (save time and computation resources) and cons (lack of accuracy) of ML methods.  

We are adding more details on traditional methods to make a better comparison between them. 

4 The final code exhibition part is kind of short. We thought they could show more codes such as how the 1D 
particle-in-cell simulator is working.  

We have several parts of the code: an RFR as a preliminary feature selection, CNN work for a single time 
step T setup and a T sweep.  RFR is not the core part of the predictor, and T sweep code is time-consuming as 
well as tedious. Thus, we choose to show a most simple case where T=-5. Unfortunately, it is not very 
practical and helpful to show the 1D particle-in-cell simulator, both because it will be hard to read embedded 
with excessively amount of formula and numerical analysis, and it takes hours or even days to run it.  

 

Critique from group 89  

The presentation succinctly and sufficiently explained the background of the task to be predicted, as well as the 
steps they took to achieve their results. The presenters had a good explanation of the results and conclusions, 
including the connection with the weather problem from the first homework. The code portion of the video was 
rather brief despite involving a full training run of the model.  

Thanks! 

Improvements:  

• Further explanation and/or connection to the convolutional derivative/integration models could help, 
especially how it is represented in the model. It currently seems a bit handwavy.  
The derivative/integration are some evidence that shows the filters are capable of resembling various 
operators, as part of the justification that convolutional layers are potentially a great candidate to emulate 
the complex underlying physics.  
 

• Brief explanations of the model and metrics chosen:  
o Why 1D convolutions, filter sizes, etc.  

Since we only have a single dimension (time), we choose 1D convolution. While tuning the network, we 
found that the accuracy converges for large filter sizes and channel numbers. However, large parameter 
space will also aggravate the overfitting issue. Therefore, we come up with a trade-off where filter sizes 
and channel numbers are sufficiently large while the overfitting is rather easy to deal with. 

o the loss type wasn’t mentioned during presentation  

We use MSE as the loss function. 

o Why was used for result evaluations r2 

To some extent r^2 score is the same with MSE, but it takes into account the variance of the original data 
and is thus more informative. 

• A comparison with a second model, or training with different hyperparameters, could be useful in 
evaluating the model, since we would have a baseline to compare to. Maybe the random forest results 
could have been shown since it was already fitted to the dataset.  
Yes, we also tried a random forest regressor predictor which can be considered as a baseline. A 
comparison shows that CNN wins over optimized RFR slightly (e.g. for t=-5, r^2 score for CNN:0.83, for 
RFR:0.78; for t=-10, r^2 score for CNN: 0.45, for RFR: 0.41).  
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