GROUP 8 - IMAGE INPAINTING WITH GENERATIVE ADVERSARIAL NETWORK

Chia-Wei Hsieh A59004366, Chin Lee A59005092, and Hsin-Chien Chang A59005404

Department of Electrical and Computer Engineering at UC-San Diego

ABSTRACT

For the challenge of inpainting missing parts in an image,
recent deep learning-based techniques have demonstrated
promising results. In this paper, we designed a deep neural
network to deal with the task of image inpainting. The goal of
this task is for the model to gain whole image understanding
and generate plausible results for missing parts in an image.
Our model has a GAN structure with a generator and a dis-
criminator. For the generator part, we designed architectures
similar to the UNet and ResNet. For the discriminator, we
used simple convolutional neural networks in combination
with feed-forward neural nets. We trained our network with
loss functions that incorporate pixel-wise reconstruction loss
and adversarial loss. The model is trained on the COCO
dataset provided by Microsoft. Results demonstrate that the
models are capable of generating missing patches and provide
useful applications.

Index Terms— generative adversarial network, image
generation, UNet, ResNet

1. INTRODUCTION

The task of filling empty pixels in a picture, also known as Im-
age Inpainting, is crucial in computer vision. Its application
includes object or text removal, automatic modifications of
images and videos, and computational photography [1, 2, 3].
The most challenging aspect of image inpainting is creating
visually realistic and semantically believable pixels patches
for missing parts in the image. Early attempts sought to over-
come the problem by direct inferencing from surrounding re-
gions. The method typically copies or samples patches from
the background to propagate through the missing hole on the
image [1, 4]. However, they fail when encountering unique
image contents such as complicated, non-repetitive structures
(faces, objects). Therefore, many NN-related studies come
out to deal with the task.

In this project, we designed a deep generative model for
the image inpainting task. Following the general structure
of GAN which consists of a generator and a discriminator.
A generative convolutional network with an encoder-decoder
structure can preserve high-level recognition and global struc-
ture of images, as well as achieving with low-level pixel syn-
thesis. Therefore, we designed three kinds of auto-encoder
models for the generator. One has a ResNet-like architec-
ture [5], another is a UNet-based model, and the other is the
combination of the previous two. Each model is then jointly

trained with the discriminative networks to improve consis-
tency between generated and original images. The input to
our algorithm is an broken image. We then use a Genera-
tive Adversarial Network to output a predicted residual map
which contains the missing part of the input. And the code
and results are sharing with the course of ECE 285.

2. RELATED WORK
Existing image inpainting researches can be categorized into
two different types. Traditional diffusion-based or patch-
based approaches make up the first group. The second group
uses statistical or machine learning strategies to handle the in-
painting problem, such as training deep convolutional neural
networks to forecast the missing pixels.

2.1. Diffusion and Patch-based Approaches
Traditional diffusion or patch-based techniques, for example,

often apply various mathematical algorithms on surrounding
pixels to transfer information to the missing regions [6, 4,
7]. Patch-based methods often search through the undam-
aged part of the image for matching replacement patches.
Diffusion-based approaches usually smoothly propagate im-
age content from the boundary to the interior of the missing
regions. These methods are effective for uniform textures but
have limitations when applied to more complex images such
as portraits or photographs. A bidirectional patch similarity-
based method [8] is proposed to tackle this issue, but the com-
putation is expensive for patch similarities and its practical
use is thus limited.

2.2. Deep Learning and GAN
Deep learning and GAN-based models show promising re-

sults in the image inpainting tasks. In particular, Autoen-
coders are widely used as the generators in this architecture.
Different structures of Autoencoders also have crucial effects
on texture synthesis as information flows differently through
the information bottleneck [9, 10]. The framework usually
consists of an encoder and a decoder. The encoder learns an
abstract representation of a set of data, and the decoder tries
to reconstruct the original input from that representation. The
model is thus forced to learn the important properties in the
input data. Various approaches such as Skip Connection and
Residual Connections are implemented to improve the gradi-
ent flow and quality of the result [11, 12, 13]. Early works
trained Convolutional Neural Networks to inpaint smaller re-
gions [14, 15]. GAN (Generative Adversarial Networks) [16]

architectures provide a substantial performance boost to tex-
ture generation for CNNs. Various GAN-based architectures
are proposed in the past few years. Context Encoders [17] ex-
perimented with generative loss and adversarial loss training
on much larger missing patches. Its result shows incorporat-
ing the adversarial loss improves the overall model perfor-
mance. Recent work by lizuka et al. [18] incorporates both
global and local context discriminators. The global discrim-
inator ensures the entire image is coherent, while the local
discriminator only focuses on the area around the generated
pixels. Sharing the similar idea of utilizing both global and
local information, Demir et al. [19] applied PatchGAN and
global GAN (G-GAN) to the image inpainting task. Patch-
Gan uses a sliding window for the discriminator to examine
each patch of the image, ensuring the local continuity. The
global discriminator is used to capture the holistic features in
the generated image.

3. DATASET

i

(e)Randomly Cropped part

(a) Iconic object images (b) Iconic scene images (c) Non-iconic images

Fig. 1: Example of (a) iconic object images, (b) iconic scene
images, (c) non-iconic images, (d) resized coco images, and
(e) randomly cropped part.

We obtain the images from Microsoft COCO(Common
Objects in Context) dataset [20]. The dataset contains a wide
variety of objects and scenes, including iconic object im-
ages, iconic scene images, and non-iconic image. As Fig. 1
shows, iconic object and scene images are easily distinguish-
able, such as an image of a dog, a car, or a forest or desert.
Non-iconic images contain several objects in a more complex
scene. For the image inpainting task, we generate random
patches that can be as large as one-fourth of the original
image. The train, validation, and testing datasets each have
118k, 50k, and 40k, instances. We resize the image to 224and
set the mean and standard deviation as what PyTorch offi-
cially used for normalizing images. The benefit of matching
the PyTorch official setting is that we can effectively use those
official pre-trained models to design our network. Since the
pictures in COCO dataset are complete without any missing,
we randomize the cropped size and the start point to create
our own broken images for model’s input as shown in Fig. 1.

4. METHOD
The challenge of image inpainting lies in synthesizing realis-
tic and semantically plausible pixels for the missing regions

while maintaining coherency with the whole image. In this
project, we adopt the architecture of generative adversarial
network (GAN)[16] which consists of two networks: a gen-
erator and a discriminator.

4.1. Generator
Both skip connection from UNet[11] architecture and resid-

ual blocks from ResNet[5] pass features from previous lay-
ers to later ones and are widely used in the field of computer
vision[21, 22, 23, 24, 25, 26]. Therefore, we experiment with
both architectures and their combination for our generators.

4.1.1. UNet-based generator
Inspired by Ronneberger etc[11], we design a UNet-based

network Gyne: for the task. As show in Fig.2, this model
has four downsampling blocks as the encoder and correspond-
ing up-sampling blocks as the decoder. Every downsampling
block has two convolutional layers stacked, and each followed
by a ReLU layer[27]. And the decoder is similar to the en-
coder except that the single sub-sampling layers are replaced
with upsampling layers in each block. To fulfill the charac-
teristic of UNet, several skip connections are established be-
tween encoder and decoder to incorporate previous informa-
tion when upsampling.

4.1.2. ResNet-based generator
We also experiment with ResNet50 [12] as the encoder for

our generator GresNet. Instead of letting every few stacked
layers directly fit a desired underlying mapping, it adds an
identity mapping capability and lets these layers fit a resid-
ual mapping. To be exact, denoting the desired underlying
mapping as H (x), ResNet lets the stacked nonlinear layers fit
another mapping of F(x) := H(x) - . The original mapping
is recast into F'(z) + z. The decoder architecture remains the
same as the decoder of our UNet-based model.

4.1.3. Generator with the combination of ResNet and UNet

Additionally, we experiment with combining the UNet and
ResNet GresNet&U Net to create a ResNet-based encoder
with skip connections between encoder and decoder. It inher-
its the characteristics and benefits of two models. The perfor-
mance comparison of above three are illustrated in Sec. ??.

Broken image B cropped out a random size part from
ground truth image gt and serves as input to create the task
of image inpainting. To make our model Gypet / GResnet
focusing on generating the missing part, all generators pre-
dict the missing part as a residual map r. After the genera-
tion, we derive our final result by adding r with B. Let G
as one of GUnet: Gresnet and GResNet&UNet- Our output =
G(B)+ B. To make the result approach to the ground truth gt,
we employed a pixel-wise reconstruction loss to capture the
global structural information and other low-frequency infor-
mation. Also, we calculate the distance between our cropped
out result r with cropped out gt which labeled as gt/:

L, =Y > llr+B=gtli+ > > I =gt |l (D
W H w' H'

g |

Skip Conny

ection
Generator
// g

esul
-
Real? Fake?
e Loss

Discriminator

&£
[& o
Ground Truth

Compute Loss

Fig. 2: Concept of training our model

where W and H represent the width and height of the trans-
formed image, W' and H' represent the width and height of
the missing part, and r represent G(B).

Also, a binary cross-entropy loss is utilized for the adver-
sarial loss is adopted to encourage G'y,,¢; to produce a realis-
tic image:

Léan = (E [log DX+ E _[log(l =D(Y))] @

where £ is the expectation in binary cross-entropy loss, pg:
represents the ground-truth image set, p,.; represents the set
of our result, and D represents the discriminator that will be
introduced in Sec.??. Combining these two, the total loss for
our generator model G is

a?“gmci:nLL1 + LgAN

3
Our goal of GG is to deceive D to discern our result as

real image. Therefore, we try to maximize log(D(G(y))) and
minimize —log(D(G(y))).

4.2. Discriminator
We design a discriminator D as a four-block convolution net-

work. Each block includes one convolution layer, a Batch-
Norm layer, and a leackyRelu layer [28] . After four blocks,
a linear layer is applied to output real or fake for the input im-
age. The discriminator is trained to discriminate ground truth
as the real image, labeling with 1, and generated result as the
fake image labeling with 0. The GAN loss is calculated based
on binary cross-entropy as following:
LE,y =max E [log(D(X))]+ E [log(1-D(G(Y)+Y))]
D Xepge Yepsy
where p;, represents the broken-image set as input data. Witk
the above loss function, our discriminator is updated to distin-
guish the ground truth image and generated image correctly.
Lastly, our final loss function is

&)

arg min max Lgan (Guner, D) + Lr,

Unet

5. EXPERIMENTS

5.1. Implementation Detail
We adopt the GAN[16] architecture for our image-inpainting

model. Therefore, our network is composed of a generator
and a discriminator. The implementation details of both mod-
els and the training process are as follow.

The UNet-based generator is designed with four down-
sampling convolution blocks and corresponding upsampling
blocks. Each downsampling convolution block is composed
of 2 unchanged size convolution layers and a single sub-
sampling convolution layer. All layers contain 3 filters and
are followed by ReL.U layers. But the strides of former layers
are set to 1, and later one is set to 2. The upsampling blocks
are similar to the downsampling blocks but replaced the sin-
gle sub-sampling convolution layer with a upsample layer
in each block. Besides, skip connections are built between
them to consider the previous detailed information when
upsampling. Therefore, a list variable is adopted to store
each output from downsampling blocks and later concatenate
with the output from upsampling blocks respectively before
inputting to upsampling blocks. Additionally, our output
channel numbers are designed as 128, 256, 384, and 512 for
downsampling blocks and designed as 128 for all upsampling
blocks. Therefore, the input channel number of downsam-
pling and upsampling match each other after concatenation.
After these blocks, we built an additional upsampling block to
generate our three channel RGB result based on the previous
features. On other hands, the ResNet-based generator is very
similar to the U-Net based generator since both are followed
the structure of auto encoder. The encoder of ResNet-based
generator is constructed with ResNet50 without average pool-
ing and fully connected layer. The decoder is similar to the
UNet-based model which built with four plus one upsampling
blocks to generate the original size result image. And for the
combination of the two models, we adopt all the setting of
those two models.

For the discriminator, we designed a four-block convolu-
tion network. Each block includes one convolution layer, a
BatchNorm layer, and a leackyRelu[28] layer. Each convolu-
tion layer is set with stride = 2 and contains 5 filters. After
four blocks, a linear layer is adopted to output real or fake for
the input image.

In the training process, we use Adam[29] as the opti-
mizers of generator and discriminator with §; = 0.5 and
B2 = 0.999. Besides, the learning rate for gradient descent
is set as 2e-4 which close to the recommendation of PyTorch
for Adam optimizer, le-4. Furthermore, we didn’t use mini-
batch learning and updating our network for every single im-
age. Because one of our losses is calculating each missing
part r compared with corresponding gt/ has different size
and start point.

5.2. Result
We focus on comparing the architectures of residual blocks

and skip connections on the task of image inpainting. These
two have similar concepts of passing previous information
to the later layers and have been proven to be effective in
several subjects of computer vision. The experiment of our
three models is shown in Fig.3. Unfortunately, we are un-
able to run all the epochs and finish the experiments because
of the high amount of trainable parameters in the models and

skip/residual connections. Therefore, we show and compare
the testing results of each best model of three architectures in
Fig.3 and compare them in the same epochs in quantitative
evaluation.

5.2.1. Quantitative Evaluation
Because of the expensive computation of our models and the

limited GPU resource, our models didn’t finish training with
the CoCo dataset that includes 118K images. Fortunately,
some models still work well when testing after a few epochs
even though they haven’t obtained their local minimum loss.
We evaluate the quantitative performance of our models
with the mean square loss(MSE). For the fairness of compari-
son, we calculate MSE for our three models in the same train-
ing epochs. Since we ran the UNet-based model much earlier
than other models, the model has trained longer and reached
better performance. Therefore, the best UNet-based model is
also included in Table. 1 for further understanding of how
good the model could be after a more completed training.

Table 1: Comparison of our three models and the best UNet-
based model perform on 5k testing data.

Mean Square Error
filling part | whole image
ResNet-based model 0.8423 0.1920
UNet-based model 0.4678 0.0563
ResNet&UNet-based 0.5089 0.063
model
UNet-based model (longer) 0.4532 0.0548

As shown in Table.1l, we can observe that the UNet-
based model (MSE = 0.4678 for filling parts and 0.0563
for whole images) performs much better than the ResNet-
based model(MSE = 0.8423 for filling parts and 0.1920 for
whole images). To our surprise, it is even better than the
model of the combination with ResNet and UNet which is
labeled as ResNet&UNet-based model. However, because
we don’t have the chance to train them for a long time and the
complexity of the UNet-based model is much smaller than
the ResNet-based model, we cannot conclude that the UNet
works better than ResNet. But we could say that UNet works
quite well and converge fast even in a few of training epoch
on the large dataset.

5.2.2. Qualitative Evaluation
As shown in Fig.3, we can observe that both the UNet-based

model and the ResNet&UNet-based model complete the im-
age in-painting task and got similar results. But the ResNet-
based model only changed the color of the blocks near edges
and failed to complete the task. We suspect that it’s be-
cause more and more low-frequency information is lost in
the keeping-deepening and shrinking network. It is therefore
difficult to recover the missing part. Another reason might
be it is too early in the training process and the result might
differ if the training continues. In the following section, we
will focus on the comparison between the UNet-based model
and the ResNet&UNet-based model.

gt’(zoomin) InputB gt gt’'(zoomin)

Input B gt

r’(zoom in)

output r

output r r’(zoomin)

-
e
Gunet | &
. |
G ResNet

G ResNet
&UNet

output r r’(zoomin)

G ResNet
&UNet %

Fig. 3: Testing result of our three models with current best
checkpoints respectively, where r/(zoomm) represents and
gt' (zoomin) represent the close look of filling part of the pre-
diction and the ground-truth missing part.

The left-upper block in the figure demonstrates one of
the usages of image in-painting: removing unwanted objects
and filling them with the surrounding scene. Our models
successfully remove most of the sheep’s body and refill it
with the sky and hill. The right-upper block shows that the
UNet-based model generates a better filling mask than the
ResNet&UNet-based model, especially at the edges of the
missing region. The lower two blocks show that the UNet-
based model performs better for round or curve objects, while
the ResNet&UNet-based model performs better on straight or
sharp objects.

6. CONCLUSION

We experiment with three variants of GAN models on the
task of image inpainting. Each model has a different en-
coder: UNet, ResNet, and the combination of the two. The
result shows all three models are capable of generating miss-
ing patches in the image. Limited by the computing power
and time, we did not finish our entire experiment. Even with
limited epochs, the model shows promising results, and the
difference in performance remains an interesting topic for fu-
ture research.

7. CONTRIBUTIONS

Chia-Wei Hsieh designed and wrote the code of the models.
She is also responsible for the training of U Net. Chin Lee
carried out the training of ResNet the data processing. Hsin-
Chien Chang conducted the training of the ResNet&U Net
and the data processing. The paper is written by all of the
team members.

8.

REPLIES TO CRITICAL REVIEWS

* Critiques by group 3

1.

Overall: The overall goal of the project is clear (to
fix flawed images using DL). GAN is explained
well. The generator architecture is explained
clearly. The code was explained clearly.

Our Response: Thanks.

A suggestion is to mention some specific use
cases where one might have a photo/image with a
flaw and want to fix it. This was discussed briefly
and broadly in the presentation, but a specific,
practical example would help the viewer see why
this is an important problem to solve.

Our Response: See Sec. 1 and 2.

Difference between Diffusion and Exemplar tra-
ditional methods not clear. From the definition on
the slides, they seem like they could be the same
thing.

Our Response: See Sec. 2.1

It wasn’t mentioned how much of the COCO data
was used to train your model. That would be nice
for the viewer to know.

Our Response: See Sec. 3 and 5.1

What was the training/validation/testing data split
used in training the model?
Our Response: See Sec. 3

How much data was used to train the model?
Our Response: See Sec. 3 and 5.1

Why did the team opt to use custom square
patches to create “image flaw” data instead of
the already available segmented areas from the
COCO dataset? Does this have more applications
or help train the model better?

Our Response: We designed our model to train
on fixing broken patches on the image. Different
models can deal with different image inpainting
tasks such as irregular shapes.

. It was mentioned the model will output if the im-

age is real or fake, but wasn’t explained how this
is used in the model or project.

10.

11.

12.

1.

Our Response: See Sec. 4.2, the result is com-
puted with binary cross-entropy and added with
generative loss for the training.

. It would be nice to see numerical results or a

loss/accuracy training curve of the model so one
can know how accurate the model is numerically
speaking. This would also be useful to see how
accurate this method is compared to other meth-
ods.

Our Response: Quantitative results are in Sec.
5.2.

Would be nice to know how many epochs the
model was trained.

Our Response: See Sec. 3 and 5.1. We didn’t
finish all the epochs in time.

From the results, it seems the model only fixes
image flaws where the flawed areas are square
and solid colored? This is what the results shown
seem to imply. May want to consider clarifying if
this is the case or not or show a greater variety of
output images.

Our Response: See Sec. 5.2. The model is able
to generate patches with ambiguous shape of de-
sired output. Again, with more training epochs
the model may produce better results.

The filled in image areas from the outputs in the
results section seem rather blurry, in some outputs
more than others (as was mentioned in the presen-
tation). Could add an explanation for why this is
the case.

Our Response: We didn’t finish all the epochs in
time. With more training epochs the model may
produce better results.

* Critiques by group 20

Overall, the presentation and code illustrations
are informative and easy to follow. Also, the
problem to solve is refreshing and interesting. In
my opinion, Group 8 did a good job in explaining
what the problem is and what dataset includes
by giving informative images. The model and
results are illustrated well with diagrams and in-
put/output images.

Our Response: Thanks

. The Literature part is vague and details of other

people’s work are not included. Also, references
are not shown. Giving a big picture of what dif-
ferent approaches to this problem have been de-
veloped will make it more informative.

Our Response: See Sec. 2

. For the Result section, it’ll be better if the dif-

ferences between the output and ground truth are

presented with numbers, as losses or accuracies.
And a plot of training and validation accuracy
will give the audience more information about
the training Process.

Our Response: See Sec. 5.2

4. In the Future Work part, it was mentioned that the

batch size can only be 1 so that the group would
look into finding another model. It is not clear
why larger batch sizes cannot be used. And it
should be better if more details of the alternative
were given since we are approaching the end of
this quarter.
Our Response: The models are large with a high
amount of trainable parameters. We used datahub
for our training, and larger batch sizes may cause
errors in the kernel.

* Critiques by group 36

1. The intro was clear and concise. The motivation
behind reconstructing images using inpainting
was made really clear.

Our Response: Thanks

2. Deep learning is said to be widely used to improve
on inpainting, but neither how or why are very
well described. Nor are the different deep learn-
ing methods described in the background slides,
so it makes the choice for the deep learning meth-
ods seem arbitrary, or not well thought out. Per-
haps explaining the different deep learning tech-
niques would help the reader understand what is
going on during the presentation
Our Response: See Sec. 1 and 2. Motivations and
various deep learning model are discussed.

3. The differences between traditional computer vi-
sion methods are more inferred than stated, by
simply explaining how traditional methods work.
It would be nice if a deeper explanation of the
deep learning was provided
Our Response: See Sec. 1 and 2

4. Traditional methods are mentioned, but there is
no clear demonstration of their effectiveness. Al-
though it is meaningful to say that deep learn-
ing does better, perhaps a numerical explanation
of the differences or even a visual demonstration
would be a more effective way of demonstrating
the shortcomings of traditional methods
Our Response: We didn’t focus on the perfor-
mance differences between traditional models and
deep learning models. We focused more on the
three variants of generators we used in our exper-
iments. Perhaps future research can focus on this
topic.

(1]

(3]

[4]

(5]

5. The discriminator is said to provide scores for the
images, but the method of determining the score
is a bit unclear’

Our Response: See Sec. 4.2

6. It would be nice to see the numbers supporting
the conclusions drawn. For example, the discrim-
inator and decoder are said to get better with time
as they try to outperform each other, but no num-
bers are given to demonstrate this concept. Simi-
larly, the generated images are compared with the
ground truth and are said to be blurry. While this
is a valuable conclusion, it would also be nice to
see the numerical accuracy of the model.

Our Response: See Sec. 5.2. Unfortunately, we
didn’t finish all the trainings in time, so the results
remain blurry and unfinished.

7. A more detailed explanation of the model that is
going to be implemented would be nice, along
with the reasoning behind not being able to train
with more than one batch
Our Response: See Sec. 4 for the details of the
models. We could only train with a batch size of
1 because of the limitation of computing power.

9. REFERENCES

Connelly Barnes, Eli Shechtman, Adam Finkelstein,
and Dan B Goldman. Patchmatch: A randomized corre-
spondence algorithm for structural image editing. ACM
Trans. Graph., 28(3):24, 2009.

Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair
Weiss. Seamless image stitching in the gradient do-
main. In European Conference on Computer Vision,
pages 377-389. Springer, 2004.

Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexan-
der G Schwing, Mark Hasegawa-Johnson, and Minh N
Do. Semantic image inpainting with deep generative
models. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 5485-5493,
2017.

Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles,
and Coloma Ballester. Image inpainting. In Proceed-
ings of the 27th annual conference on Computer graph-
ics and interactive techniques, pages 417-424, 2000.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition,
2015.

Coloma Ballester, Marcelo Bertalmio, Vicent Caselles,
Guillermo Sapiro, and Joan Verdera. Filling-in by joint
interpolation of vector fields and gray levels. IEEE

(7]

(8]

(9]

(10]

(1]

(12]

(13]

(14]

[15]

[16]

(17]

transactions on image processing, 10(8):1200-1211,
2001.

Alexei A Efros and Thomas K Leung. Texture synthesis
by non-parametric sampling. In Proceedings of the sev-
enth IEEE international conference on computer vision,
volume 2, pages 1033-1038. IEEE, 1999.

Denis Simakov, Yaron Caspi, Eli Shechtman, and
Michal Irani. Summarizing visual data using bidirec-
tional similarity. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1-8. IEEE, 2008.

Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie,
Yoshua Bengio, Pierre-Antoine Manzagol, and Léon
Bottou. Stacked denoising autoencoders: Learning use-
ful representations in a deep network with a local de-
noising criterion. Journal of machine learning research,
11(12), 2010.

O. Ronneberger, P.Fischer, and T. Brox. U-net: Con-
volutional networks for biomedical image segmenta-
tion. In Medical Image Computing and Computer-
Assisted Intervention (MICCAI), volume 9351 of
LNCS, pages 234-241. Springer, 2015. (available on
arXiv:1505.04597 [cs.CV]).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

Rolf Kohler, Christian Schuler, Bernhard Schélkopf,
and Stefan Harmeling. Mask-specific inpainting with
deep neural networks. In German conference on pattern
recognition, pages 523-534. Springer, 2014.

Li Xu, Jimmy S Ren, Ce Liu, and Jiaya Jia. Deep
convolutional neural network for image deconvolution.
Advances in neural information processing systems,
27:1790-1798, 2014.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
networks. In Proceedings of the International Confer-

ence on Neural Information Processing Systems(NIPS),
2014.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue,
Trevor Darrell, and Alexei A Efros. Context encoders:

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

[27]

Feature learning by inpainting. In Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pages 2536-2544, 2016.

Satoshi lizuka, Edgar Simo-Serra, and Hiroshi
Ishikawa. Globally and locally consistent image
completion. ACM Transactions on Graphics (ToG),

36(4):1-14, 2017.

Ugur Demir and Gozde Unal. Patch-based image in-
painting with generative adversarial networks. arXiv
preprint arXiv:1803.07422, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr, and
C Lawrence Zitnick. Microsoft coco: Common objects
in context. In European conference on computer vision,
pages 740-755. Springer, 2014.

Jonathan Long, Evan Shelhamer, and Trevor Darrell.
Fully convolutional networks for semantic segmenta-
tion. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3431-3440,
2015.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional ad-
versarial networks. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pages
1125-1134, 2017.

Liang-Chieh Chen, George Papandreou, Iasonas Kokki-
nos, Kevin Murphy, and Alan L Yuille. Deeplab:
Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE
transactions on pattern analysis and machine intelli-
gence, 40(4):834-848, 2017.

Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens
Petersen, and Klaus H Maier-Hein. nnu-net: a self-
configuring method for deep learning-based biomedical
image segmentation. Nature methods, 18(2):203-211,
2021.

Zheng He, Xueli Wei, Kangli Zeng, Zhen Han, Qin Zou,
and Zhongyuan Wang. Low-quality watermarked face
inpainting with discriminative residual learning. In Pro-
ceedings of the 2nd ACM International Conference on
Multimedia in Asia, pages 1-6, 2021.

Rushi Lan, Haizhang Zou, Cheng Pang, Yanru Zhong,
Zhenbing Liu, and Xiaonan Luo. Image denoising via
deep residual convolutional neural networks. Signal, Im-
age and Video Processing, 15(1):1-8, 2021.

Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In Icml, 2010.

[28] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng.
Rectifir nonlinearities improve neural network acoustic
models. In ICML Workshop on Deep Learning for Au-
dio, Speech and Language Processing, 2013.

[29] Diederik P. Kingma and Jimmy Ba. Adam:a method for
stochastic optimization. In The 3rd International Con-
ference for Learning Representations, 2015.

