
GROUP 28
MUSIC GENERATION WITH NEURAL COMPOSER

Lynsey Johnson, Sushmitha Kudari, and Avinash Mallavarapu

University of California San Diego, La Jolla, CA 92093-0238,

ABSTRACT

Since the beginning of great composers, music has al-
ways been a painstaking process to write and compose. This
process no longer needs to be restricted to manual labor done
by humans, but instead can be automated using AI. Hacker-
Poet has built a neural composer that is trained on a MIDI
dataset of video game theme songs and outputs an artificially
generated game theme song. The architecture is composed of
an encoder and a decoder which take in Midi files and gener-
ate piano roll format from which the model learns. While the
idea of a neural composer is not a new one, we aim to mod-
ernize and generalize HackerPoet’s Composer. The code that
HackerPoet has presented is deprecated and archaic. We have
modified the existing repository to be more robust and user
friendly. Through this replication and restoration process we
were able to generate tonal sounds that somewhat resemble
modern day abstract music.

Index Terms— autoencoder, generative adversarial net-
work, GAN, neural network, note complexity, music gener-
ation

1. INTRODUCTION

A neural composer would remove the need for the
painstaking work of composing snippets of music for dif-
ferent scenarios. It serves as an optimizer in both memory
and speed for small movie scores, video games and sound
effects. This would allow video games and movie scores to
be generated on the fly without needing human interference.

HackerPoet has built a neural composer that is trained on
a MIDI dataset of video game theme songs. Currently, the
composer converts all training data into piano roll format and
treats every note as a single strike with no holds, decompos-
ing 96 note samples into time steps of 96 units per measure
and adding a third dimension of 16 measures to capture the
symmetry of repeated measures and motifs in highly struc-
tured songs. Each measure is encoded into a feature vector,
which then is fed into an autoencoder which produces another
feature vector for the entire song, then is finally run through
decoders to be converted back into independent measures.
The baseline composer network is essentially two identical
encoders with opposite feed directions. The hyperparameters

for each measure encoder are then adjusted to improve the
results. The model for the Neural Composer itself is not a
complete one. While it sounds good in the videos seen on-
line, the composer is not robust enough to handle piano roll
music and therefore needs modifications and upgrading. Af-
ter our adaptations to this Neural Composer, the model takes
no input since this is a Generative Adversarial Network. The
output is a series of notes put together to produce a “semi-
fluid” song.

2. RELATED WORKS

The idea of artificial music generation came about in
1988. The first GAN was a mulit-layer perceptron that
composed music on the principles of “creation by refine-
ment.” This model used gradients to learn “musicality.” As
the model took a gradient walk, it would select the tones that
sounded the most pleasant. Peter M. Todd then built on this
feed-forward network by using a regressive neural network
(RNN) to generate music sequentially in 1989[?]. He used
a windowed method of processing successive time-periods
of melodies similar to speech applications at the time. His
model was reusing the results of the prior calculations and
learning temporal sequences.

Douglas Eck and Jurgen Schmidhuber built on the
recurrent network model with Long short-term memory
(LSTM) structure in 2002 [4]. LSTM is commonly used
in language generation to teach models to remember prior
contexts of long sentences so the whole structure of the sen-
tence is understood. LSTM networks utilize a cell state that
windows through processing gates that measures and recog-
nizes similarities throughout different segments of a large
piece of data (e.g a long sentence or a song). LSTM models
are designed to learn long term dependencies and patterns
making it especially useful to composition applications. Sim-
ply put, they were using self attention to remember portions
of songs that were heard previously and use what is being
learnt in the current context to generate music in the same
structure.



3. DATASET AND FEATURES

The dataset we used was generated and compiled by
Colin Raffel in “Learning-Based Methods for Comparing
Sequences, with Application to Audio-to-MIDI Alignment
and Matching”. Raffel generated the dataset by developing
a series of learning-based methods to compare, identify and
match entries in the Million Song Dataset. These entries are
then converted to audio files and to MIDI format. Researchers
at the Music and AI Lab derived labels for the genres of audio
files contained in the Lakh MIDI Dataset based on their map-
ping to the Mission Song Dataset and converted them to piano
roll format. The piano roll data divides the MIDI file into five
different separate tracks including drums, piano, guitar, bass
and strings. Our group wrote a script to pull all the labels
identified as Jazz from the dataset, removing duplicates from
different sources (lastfm, tagtraum, etc), ending with about
2500 Jazz labeled MIDI songs in total.

3.1. Data Preprocessing

Since the dataset contained real jazz songs from a variety
of sources, we needed to normalize the dataset for training.
We first read in all 2500 MIDI songs identified as jazz and
converted them to numpy arrays for ease of use in python
using the mido library. The input MIDI songs were mixed
between octave intervals and a hundred twenty-eight note, or
quasihemidemisemiquaver intervals. For the latter, we con-
verted those to octave intervals as a first iteration of normal-
ization. Then the samples were then divided into measures
using the equation

tm = tabs ∗ n/tx. (1)

Where tm is equal to the number of beats in a measure, tabs
is the absolute time relative to the start of the track, n is the
number of samples per measure equal, and tx is the number
of ticks per measure in the song. We then added zero-padding
around each measure of the size [n x n] for the model to more
easily identify and discern measure structure from in training.
Lastly, we binarized the notes to make the songs more similar
to a uniform time series type data input and cropped the note
arrays to sixteen measures centered around the midpoint of
each song.

4. METHODS

We begin by decomposing single note samples into sin-
gular time steps. Each song is represented as a 3 dimensional
array of size 16x96x96. Each measure (size 96x96) is then
passed through 16 different fully connected layers to gener-
ate feature vectors having sizes of 200 which represent the
input measures. These 16 feature vectors are concatenated
and passed through another encoder to generate a song fea-
ture vector. The bottleneck layer has a size of 120. Once we

have the latent representation of the song, we pass it through
a dense layer to get 16 feature vectors. These feature vec-
tors are then propagated through a second decoder to convert
back into independent measures. The loss function is a com-
bination of reconstruction loss and latent (VAE) loss. The re-
construction (L2) loss is used to compare the generated song
and input song. L2 loss tries to predict the the mean of the
distribution to minimize the MSE. This can lead to distortion
in the output signal. To alleviate this issue, we add a latent
loss. Latent loss is the same as the KL divergence loss which
penalizes the model if the latent vector (dim = 120) doesn’t
come from a gaussian distribution with zero mean and iden-
tity covariance matrix. The Neural composer was then trained
for 500 epochs at a learning rate of 0.001 with batch size 350.
RMSprop optimizer was used to train the model.

Fig. 1. Variational Autoencoder Model

Convolutional GANs have shown promising results in
modeling image generation. Inspired from MidiNet and
HackerPoet, we develop a convolutional GAN to gener-
ate music. The generator network consists of 4 transposed
convolutional layers which help in transforming the input
noise vector to a song vector of size 16x96x96. Each trans-
posed convolution is followed by batch normalization and
LeakyRelu activation. The discriminator network consists
of 4 convolutional layers. Instead of using pooling layers,
we decided to use strided convolutions. After applying the 4
convolutional layers, we finally apply a sigmoid activation to
get an output in the range [0,1] (determines the probability of
a song being real or fake).



5. EXPERIMENTS/RESULTS/DISCUSSION

A large part of our experiment in this project was cen-
tered around the configuration of the data as input to the au-
toencoder model. Using audio files was a new realm for all
individuals in the group and proved to have a steep learning
curve associated with working with music samples as train-
ing data. The characteristics of the domain of music as a
whole was a challenge in itself as we had to learn metrics for
normalizing our data based on song sampling, tempo, note
frequency, progression and measure structure. Additionally
a larger chunk of time than anticipated was spent getting the
reference variational autoencoder model working as it was us-
ing unsupported keras and tensorflow versions. The process
of modernizing the network and all the dependencies was well
above what we estimated as a group in our project plan.

For our functional music generation experiments, we
trained the variational autoencoder and evaluated results iter-
atively through 500 epochs of training. At each evaluation
step we recorded the loss and submitted two audio samples to
the decoder/predictor to test the models progression. The first
sample sent to be tested on the decoder was a real song pulled
from the dataset in the same preprocessing format to those it
was trained on. The second sample submitted to the decoder
was an array of random noise shaped in the same dimensions
as the preprocessed data. The purpose of this experiment was
to determine how developed the feature vector trained by the
autoencoder portion of the model was, and how much it would
change either sample.

Fig. 2. Variational Autoencoder Training Loss by Epoch

Figure 3, shows the predicted song audio complexity
using a true song input as input. As epochs increase, the gen-
erated song starts to more closely resemble the note complex-
ity of the input song. This shows that the model did in fact
learn patterns of chord progression stylistic qualities seen in
the jazz dataset. Instead of diverging and adding more variety
of musical notes, the decoder uses the feature vector to keep
consistent yet built upon the input song. The produced song
in the end still looks very much like a real song.

Fig. 3. Variational Autoencoder Prediction Results on Real
Data

Alternatively, figure 4 presents the decoded song au-
dio complexity using a random noise array reshaped to look
like the input data. The note complexity of the random noise
vector is much higher than that of the real data input dis-
cussed in the previous experiment portion as it does not follow
any stylistic note grouping or music chord progression. The
model struggles refining the chaotic noise input to something
that looks more song-like using the trained feature vector in
early epochs, but as they increase the model is successful in
refining the song to the level of complexity and uniformity
of the training data. This tells us that the model has indeed
learned the jazz stylings enough to refine a random noise in-
put to appear to be a unique song with similar note complexity
to the training data. The average note complexity of the train-
ing set is about thirty notes per song, which is close to where
the model converges as epochs increase.

Fig. 4. Variational Autoencoder Prediction Results on Ran-
dom Noise Data



The complete code to our data preprocessing, ran-
dom noise generation, experiments, results compilation, and
attempt and modernizing other models can be found in the
GitHub repo linked below.

https : //github.com/eroooon/ECE228P roject

6. CONCLUSION

Reconstructing and updating HackerPoet’s Neural composer
was much more complex than intended. We discovered that
using music as a datasource is much different than image pro-
cessing. There is a new layer of complexity involved be-
cause of the element of temporal frames. Overall, our re-
constructed model trained well on the data it was given after
it went through normalization and preprocessing. A new dis-
covery we made was how representative the output of GANs
are of their training datasets. This concept most likely trans-
lates over to GAN images as well. We do wish that we had
more resources such as better audio data sets and lesser com-
plex models than we intended to build so that we could have a
point of comparison using the same training dataset. Overall
it is very evident to see that unlike classifiers and most other
networks, GANs are very unique in their ability to replicate
human behavior and may soon be surpassing humans in the
world of art.

7. CONTRIBUTIONS

7.1. Lynsey Johnson

Primarily MIDI dfdata preprocessing, pianoroll formatting as
binary temporal tonal representations of various instrument
notes, and preparing the isolated bass, drums, guitar, piano
and string tracks to learn. Due to processing and resource
limitations, Lynsey performed the training experiments and
compiled the results. Lynsey also attempted to implement a
MidiNet Composer to compare it to Hacker Poet’s Composer.

7.2. Sush Kudari

Implemented the Hacker Poet’s Neural Composer to use as a
comparison composer. Since the output is generated music
and does not fall under classification, she looked into how to
compare the output of the final song’s complexity to the other
songs generated during the model’s training. Wrote helper
scripts to support the other two members.

7.3. Avinash Reddy

Attempted to implement the progressive training technique on
Neural Composer which would help stabilize the training of
the GAN. He performed experiments by making tweaks in the
architectures used in Neural Composer (for eg:- using trans-
posed convolution in place of max unpool in the generator
network)

8. REPLY TO REVIEWS

8.1. Group 15

The project is really interesting and their goal is pretty
clear.Strong Explanation on neural composer model (Varia-
tional AE model). Great presentation from all. It would have
been better to see the presenter’s cam.Is there any reason that
you used Jazz MIDI for the neural composer model and the
Jazz piano roll data for the progressive MidiNet model? How
about using both models for both data and comparing the re-
sult?Did you use the MiDiNet and Convolutional Gan model?
There are no results for them? We did not use a Convolutional
Gan. Out neural composer is an autoencoder model.

Response: We attempted to implement the MiDiNet
model but the code is very legacy.

Would have been nice to have a loss plot for both training
and test and lasso for all 3 models that you used.

Response: Since this is a GAN we do not have a test-
ing phase in our model.

8.2. Group 24

The presentation and demo were well organized and
clear. They gave an in-depth explanation on why creating
a music generator is important and what research has been
done. Comparing the performance of the MidNet and the
Neural Composer Model is a very interesting idea because
these two models have totally different architectures; one
used a generator and discriminator whereas the other used
an autoencoder. The talk also explained the dataset, network
architecture of the MidiNet and the Neural Composer Model
and presented visualization on the results. The “Proof of
Increasing Complexity over Epochs” shows that the model is
able to learn and create more complicated outputs. For the
demo at the end, the output music file sounds like it only has
one note and what might be the reason?

Response: There are actually multiple notes present
in this song. The output just doesn’t sound like our expected
“music.” That is why we hear it as one singular note. The
reason for this “odd output” is that our input data set sounds
very similar to this output. We sample the input in such a way
that the data our model trains on is similar sounding.

How to test/ show the discriminator of the MidiNet
works well on detecting bad generated songs?

Response: There is no such thing we define as a “bad”
song. We only define songs in terms of their complexity. The
reason the song may have sounded “bad” was because it was
trained on a dataset that sounded like that. We also did not
implement MidiNet due to its large complexity. If we were
to have used MidiNet then any sound or pattern not found in
the training set would be classified as “non optimal” for the
output.

Also having comparisons between the performance of
the MidiNet and the Neural Composer Model would be nice,

https://github.com/eroooon/ECE228_Project


like which model performs better?
Response: We opted out of the MidiNet because the

Neural Composer itself was unable to run properly. But our
hypothesis is that this is subjective. Given the closed loop na-
ture of GANs, we predict that overtime MidiNet would be the
preferred. It is difficult to tell without actually implementing
it

Could you please give more details on how to mea-
sure the performance of the models? Like how to score the
output songs?

Response: A song scored points on complexity based
on its ability to produce a number of unique notes and the
number of times a note was repeated. This is because the
number of times a note repeats itself in a song shows tonality.
The frequency at which it repeats shows rhythm. The number
of unique notes present also shows the range that the song
is produced in. A large number of unique notes would tell
us that there is not much learning happening, just a jumble
of random notes. Beyond our mathematical analysis none of
us are experts in music and therefore we did not know other
ways to measure the performance.

8.3. Group 27

Really interesting topic. Thorough literature review
which helped provide more background to the topic. Nice
connection between the architecture used and that used in the
literature review sources. It was nice to see the results of the
song produced. Good dataset description, would have been
interesting to hear how the dataset used compared to that
used by the literature review sources cited. Not necessary for
a report, but it would be interesting if you have some com-
mentary on how complexity (and what kinds of complexity)
of musical dataset affects model performance, and how mu-
sical complexity relates to other dataset complexity we have
heard more about in class, like imagery.

Response: Of Course training datasets affect music
complexity! The original Neural Composer was trained on
game music but ours was trained on a more abstract dataset.
That is why when you compare our output to Hack Poet’, you
will notice that his sounds are more robust while ours sounds
more like beeps and pops. Convolutional GAN architec-
ture block diagram slide is nice but it would have been useful
to have the pointer move around while talking about it so it’s
easier to follow. The presentation portion ran a little long. It
seems like the model is learning chord progressions, do you
think that it will be apparent with more training or will you
need to train them separately?

Response: Yes! The sound of the output song is heav-
ily dependent on the training set. So say you gave it classical
music, you would hear GAN songs in the classical format that
would follow the same structure.

Do you think this is because some of the most com-
mon structures in jazz are chord progressions but there are not

as many repetitive notes? Any commentary on the result we
heard and what you might expect or design towards would be
interesting.

Response:Jazz is the easiest for GANs to learn be-
cause there are not as many repetitive notes. This allows the
output song to be more free form. The output you heard was
a composition of multiple notes played on rhythm. It sounds
like this because the songs in the data set it sampled sounded
like this as well. The model will learn what it is given and
output from a subset of the input.

Overall it seems like a really complex problem and a
lot of work put into your model creation, very impressive!

9. REFERENCES

[1] Li-Chia Yang, Szu-Yu Chou, Yi-Hsuan Yang.
MIDINET: A CONVOLUTIONAL GENERATIVE
ADVERSARIAL NETWORK FOR SYMBOLIC-
DOMAIN MUSIC GENERATION

[2] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and
Yi-Hsuan Yang, “MuseGAN: Multi-track Sequential
Generative Adversarial Networks for Symbolic Music
Generation and Accompaniment,” in Proceedings of
the 32nd AAAI Conference on Artificial Intelligence
(AAAI), 2018.

[3] Colin Raffel, “Learning-Based Methods for Comparing
Sequences, with Applications to Audio-to-MIDI Align-
ment and Matching,” PhD Thesis, 2016.

[4] Carnovalini, F., Rodà, A. (2020, March 9). Computa-
tional Creativity and Music Generation Systems: An In-
troduction to the State of the Art. Frontiers.

[5] HackerPoet. (n.d.). HackerPoet/Composer. GitHub.
https://github.com/HackerPoet/Composer.


	 Introduction
	 Related Works
	 Dataset and Features
	 Data Preprocessing

	 Methods
	 Experiments/Results/Discussion
	 Conclusion
	 Contributions
	 Lynsey Johnson
	 Sush Kudari
	 Avinash Reddy

	 Reply to Reviews
	 Group 15
	 Group 24
	 Group 27

	 References

