Facemask Detection and Classification via Deep Learning

Nikhil Pathak Joseph Chang Benjamin Chang

Prof. Peter Gerstoft

6/3/21

Electrical and Computer Engineering JACOBS SCHOOL OF ENGINEERING

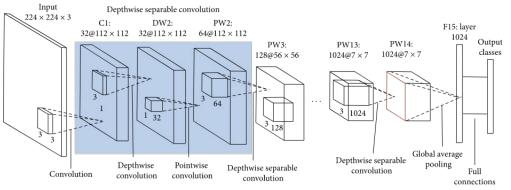
Background

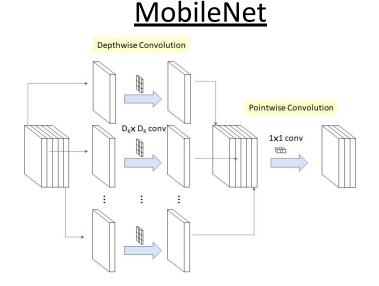
<u>Covid-19</u>

- CDC recommends wearing face masks
- Prevents viral spread and exposure
- 83% believe face masks are effective [1]
- Only 51% practice wearing in public

Face Mask Wear

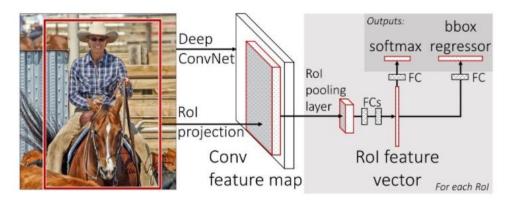
- 98% effective at preventing small particles [2]
- Many wear them incorrectly \rightarrow viral spread





Literature Survey

- <u>Transfer Learning</u> [3]
 - Pretrained feature extractors
 - Flexible for solving various classification tasks
 - Reduced computational resources to training
- InceptionV3 [4]
 - 48 layers deep
 - Pretrained on 1,000,000+ images
 - wide rather than deep model
- <u>MobileNet</u> [5]
 - Convolutional, Avg Pooling, and Dense layers
 - Depthwise separable convolutions



Literature Survey

• <u>YOLOv3</u> [6]

- 106-layer fully convolutional architecture
- Convolutional layers, residual layers
- Softmax activation layer
- Faster R-CNN [7]
 - Convolutional layers
 - Roi pooling layer makes it fast
 - RPN (Region Proposal Generator) proposes regions for network to look at that are likely to contain objects
 - Less memory needed since doesn't cache extracted features

	Туре	Filters	Size	Output
	Convolutional	32	3 × 3	256×256
	Convolutional	64	$3 \times 3 / 2$	128×128
	Convolutional	32	1 × 1	
1×	Convolutional	64	3 × 3	
	Residual			128×128
	Convolutional	128	$3 \times 3 / 2$	64×64
	Convolutional	64	1 × 1	
2×	Convolutional	128	3 × 3	
	Residual			64×64
[Convolutional	256	$3 \times 3 / 2$	32×32
	Convolutional	128	1 × 1	
8×	Convolutional	256	3 × 3	
	Residual			32×32
	Convolutional	512	$3 \times 3 / 2$	16×16
	Convolutional	256	1 × 1	
8×	Convolutional	512	3 × 3	
	Residual			16 × 16
	Convolutional	1024	$3 \times 3 / 2$	8 × 8
	Convolutional	512	1 × 1	
4×	Convolutional	1024	3 × 3	
	Residual			8 × 8
	Avgpool		Global	
	Connected		1000	
	Softmax			

How can Machine Learning help?

- CNNs are great at learning information from images
 - Powerful, trainable feature extractors can help us classify whether a person is properly wearing a facemask
- Traditional approaches require more involvement from us to classify these faces
 - NN learns end-to-end

Dataset

Face Mask Detection Dataset

- Obtained from Kaggle [8]
- 853 images of different resolutions and aspect ratios
- 4072 faces with ground truth labels
- 3 Classes: Masked, Not Masked, Incorrectly Masked
- Avg Size of Face: 31.15×35 pixels \rightarrow resized to 35x35 pixels
- Split into 8:1:1 training, validation, and testing images
- Used for train/val/test purposes

Dataset Imbalance Issue!

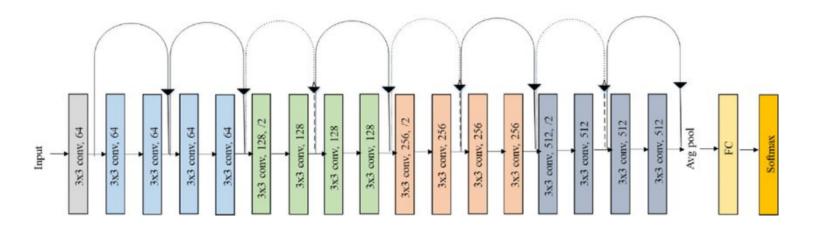
- This dataset has serious class imbalance issues!
- Training split of 3257 faces
 - 2551 Masked
 - 608 Not Masked
 - 98 Masked Incorrectly
- Traditional CrossEntropyLoss does not do well with massive class imbalance...
- Solution: Weighted CrossEntropyLoss!

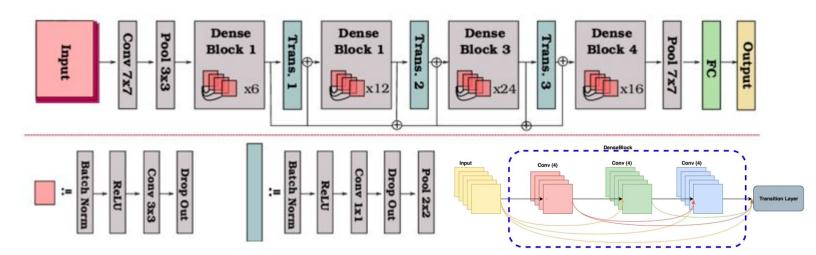
$$loss(\mathbf{x}, class) = (-\mathbf{w}[class]) \log \left(\frac{e^{\mathbf{x}[class]}}{\sum_{j} e^{\mathbf{x}[j]}}\right)$$
$$loss for batch size N = \frac{\sum_{i=1}^{N} loss(\mathbf{pred}[i], class[i])}{\sum_{i=1}^{N} \mathbf{w}[class[i]]}$$

Masked = 98/2551 w = Unmasked = 98/608 Masked Incorrectly = 98/98

Models

- Transfer Learning
- Weighted CrossEntropyLoss to train models
- Metric to Evaluate Models: Average-Class-Accuracy (ACA)
 - ACA = (Class1 Acc. + Class2 Acc. + Class3 Acc.) / 3
- Our project explored alternative Transfer Learning models including:
 - ResNet-34 [8]
 - VGG-16 [9]
 - VGG-19
 - DenseNet201
 - DenseNet161
 - DenseNet121
- Also experimented with a Custom CNN architecture
 - BatchNormalization
 - ReLU vs. TanH activation functions

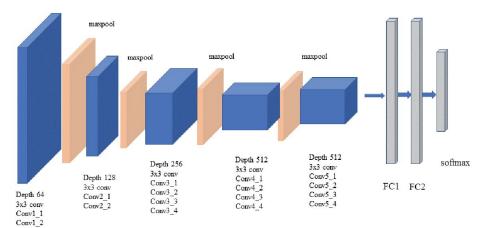

Model Details

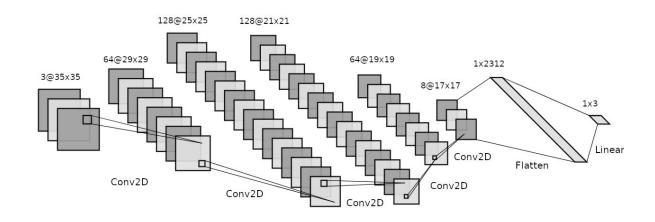

<u>ResNet</u> [9]

- Varying layers (i.e. 18, 50, 152)
- Skip connections to deal with vanish/exploding gradient

DenseNet [10]

- Every layer connected to previous layers in Dense Blocks
- Every layer adds limited parameters (12 kernels learnt per layer)


Model Details


<u>VGG</u> [11]

- Deep architecture with "very small (3x3)" convolution filters
- Trained on ImageNet database
- Uses Convolutional, Pooling, and Dense layers

Custom

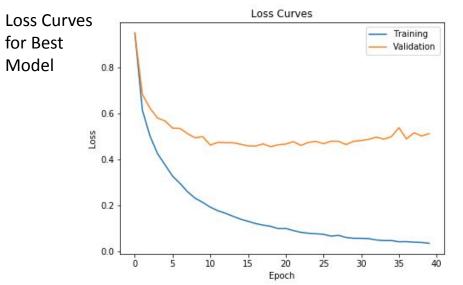
- Convolution filters
- Activations: ReLU, TanH
- Layers: BatchNorm

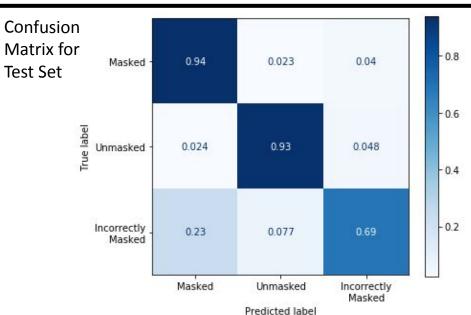
Results

Custom CNN with ReLU + BatchNorm

- Best Class Accuracy: "Mask"
- Worst Class Accuracy: "Inc. Mask"
- Average Class Accuracy (ACA): 85.29%

<u>VGG16</u>

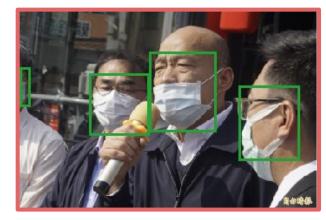

- Best Class Accuracy: "Mask"
- Worst Class Accuracy: "Inc. Mask"
- Average Class Accuracy (ACA): 83.60%


<u>VGG19</u>

- Best Class Accuracy: "No Mask"
- Worst Class Accuracy: "Inc. Mask"
- Average Class Accuracy (ACA): 83.23%

	Accuracies				
Model	Mask	No Mask	Inc. Mask	ACA	
ResNet18	96.03	80.95	23.08	66.69	
ResNet18 w/ 2 FC Layers	96.03	83.33	15.39	64.92	
ResNet34	89.80	90.48	30.77	70.35	
Custom CNN with ReLU	90.94	88.10	46.15	75.00	
Custom CNN with ReLU + BatchNorm	93.77	92.86	69.23	85.29	
Custom CNN with TanH	86.69	90.48	53.85	77.01	
Custom CNN with TanH + BatchNorm	86.97	95.24	46.15	76.12	
VGG16	93.48	88.10	69.23	83.6	
VGG16 with BatchNorm	90.94	71.43	24.18	62.18	
VGG19	92.92	95.24	61.54	83.23	
VGG19 with BatchNorm	90.94	85.71	30.77	69.1 4	
DenseNet201	98.87	95.24	23.10	72.40	
DenseNet161	98.58	95.24	46.15	79.99	
DenseNet121	95.75	90.48	30.77	72.33	

Best Model (Custom CNN with ReLU + BatchNorm) Results

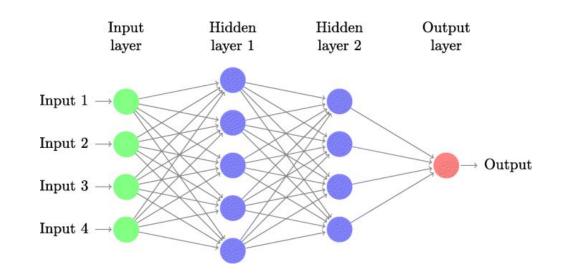

Good Predictions:

Bad Predictions:



Key for Predictions: Masked Unmasked Masked Incorrectly

Observations


- Custom CNN with ReLU + BatchNorm model has highest accuracy
- Potential to train more accurate face mask classification models

Custom CNN Confusion Matrix

Future Work

- Explore using Faster R-CNN model directly
- Increase accuracy on "incorrectly masked faces" class by collecting more data to train on
- Test with more model layers

[1] Benjamin Fearnow, "Americans Support Wearing Masks, But Only Half Wear Them," in Newsweek, Jan. 23, 2021, https://www.newsweek.com/83-percentamericans-support-wearing-masks-only-half-wear-them-poll-1563944.

[2] Brenda Goodman, "How Much Does Wearing a Mask Protect You?" in WebMD, Nov. 19, 2020, https://www.webmd.com/lung/news/20201119/howmuch-does-wearing-a-mask-protect-you.

[3] Wikipedia, "Transfer learning - Wikipedia, the free encyclopedia," *http://en.wikipedia.org/w/index.php?title=Transfer\%20learning&oldid=102239* 4104, 2021.

[4] G. Jgnesh Chowdary, Narinder Singh Punn, Sanjay Kumar Sonbhadra, and Sonali Agarwal, "Face Mask Detection using Transfer Learning of InceptionV3," 2009.

[5] Isunuri Venkateswarlu, Jagadeesh Kakarla, and Shree Prakash, "Face mask detection using MobileNet and Global Pooling Block," 2020.

[6] Joseph Redmon and Ali Farhadi, "Yolov3: An incremental improvement,"2018.

[7] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," 2016. [8] Larxel, "Face Mask Detection Dataset" in Kaggle, 2020, https://www.kaggle.com/andrewmvd/face-mask-detection.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, "Deep residual learning for image recognition," 2015.

[10] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger, "Densely Connected Convolutional Networks," 2018.

[11] Nagesh Singh Chauhan, "Mask and social distancing detection using vgg19," https://www.kaggle.com/nagehsingh/mask-and-social-distancing-detection-usi ng-vgg19, Feb 2021. Thank you!