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BACKGROUND

=  Autonomous vehicle: a super computer running on the road.
= A self-driving car has already been involved in five deaths since 2016.

= Perception of objects from image: discern traffic signs, other vehicles, bicycles, and pedestrians.
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Lane Detection Using Computer Vision
(Reference: https://youtu.be/f]BHd5S6jgo)
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Computer Vision Mask Semantic Segmentation
(Reference: https://youtu.be/N_g5rO3yj-U)



BACKGROUND — CONT.

= Semantic Segmentation: classifies each pixel in image and represents different categories to color.
= Commonly used method: U-Net, SegNet, DeeplLab series, FCN, ENet, ICNet, DFN, CCNet , and etc.

= Fully Convolutional Network (FCN): learn mapping in pixel-level prediction , but low resolution.

Figure I: Original Input Image Figure Il: Output Segmented Image
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DEEP LEARNING CAN HELP SOLVE THIS PROBLEM

= In deep learning, human gives the rules then neural network learns by itself.
= Wide coverage and good adaptability on different condition.

= More effective on target classification with limited data sets such as U-Net.
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Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net:
Convolutional networks for biomedical image segmentation.
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DETAILS ON THE DATASET

= The Cityscapes Dataset: semantic image annotation of urban street scenes. m CITYSCAPES
)

= Complexity: 30 classes such as humans, cars, road, sky, and etc. DATASET
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LITERATURE SURVEY

High-res > Low-res > High-res
(a)@ @ @ @

= (a) Learning low-resolution representations
Compute low-resolution representations by removing the fully-connected layers in a classification network,
and estimate their coarse segmentation maps

= FCN, ResNet, VGGNet, and etc.

= Problems: output resolution
FCN-32s FCN-16s FCN-8s Ground truth

forward /inference

<

o backward/learning

Example of using FCN

Jonathan Long, Evan Shelhamer, Trevor Darrell. The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 3431-3440
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LITERATURE SURVEY — CONT.

High-res > Low-res > High-res

P o

= (a+b) Recovering high-resolution representations
Use up-sample process to gradually recover the high-res. representations from the low-res. representations

‘___

=  Some models can also maintain high-resolution representations

= DeconvNet, U-Net, SegNet, encoder-decoder, HR-Net and etc.

Example of DeconvNet
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Alex Kendall, Vijay Badrinarayanan and Roberto Cipolla. SegNet H. Noh, S. Hong and B. Han, "Learning Deconvolution Network for

Semantic Segmentation," 2015 IEEE ICCV, Santiago, 2015, pp. 1520-1528 7



DETAILS ON THE MODEL USED

HRN etVZP J. Wang et al, "Deep High-Resolution Representation Learning for Visual
Recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020
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= Forward propagation block (similar to ResNet block)
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DETAILS ON THE MODEL USED — CONT.

J. Wang et al., "Deep High-Resolution Representation Learning for Visual
H RN etVZP Recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020
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= Rules of multi-resolution fusion

R;)utput = Z far (Rgicnput) , v =1,2,3
x

downsample (stride = 2,3%X3 conv), x<r l
fxr(R) = R x=r ﬁ I
upsample (1x1 conv), xX>r @x > 7

where R is the representations,  is resolution index and
[, (+)is the transform function.
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RESULTS/OBSERVATIONS
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= Our predicted results (false color) can successfully indicate the classes, such as cars, human, constructions
and roads, after 100 epochs.

ECE228 Final Project — Group 73



RESULTS/OBSERVATIONS — CONT.

However, we found something like the
traffic signs cannot be predicted very well.

= Reasons:

"  We use cross-entropy as loss function and
the weighs of all classes are the same

= Area of traffic signs are small, so they hardly
contribute to the loss, while large-area
classes like road, sky and constructions make
much contribution to the loss
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FURTHER ITEMS TO BE COMPLETED

= Improvement of loss function

= Construct label mapping matrix
= not all of the labels are useful; some of them can be ignored (eg. -1 for void)

= Construct the class weight tensor
" Increase/decrease some of the weight

" Need several experiments

= loU (intersection over union)

= Calculate the new confusion matrix
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