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Summary:
Given an airfoil shape, this team wants to train a neural
network to predict a variety of metrics that describe
performance. They are trying to predict lift, drag and moment
coefficients from data describing the shape of the airfoil,
Reynolds number, Mach number, and angle of attack. They
use a fully connected neural network for this task.
Strengths:

1) Problem seems interesting - there are many parameters
that affect performance and computational fluid dynam-
ics are expensive simulations to perform.

2) Good introduction and problem is well introduced
3) Good introduction and problem is well introduced
4) Did a good job verbally explaining their problem
5) Their explanation of the data is fantastic
6) They did a good job posing themselves a problem and

defining inputs, outputs, etc.
Thanks so much for your comments
Questions:

1) What do your results look like with the different
Reynolds numbers? You only showed a plot of results
given a specific airfoil and 1 value of Reynolds number.
How do your results vary across airfoils?
The results are also well-fitted for different airfoil and
reynold number, we could put more results there, but
that would be too many plots

2) How would your results change if 1 network is trained
to predict all three of your desired parameters?
This is another way of doingt it, from what we tested,
training three outputs seperately gives us more accurate
results.

Review from group 69
Definitely an interesting application of NNs for something
that’s hard to calculate through other means. Clever source
of data.
Thanks so much for your comments
I would have likely more discussion around what CFD was
used and about the data processing in general. For example,
why was each airfoil scaled in size individually rather than
with respect to some mean size?
Airfoils vary a lot from one to one, and its very hard find a
representive mean size.
On the model itself, I noticed that the output layer had a
sigmoid activation function. I feel an unbounded linear output
activation would work better, since there are meant to be
unbounded outputs. This might explain some of the issues
near the top and bottom of your output ranges, since sigmoid
will compress these and losses will be small, especially since
your loss isn’t MSE.
We are using sigmoid because we add non-linearality through
the layers. Also, as one airfoil is assumed to be within the same
scale (x-axis) the total length is bounded. Therefore, we used

sigmoid. We have tried others, but sigmoid seems to provide
us with the most desirable results
On presentation, I like the dense loss vs epoch plot, but I’d
like to see it in semilog-Y format. The very large noise in the
loss might mean too high a learning rate. Try something lower
to see how it trains. The plot also shows the 5-layer validation
being better than the 11-layer validation, which is unexpected.
Maybe go into some more detail on that.
Thanks for your comment. This is also one of the problems
we are facing in constructing the model. Mostly, we believe
this might due to an insufficient data of airfoil types.
There are also some small inconsistencies: Your presentation
says you used the Adam optimizer but the code shows RM-
Sprop. Your loss also seems to be MSE rather than the RMSE
you mention in the presentation
We appreciate your comment. In the actual work, we indeed
use RMSprop and RMSE. We are sorry for the type during
the presentation
Good work!

Review from group 88
Overview: This group first clearly states the background. They
evidently shows why they use Neural Network Surrogate
Model by comparing it with Dimensionality Reduction Model
and Typical Surrogate Model. They use standard Neural Net-
work procedures, which is clear and understandable.
Thanks for your comment.
Improvement:

1) Is the data preprocessing enough? Or is the original
dataset completely perfect at all?
We believe so. We followed the instruction provided by
the original paper.

2) Do the features have the same weight and correlation?
Even though, practically, they weighs different, in our
model we treated those features as purely numerical
parameters.

3) Did you compare the result with other two models?
Otherwise you cannot guarantee that Neural Network
has more advantages than the other two models.
No, we did not compare MNN with the other two models
by ourselves. Our conclusion is based on the literature
reviews.
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Abstract—Airfoil aerodynamic analysis is a computationally
expensive process, but it is vitally important in aircraft designs. In
this work, we introduce the method of neural network surrogate
modeling. Using the dataset generated by simulations, we trained
the neural network surrogate models which have been testified to
be capable of accurately predict different airfoils’ aerodynamic
performance under various conditions.
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I. INTRODUCTION

Airfoil aerodynamic analysis is of great importance on
aircraft designs. Airfoils used to be designed exclusively based
on wind-tunnel experiments, which are expensive and time
consuming. Nowadays, airfoil analysis mostly replies on high-
fidelity computational fluid dynamics(CFD) simulations, but
they are computationally expensive to run. To address the
need of fast airfoil analysis, researchers have focused on two
main branches: dimentionality reduction [1], and surrogate
modeling [2]. The dimensionality reduction methods, such as
principal component analysis and partial least squares, reduce
the number of design variables by obtaining representative
principal components. However, they lose part of the available
information as a trade-off. Surrogate models, on the other
hand, provide an affordable alternative to the evaluation of the
expensive deterministic functions, popular surrogate models
include Gaussian regression process, radial basis function and
neural network. Gaussian regression process, radial basis func-
tion can greatly reduce the the computational cost but they can
hardly deal with large data set. Neural Network [3] surrogate
models, on the other hand capture intricate structure of training
data and handle large data set via batch optimization. They
have been proved to accurately and efficiently represent many
physics-based models [4].

In this paper, we present a method of using neural network
surrogate model to provide an efficient and accurate way to
predict an airfoil’s performance analysis.

The rest of the paper is organized as follows. Section II
talks about the background of airfoil performance analysis, as
well as the reviews of the recently developed methods. Section
III-A talks about how the data used to train the neural network
is generated, as well as the feature extractions methods we use
to process the data. Section IV-A talks about the methods we
use to construct and train the neural network. Section V-C

talks the results generated from the neural network model. In
Section VI, we give conclusions on the effectiveness of this
method, and provide insights on the further directions for this
method.

II. RELATED WORK

In this Section, we provide some background on airfoil
analysis, and then review the recently developed methods to
provide a fast analysis of the performance of an airfoil.

A. Airfoil Analysis
Airfoil is an important tool that represents a cross-sectional

shape of an aircraft wing. The aerodynamic performance of an
airfoil can be characterized by three coefficients, Cl, Cd and
Cm. They are the dimensionless coefficients that relate the,
respectively, lift, drag and pitching moment generated by the
airfoil to the fluid density around the body. They are defined
as:

Cl =
L

qS
, Cd =

D

qS
, Cm

M

qSc
,

where L is the lift, M is the pitching moment, D is the drag,
q is the dynamic force, S is the wing area, and C is the chord
of the airfoil.

Fig. 1. Airfoil Aerodynamic Characterization.

In aerodynamics, the aerodynamic performance coefficients
depend on the Reynold number (Re), angle of attack (α),
Mach number (M ), and the airfoil shape. Therefore we can
characterize an equation for Cl, Cd and Cm as:

Cl, Cd, Cm = f(α,Re,M,Airfoil Shape). (1)

Based on (1), we can construct a surrogate model that quickly
analyze Cl, Cd and Cm.



B. Literature Review

Surrogate models provide an affordable alternative to the
evaluation of expensive deterministic functions. One typical
way to construct a surrogate model is to base on Gaussian
regression processes [5]. It is a Bayesian approach which as-
sumes a Gaussian processes prior over functions. This method
is easy to implement and very effective, however, the main
limitation is that memory requirements and computational
demands grow as the square and cube respectively. Another
typical way is to use the radial-basis-function [6], this method
approximates the functions using radial-basis-function. It is
also an effective way to construct the surrogate model but it
also suffers the curse of dimensionality.

Neural networks [3], vaguely inspired by the biological neu-
ral networks, allows computational models that are composed
of multiple processing layers to learn representations of data
with multiple levels of abstracts. It motivates breakthrough in
large-scale regression problem. Raissi et al. [7] proposes the
physics-informed neural networks (PINN), which uses neural
networks gradient and incorporate useful physics information
from governing equations, it has proved that the PINN model
can accurately predict the flow field. Du et al. [8] proposes a
B-Spline-based generative adversarial network (GAN) model
for fast interactive airfoil aerodynamic optimization, it uses the
GAN model to random generate airfoil shapes, and constructs
a multi-layer neural nework (MNN) surrogate model to do an
airfoil aerodynamic optimization. The models are proved to
be very accurate when predicting aerodynamic coefficients of
an airfoil. This project is inspired by [8], we apply a similar
method, and try to achieve a promising result.

III. DATASET AND FEATURES

In this section, we describe the method to generate the
dataset we need, and the feature extractions we can perform
to preprocess the dataset.

A. Dataset Generation

The dataset is generated by two steps. At first, 1600 airfoil
shape files are downloaded from UIUC Airfoil Coordinate
Database [9]. The shape of an airfoil is represented by 251
points, and in each airfoil shape file, we have 251 (x,y)
coordinates to represent the 251 points. The snapshot of one
airfoil shape file is shown in Figure 2. Once we have the
airfoil shape files, the next step is to run CFD solver for each
airfoil under different conditions to generate the outputs, i.e.
Cl, Cd and Cm. We use ADflow [10], a Reynolds-Averaged
Navier-Stokes CFD solver, to generate the output results. For
conditions,we vary the angle of attack from -4.25 degrees
to 15.75 degrees, Mach number from 0.16 to 0.60, and for
Reynold number, we use 3,000,000, 6,000,000, 9,000,000.
For each airfoil shape, we generate one file contain different
conditions and the corresponding output results, a snapshot of
the output file can be found in 3. Putting all the data available,
we have the inputs of size 5, 000, 000×505, and outouts of size
5, 000, 000 × 3. For inputs, we have 505 columns which are
251 x-coordinates, 251 y-coordinates, angle of attack, mach

number, and Reynold number. For outputs, the three columns
are Cl, Cd and Cm.

After the data collection, we split the data into training
set and testing set, whose proportions were 80% and 20%
respectively. Moreover, the 5-fold cross validation was also
utilized with 20% of the training data used for validation set.
Since we have a large number of features (505 columns) for
the dataset, it is necessary for us to reduce the dimensions by
some feature extraction methods.

Fig. 2. Snapshot of one airfoil shape file

Fig. 3. Snapshot of the CFD result file for one airfoil shape

B. Feature Extraction

Feature extraction is a process of dimensionality reduction
by which an initial set of raw data is reduced to more
manageable groups for processing. The data input data set
has a size of 5, 000, 000 × 505, a total of 505 parameters to
be modeled. Two feature extraction methods are implemented
for a high efficiency and accurate model, dense and dropout
regularizations. Dense layer provides a fully connected neural
network system, which condense the dimension of perceptrons
by a given weights. It is one of most common and useful
hidden layer to be utilized nowadays. Dropout regularization,
on the other hand, randomly drops parts of its information
to prevent overfitting, especially useful when we dealing with
data type with 10−4 difference.

IV. METHODS

After we generate the dataset, we construct Multi-layer
neural network (MNN) surrogate models for Cl, Cd and
Cm separately. All the models have similar neural network
structures. This section describes the neural network structure
of the MNN surrogate model, as well as the verification
methods we use to check the accuracy of the model.

A. Multi-Layer Neural Network

Multi-layer neural network (MNN) provides the solution for
the classification of input parameters, from which, Coefficient
of drag (Cd), lift (Cf ), and pitching moment (Cf ) can be



extracted. The way neural network gain its capability of
distinguish varies parameter inputs is by add sophisticated
hidden layers along with proper activation function within
its structure. Each hidden layers contribute to the feature
extraction. More specifically, on each hidden layer, the MNN
will transform data information from previous layers under
certain feature extraction methods and then integrate to the
next one by applying proper nonlinear function, for example,
Rectified Linear Units (ReLU). The process ends when it
reaches the output layer. MNN will extract parameter features
and each hidden layer and automatically allocate the informa-
tion within certain output. Fig.4 provides a simple multi-layer
neural network with two layers. ReLU is the most commonly
used activation function in deep learning models. The function
returns 0 if it receives any negative input, but for any positive
value x it returns that value back. So it can be written as

f(x) = max(x, 0). (2)

Fig. 4. Neural Network with two hidden layers.

The construction process of MNN model is shown in Figure
5 and described as:

1) Preprocess the input parameters with MinMaxScaler.
2) Build up mutiple-hidden-layer neural networks with

dense and dropout feature extraction, followed by ReLU
activation function (2).

3) Set the cost function to RMSE between training data
and MNN predictions.

4) Train MNN model with rmsprop optimizer via batch
optimization.

5) Calculate RMSE and relative error of training and vali-
dation sets to avoid overfitting

Figure 6 provides a snapshot of MNN model within tf.keras
tool.

B. Optimizer

The optimizer is selected to be rmsprop, which deals
with problem that gradients may vary widely in magnitude.
Rmsprop stands for root mean square prop algorithm, which

Fig. 5. Construction process of MNN model [8].

Fig. 6. Snapshot of MNN model within tf.keras tool

keeps the moving average of the squared gradients for each
weight. Mathematical representation can be written as:

E[g2]t = [g2]t−1 + (1− β)(
∂C

∂w
)2, (3)

wt = wt−q −
µ√
E[g2]t

∂C

∂w
, (4)

where E[g] is the moving average of quared gradients, ∂C
∂w is

the gradient of the cost function with respect to the weight.
µ is the learning rate, β is the moving average parameter.
In python tf.keras toolbox, there is existing function to call
RMSprop optimizer. RMSprop is a good, fast stable optimizer.

C. Verification

We select the root mean squared error (RMSE) and relative
errors to verify the accuracy of the trained MNN surrogate
model. The RMSE represents the square root of the second
sample moment of the differences between predicted values
and observed values of the quadratic mean of these differences.
The RMSE serves to measure the accuracy of the trained
neural network model, it is scale dependent, as it compare
forecasting errors of different models for a particular dataset.
The function of RMSE is defined as,

RMSE =

√∑Nt

i=1(Ypred − Yreal)2

Ntesting
, (5)



where Ntesting is the number of testing points, Ypred is from
MNN model prediction, Yreal is real model observations. The
relative error is the ratio of the sum-of-squares error between
the test output and predicted output to the sum-of-squares of
the test output, it can be expressed as

Rel.error =

Nt∑
i=1

(Ypred − Yreal)
2/

Nt∑
i=1

(Yreal)
2. (6)

Since the outputs of our model, Cl, Cd, and Cm, all have
small values between 0 and 1. Large errors are undesirable
in our MNN model . RMSE, particularly, weighs more on
relatively high errors, which can give a better insights of MNN
model performance when comparing with other cost functions
such as Mean Absolute Error (MAE) or Mean Squared Error
(MSE).

V. RESULTS

A. Convergence Study

We first investigate the depth of neural network structure
needed to train a good surrogate model. To train the MNN
surrogate model, we use RMSprop optimizaer, RMSE loss
function, and we set epochs equal to 70, batch size equal
to 100. We compared two MNN structures, the first has 5-
hidden-layer neural networks,with dense and dropout feature
extraction, followed by ReLU activation function, the second
one has 10 layers of neural networks, also with feature
extraction and followed by ReLU. The loss vs epoch plots of
both structures are shown in Figure 8, from which, we observe
that for both MNN strcutures, our models converges with
70 epochs, and there is no over fitting observed. Therefore,
we decide to use 5-hidden-layer neural networks for a faster
computation time.

Fig. 7. Calculated model RMSE comparison between validation and training
data

B. Accuracy Results

Once we decide on the specific MNN model we use to train
the surrogate models, we want to compare the RMSE and

relative errors to check the accuracy of our trained models.
A proper estimation of of RMSE is within one standard
deviation of testing points, which is expected to be about 10%.
For relative verification metrics, relative error within 1% is
anticipated [8]. The key verification metrices are shown in
TableI. The RMSE values are all below 1% meaning they are
all good global surrogate models. The relative errors are well-
controlled as they are less and equal to 1% .

TABLE I
TABLE TITLE

Model RMSE Relative Error
Cl 0.935% 0.147%
Cd 0.000331% 0.287%
Cm 0.00231% 1.00%

C. Visualize the Results

To better visualize the results of our trained model, we
generate the Cl vs angle of attack plots for one specific airfoil
at Reynold number 3,000,000, and at differnt mach numbers.
The plots are shown in Figure V-C. It shows that the predicted
Cl fits very well with the real Cl data at vairous conditions.

Fig. 8. Airfoil AG34, Cl vs alpha plots

VI. CONCLUSION

In this project, we construct three MNN surrogate models
to predict Cl, Cd and Cm of different airfoils at various
conditions. We parametrize the airfoil shape with 251 points,
and run CFD simulations of each airfoil under different
condtions to generate the dateset. We then train the MNN
surrogate model with five hidden-layer neural networks. The
surrogate models have been verified to have very small RMSE
and relative errors, which proves the accuracy of the surrogate
models. With the trained surrogate models, analysis of the
aerodynamic performance of an airfoil can be done accurately
and efficiently. It enables the potential of optimizing an airfoil
shape, which may take a large number of iterations, for specific
aerodynamic performance requirement.
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